SOME FUNCTION CLASSES RELATED TO THE
CLASS OF CONVEX FUNCTIONS

A. M. BRUCKNER AND E. OSTROW

1. Introduction. A real-valued function f defined on the positive
real line [0, ) is said to be convex if for every # = 0,y = 0, and
a,0 = a =1, f satisfies the inequality

(eY) flaw + A —a)y] = af(@) + 0 — &) f(y) .

Such functions are important in many parts of analysis and ge-
ometry and their properties have been studied in detail (see e.g.
the expository article Beckenbach [1] which contains an extensive
bibliography).

A related class of functions is the class of superadditive functions
which satisfy the defining inequality

2 f@+y)=zf@) +f.

These functions, more precisely their negatives which are subadditive,
have been studied by Hille and Phillips [5] and R. A. Rosenbaum [7]
among others.

In the paper we shall be concerned, in large part, with classes of
functions that properly lie between these two classes and which are
defined by inequalities which are weaker than (1) but stronger than
(2). We obtain a strict hierarchy of classes and various characterizing
properties of these classes and study a simple averaging operation that
transforms each class into a smaller class.

2. Definitions and elementary properties of the classes. We shall
restrict our attention generally to functions which are continuous, non-
negative, and for which £(0) = 0 unless the contrary is explicitly stated.
The requirement of being nonnegative simplifies many proofs which
could be given without this assumption by considering the sum of f
with a suitably chosen linear function.

DEFINITION 1. Let f be defined on [0, ). The average function
F of f is the function defined for all z > 0 by

F(z) = -i—S:f(t) dt F(0)=0.

DEFINITION 2. The function f is said to be starshaped if for each
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a,0<a=<1, and all 2

flax) = af () .

It is easy to see that the set of points lying above the graph of
a starshaped function is starshaped with respect to the origin in the
usual sense. A function can, of course, be starshaped with respect to
any other point on its graph, the definition of this phenomenon being
made in an obvious way. The characterization of Lemma 3 below then
applies mutatis mutandis. It is not hard to verify that a continuous
function is convex if and only if it is starshaped with respect to a set
of points dense in its graph.

DEFINITION 3. The function f is said to be convex on the average,
starshaped on the average, or superadditive on the average if F is
respectively convex, starshaped, or superadditive.

In the sequel we shall use the abbreviation COA for convex on
the average. We shall also use the following notation for derivatives:

£l = lim LE AP @) o ) — yim Lot ) = /()
- = h 2 J +\Wo Aim W ,

h—0 h—0t+

and

(@) = lim fx, + h) — f(x) )
== h

h—0~"

Simple characterizations of the classes are recorded in the following
series of lemmas.

LEMMA 1. A continuous convex function f is left and right differ-
entiable at each point, the one-sided derivatives being increasing fumc-
tions. Conversely, if any one of the Dini derivatives of a continuous
function f is increasing, the function is convew.

Proof. For a proof of the first part see Hardy, Littlewood, and
Polya [4]. To prove the converse, let Df denote an increasing Dini
derivative of f and let G be an indefinite integral of Df. Then G is
convex. If =z, is a point of continuity of Df, then both f and G are
differentiable at x, and Df(x,) = G'(x,) = f'(x,). Since Df is increasing,
it is continuous except on at most a countable set of points. It follows
(see Hobson [6]) that f and G differ by at most a constant. Thus f
is convex.

The proofs of the next three Lemmas are straightforward and will
be omitted.
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LEMMA 2. The function f is COA if and only if f' = 2F".

LEMMA 3. The function f ts starshaped tf and only if either one
the two following conditions is satisfied:
(i) f(x)|x is increasing,

(i) f'(x) = f(@)/z for all x.

LEMMA 4. The function f is starshaped on the average if and
only if f = 2F.

The inequality f = 2F has the following simple geometric interpre-
tation: Since

2F@) = [f®dt = L5,

the area under the graph of f is at each point dominated by the area
of the triangle with vertices (0, 0), (x, 0) and (z, f(x)).
The inequality f(x,) = 2F'(x,) can be cast in the form

F@) _ 1 f(z)
T, 2 x

Since F'(x)/x is increasing, we actually obtain the slightly more
general result,

Fl@) _ F@) _ 1 f(z)
a 0 ox 2 x

for all @ =< x,. This means geometrically that for a < xz, the area of
the triangle cut off from the above mentioned triangle by the line
% = @ is no smaller than the area under the graph of f from 0 to a.

LEMMA 5. If f is respectively convex, convex on the average,
starshaped, or superadditive, then f is a mondecreasing function.

Proof. We have restricted ourselves to nonnegative functions for
which £(0) = 0. If f is superadditive, then f(y) = flz + (¥ — 2)]

Zf@)+fy—x)=f(r) fory=w.

As we show in Theorem 5, f satisfying any of the other conditions
implies that f is superadditive.
If f is merely starshaped on the average, it is clear from the
geometric interpretation of f = 2F that f need not be increasing.
Since f is an increasing function provided f belongs to one of the
function classes of Lemma 5, f has a finite derivative almost every-
where. For all these classes, F' has a continuous derivative for z > 0
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since zF"'(z) = f(x) — F'(x). We consider the behavior of F' at the
origin in Theorem 7 below.

We now investigate various operations under which our funection
classes are closed. We have first of all

THEOREM 1. Let f and g be respectively convex, COA, starshaped,
starshaped on the average, superadditive, superadditive on the average;
then for a = 0,b = 0, af + bg belongs to the same class.

The proof involves a trivial computation.
The next two theorems consider the behavior of our classes under
the operation of pointwise limits.

THEOREM 2. Let {f,} be a sequence of convex, starshaped, or sup-
eradditive functions converging pointwise to a limit function f. Then
f s respectively convex, starshaped, or superadditive. Moreover, the
average functions F, converge to the average function F.

Proof. It is clear that the defining inequalities of these classes
are preserved in the limit. The proof of the second statement parallels
the proof of the corresponding part of Theorem 3.

THEOREM 3. Let {f.} be a sequence of COA functions converging
potntwise to a continuous limit f. The limit function is then COA
and the average functions F, converge to the average function F.

Proof. Let b >0. The sequence {f,} is uniformly bounded on
[0, b] by sup {f.(0)} = M. M is finite for f,(b) — f(b) and M is a uniform
bound because each f, is an increasing function. By the Lebesgue
bounded convergence theorem,

%S:fn(t) dt — %S:f(t) dt

for each x¢]0,b], that is F,(x)— F(x). Since b was arbitrary, this
last relation holds for all z. The convexity of F' follows from the
convexity of F,.

In general, however, it is not true that the limit of the average
functions is equal to the average of the limit function. If f, —f and
the averages F,— G, an easy calculation shows that FF< G. For
functions which are starshaped on the average, we do have the follow-
ing theorem.

THEOREM 4. If{f.} is starshaped on the average and f,— f, then
f is starshaped on the average.
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Proof. For each x >0, let T and T* be the linear functions
determined by the origin and the points (%, f.(x)) and (z, f(x)). Since
JSo—f, T¢:— T*. Moreover, the inequality 2F, < f, is equivalent to

|t = Tiwar;

by Fatou’s theorem,

g:f(t) dt < lim S:fn(t) dt < lim SwT:(t) dt = S:Tx(t) dt .

n—oo n—co

Thus,

Lirma=lrwa=-Ltiw,

i.e.
Fmgéﬂw

so f is starshaped on the average.

3. The hierarchy. We now consider the inclusion relationships
among the six classes.

THEOREM 5. Let f be a nonnegative continuous jfunction which
vanishes at the origin.

Consider the following six conditions on f:

(i) f is convex,

(ii) f 1s COA,

(iii) f s starshaped,

(iv) f is superadditive,

(v) f is starshaped on the average,

(vi) f is superadditive on the average.

Then the following chain of implications is valid but none of the
reverse implications holds: (i) — (ii) — (iii) — (iv) — (v) — (vi).

Proof. (i) — (ii). This will be a consequence of Theorem 10.

(if) — (iii).

f(x) = F'(x) + F(») .
€X &x

Since F' is convex, both F’ and F'(x)/x are increasing. Thus f(x)/x is
increasing. It follows from Lemma 3, condition (i), that f is starshaped.
(iii) — (iv). For 2 >0 and y > 0, we have
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f@ _ f@+y)
*x = x4y

and

fW - fl&+y)
y ~ z+y

These inequalities are equivalent to

@+ 9f(®) = of (@ + y)

and

@+9fw) =yf@+y)

which on addition yield f(z) + f(¥) = f(x + ¥).

(iv) — (v). We first consider the case in which f is a polygonal
superadditive function., The general case then follows by a limit
argument.

Let # > 0 and let f be polygonal of n segments with vertices over
the equidistantly spaced points 0,v,2v, ---,nv =2. Let T be the
linear function determined by the origin and the point (z, f(x)), i.e.
T() = (f(x)/x)t for all t. Furthermore, let q(t) = /(%) — T(t). The
function ¢ is polygonal and superadditive, having its vertices over the
same points as f, and ¢(0) = q(x) = 0. We will show that S:q(t) dt <0

which suffices for F' to be starshaped. Using the linearity of f on the
intervals [kv, (kK + 1)v], we obtain

Syww:vgmM>

U(nim[Q(kv) + q(n — k)v)] if n is odd,
k=1

vq((n/2)v) + v"g[q(kv) + q((n — kyw)] if n is even .

Now q(kv) + q((n — k)v) < q(nv) = q(x) = 0 for ¢ is superadditive. In
either case | q(t) dt < 0.
0

In the general case let{p,} be a sequence of polygonal functions
over equidistantly spaced points such that p, —f. Let T be the linear
function defined as above related to f. Since {p,} is superadditive for
each n (see Bruckner [2, THEOREM 8] and p,(x) < f(b) for all n and
all © < b, where b is arbitrary, it follows for each z that

[putyat—{reae.

Since
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|2at =\ T,

the limit result

g:f(t) dt < SZT(t) dt

follows.

(v) — (vi). This is just the case (iii) — (iv) for F.

That none of the reverse implications hold is shown by the follow-
ing examples:

(i) — ({): f(x) =a«*—2* is COA on [0,4/9] but convex only on
o, 1/3].

(iii) — (ii):

x? 0sxz=<1
f(@) i l<w

is starshaped on [0, o) but COA only on [0, 1].

(iv) — (i)): f@=n+@—nlforn=r<n+1,®n=012---)
is superadditive on [0, «) but starshaped only on [0, 1].
~ (v)—(iv): Let f be any function that is starshaped on the average
without being increasing.

(vi) — (v): Let F' be any superadditive function which is not star-
shaped such that F’ is continuous. Then xzF'(x) has a continuous
derivative f(x) and F' is the average function of f.

4, Behavior for large and small z. Our first theorem in this
section shows that superadditive functions are differentiable at the
origin. Actually, a weaker hypothesis suffices to give this result.

THEOREM 6. Let f be a continuous nonnegative function on [0, c],
JF0) =0, such that f((1/n)x) < (A/n)f(x) for alln =1,2,38, ---, and for
all xe[0,c]. Then f is differentiable at x = 0.

Proof. The hypothesis f((1/n)x) = (1/n)f(x) implies that

L@ < o .
-0 2
‘Suppose f is not differentiable at the origin. Then there exists an
& > 0 such that f(0) — f’(0) = 3s. Choose %, so that f(x,) < (f'(0) + &)=,
and let {y,} be a sequence such that y,—0 and f(¥.) > (F(0) — &)y,
k=1,2,8,--.). Since f is continuous at =z, there is a d > 0 such
that if |@ — x,| < §, then f(x) < (f'(0) + ¢)x. Let y* be a member of
the sequence {y,} such that y* < d. There is then an integer N such
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| Ny* — ,| < &; hence f(Ny*) < (f'(0) + e)Ny* .

However
f*) = —%—f (Ny*) < (f'(0) + e)y* < (F'(0) — e)y*

which contradicts the fact y* is a member of the sequence {y,}. Thus
f is differentiable at the origin.

COROLLARY. If f 1is superadditive, in particular if f is star-
shaped, COA, or convex, then f'(0) exists.

THEOREM 7. Let f be superadditive on the average, and let F be
its average function. If f'(0) exists, then F' is continuous at = = 0
and f'(0) = 2F"(0).

Proof.

P = 10 _F@ 550,

@X

The right member of this equality approaches f’(0) — F’(0) for
F'(0) exists by Theorem 6; hence lim, ., F'(x) exists, and because F’
is a derivative, this limit must be F’(0). Thus, F’ is continuous at
2 =0 and 2F’(0) = f'(0).

Theorem 7 indicates that 2F(x)/x is approximately the same as
f(x)/z for x near 0, provided f behaves sufficiently well near the origin.
The next theorem shows that under suitable hypotheses the same
behavior holds for large =.

THEOREM 8. Let f be increasing and starshaped on the average
and let F be its average function. Then lim,.. f(x)/x exists and is
equal to 2lim,... F'(x)/x.

Proof. Since F' is starshaped, the lim,.. F(x)/x exists.

Let a be such that 0 < @ < 1 and let M = Tim,_.. (f(x)/). Then

Fx) _ 12 Sxf(t) di
@X X 0
1

S:”f(t) dt + —wl; S:zf(t) dt

x2
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aF (ax) n 1
x

=

—a flaz) .
x
It follows that

lim @) > aﬂim-lig(cw—) +al — M.

T X F—00
This last inequality holds for all @, 0 < @ < 1 so
aM M

limM = su .
zoeo <e<t 1 + « 2

On the other hand, since F' is starshaped, f(x) = 2F'(x) for all « so
that

lim £® =1 i S@)
goe 2 Toe

It follows that lim,_. (f(x)/x) exists and equals 2lim,_. (F'(x)/x).

COROLLARY. Let f be increasing and starshaped on the average
with average function F. Then the three functions f(x)/z, F'(z), and
F(x)|x stmultaneously are bounded or wunbounded.

Proof. This follows directly from the identity

f(x) = F'(z) + F(»)
X €

and the preceding theorem.

5. Minimal extensions. We suppose in this section that f is defined
initially on an interval [0,c]. We shall consider in this section the
problem of extending f in 2 minimal way to [0, ) while staying within
the same class. We start with

DEFINITION 4. Let f be convex (COA, starshaped, superadditive)
on [0, ¢]. Suppose f is a function defined on [0, «) with the following
properties:A

(i) F=7on[0,c,

(ii) f is convex (COA, starshaped, superadditive) on [0, ),

(iii) if g is any function on [0, ) satisfying (i) and (ii), then
g(x) = f(x) for all =;
then f is said to be the minimal convex (COA, starshaped, superad-
ditive) extension of f.

We restrict our definition to functions which are at least superad-
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ditive for minimal extensions of functions in the larger two classes are
not, in general, continuous.

It is well known that if f is convex on [0, c], there exists a convex
extension of f to [0, o) precisely when f'(¢) < o. In this case, the
minimal convex extension of f is linear on [¢, o) with slope f’(c). When
f is starshaped, it is clear that the minimal starshaped extension of f
to [0, o) is the linear function with slope f(c)/e. For superadditive
functions the situation is much more complicated and has been studied
in detail in Bruckner [2], where it is shown that the minimal extension
does exist and, roughly speaking, behaves about as well as f.

The following theorem states the corresponding result for functions
that are COA on [0, ¢].

THEOREM 9. Suppose f is COA on |0, ¢] with average function F.
Define f by the equations

S (@) 0=z=c
2F" (c)x + f(c) — 2F" (¢c)x x>c;
then f is the minimal COA extension of f to [0, ). If F is the

average function of F, then F' is the minimal convex extension of F
to [0, ).

f@) =

Proof. For x = ¢, we have
Fa) = _S rtydt + L S 12F" (0)t + f'(c) — 2F"(c)e] di .

It is easy to check that F(c) F(c) and that for & > ¢, F”(x) = 0 and

F'(x) = F'(c) so that F is the minimal convex extension of F to [0, o).
Thus f is a COA extension of f to [0, ). Let now g, with average
function G, be any COA extension of f to [0, ) and let £ > ¢. Since
G is convex, G’ is increasing so

G'(x) = G.(c) = F'(c) = F'(x) .
Thus
g'(@) = 26 () = 2F"(2) = f'(w) .

Since f and g agree at ¢ and ¢’ = f ', 9(x) = 7 (€) so f is indeed the
minimal COA extension of f. -

If a function is convex on [0, ¢], then it has extensions of each of
the four types mentioned above. It is interesting to compare these
various extensions. As an example, consider the function f(x) = #* on
[0,1]. Its minimal convex extension is linear with slope 2, the minimal
COA extension is linear with slope 4/3, and the minimal starshaped
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extension is linear with slope 1. In contrast, the minimal superadditive
extension is not linear. It is given by the function f(2) = n + (x — n)’
forn <ov<n+1,n=1238,--- (see Bruckner [2], p 1155).

6. Tests for convexity on the average. In this section we shall
consider conditions that are necessary and/or sufficient that a function
be COA. Similar tests concerning superadditive functions are found in
Bruckner [3]. We begin with the following lemma.

LEMMA 6. Let f, be the function such that

fol@) = F@— o) x >—c .

If f is COA, then f, is COA.,

Proof. Let F, be the average function of f,.. We shall show that
Sux) = 2F(x), © = ¢. Since fi(x) = f'(x — ¢) for = =¢, it suffices to
show that f'(x — ¢) = 2F(x). This last inequality will be a consequence

of the inequality F'(x — ¢) = Fi(x).
Defining

A =\Tr@dt,

we have that

Flo—c=_ 1 g:_cf(t) dt = xil%

and
@) = 2\ sty de = Ve - o at
X Jo X Je
= lgz_f(t)dt _ A@)
x Jo @
It thus suffices to show that

[A@@) (@ — o) = [Ax)=7T,

the ‘'’’’ denoting differentiation with respect to . This last inequality
is equivalent to

A@) z 222 Aw),

x(x — ¢)

which is, on replacing A(z) by Sx_cf (t) dt and simplifying, equivalent to
0
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the relation

f(w—c)ézx—x_—c—F(x—c).

Since f is starshaped, f is superadditive; hence f is starshaped on the
average. Thus, by Lemma 4,

f@—c)=2F(@—¢) =22 =C¢ p(z — ¢)
@
which proves the lemma.

DEFINITION 5. Let f be defined on [0,a]. The functions fi, fi, - -+,

f» defined on [0, a,], [0, a,], - -+, [0, a,] respectively form a decomposition
of f provided
(i) f(0)=0 t=1,---,m
(ii) e, +a,+ - 4+a,=aand a; >0fort=1,.--,n
Si(@) 0=z =a
(i) f(x) = fdx — a,) + fi(a,) a4, < T =+ A
ol —a, —ay— ++- —a,,) + Sia) + oo+ fai(@ay)

ao—a,<r=a.
In this case we write f = fiANfiN- A S,

THEOREM 10. Let f, and f, be COA on [0, a,] and [0, a,] respectively
and let f=f, N fo on [0,a, + a,]. Let f, be the minimal COA extens-
w0n of fi. A necessary and sufficient condition that f be COA s that
fzF on0,a + al

Proof. The necessity is obvious. As to the sufficiency let F‘l be
the average function of f;. For xe€]|0, a, + a,], write

F@ = @) + [F@ - @) = F@ + S| 150 = Foldt .

Consider g¢(t) = f(t) — fi(t). g(t) =0 on [0,a,] so there is an &
defined on [0, a,] such that g(t) = h, (t) for t [0, a, + a,]. On [a,, a, + a,],
—f, is linear. Since f, is COA on [0, a,],» is COA on [0, a,] being
the sum of COA functions. It follows from Lemma 6 that g is COA
on [0, a;, + a,]. Its average function is therefore convex and so F' is
the sum of convex functions; hence convex.

THEOREM 11. Let fy, ---, f, be COA on [0, a,], - - 5 [0, @] respectively
and let f=Ff Nfa N+ A fo. Furthermore let f, be the mimimal
COA extension of f,,(k =1, ---,n). Then fis COA on [0,a, + -+ + a,]
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W fi ANfera N <o+ N fo = fio for each k=1,2, .-, n.

Proof. The proof is an induction argument using the sufficiency
part of Theorem 10.

We now return to the proof of the first part of Theorem 5, namely
the proof of the statement: if f is convex, then f is COA.

Proof. Let us assume first that f is a polygonal function on [0, c].
If f has only one segment, then f is linear so the theorem is trivially
true.

Supposing, by induction, that the theorem holds for polygonal
functions with # segments, let f be polygonal with (n + 1) segments.
Let f, be the polygonal function which agrees with f on the first =
segments of f and let f, be the minimal convex extension of f, to
[0, c]. Thus 7. is convex and polygonal with n segments and so is
COA. On the last segment f is linear and f gfn. By Theorem 10,
f is COA on [0, c].

The general situation follows immediately by Theorem 3. Let {p,}
be a sequence of convex polygonal functions approximating f. The
{p,} are thus COA and so their limit function f is COA on [0, ¢]. Since
¢ is arbitrary, this concludes the proof.
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