
ON MEROMORPHIC STARLIKE FUNCTIONS

CH. POMMERENKE

1. Introduction* Let &(a) (0^a<l) denote the class of functions
of the form

Σ

that are analytic in 1 < | z \ < co and satisfy

RIϋ^L > a .

The class @(0) is formed by the meromorphic starlike functions f(z) —
z + •••, that is by the functions that map {\z\ > 1} onto a region
whose compact complement is starlike with respect to the origin.

Apart from the case a = 0 the most interesting case is a = 1/2.
We shall see (Corollary 1) that every / e @(i) can be approximated
by the roots of polynomials with zeros in the unit disk, that is by
functions of the form

(l.i)

These functions belong to
The main results will be: As r—>l,

(1.2) max max \f'(z) | ~ * β

/e@(«) \z\zr (1 — r~x) log 1/(1 —

If fe&(a) then

(1.3) \f'(z) \^a\z-γ(z) I + (1 - a) \z~V(z) \-*ι*-*(

^ (1 - I ^ | - ψ — .

For each fixed /e@(α),

I/'OOI ^ Λ:(I — μi-ij^ti-to.β)

for every ε > 0 αmϊ some constant tc = tc(f, e) > 0.

T%e coefficients of f(z) satisfy

•4) I«» I ^ — — — T 2 - >
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(1.5) inf s u p n \ a n \ < 2(1 - a) .
n-*°°

All these inequalities are best possible.

Inequality (1.3) is well-known for the case a = 0 whereas (1.2)
seems to be new even for a = 0. Inequality (1.4) has been proved by
Clunie [1] for a — 0. Some of the problems can also be studied by
the variation method developed by Royster [9].

We shall also prove inequalities analogous to (1.4) and (1.5) for
functions g(ζ) that are analytic and bounded in | ζ\ < 1 and satisfy
Re ζg'{ζ)lg{ζ) ̂  a. (For a = 0, see [2] and [7]).

2* A representation formula.

THEOREM 1. Let fe @(α) (0 ̂  a < 1). Then

(2.1) f(z) = z exp (2(1 - a) j * log (1 - β"*"1

where y(t) increases and j(t + 2π) — y(t) = 1. Also axgf{reiι)—*πt +
2ττ(l — ά)y(t) as r —> 1, and

(2.2) z a + ( l a ) Γ ^ f
f(z) Jo 1 — e%tz~ι

Conversely, every function of the form (2.1) belongs to

Proof. We shall reduce (2.1) in the general case to the case
a = 0 where (2.1) is a known formula. If /e@(α) let

Then Rezg'(z)lg(z) = -α/(l - α) + 1/(1 - α) Rezf\z)\f{z) ^ 0. Hence
#(2) is starlike and (compare [7, Lemma 1])

</(z) - z exp f-ί ί2" log (1 - e^z^
\7Γ Jo

zg'(z)lg(z) = - ^
2τr

where V(t) = lim^i arg g{reiι) is monotone increasing and V(t + 2τr) —
F(t) = 2π. Putting y(t) = Vr(ί)/(2π) we see that /(«) = z«g{zf-« satisfies
(2.1) and (2.2). Direct computation shows that every function of the
form (2.1) belongs to &{a).

COROLLARY 1. For given fe &(a), there is a sequence of functions
fn e @(α) of the form

fΛz) = z Π (1 - ZvZ-T1-*^ (l«vl^l)
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that converges to f(z) locally uniformly in | z | > 1. All functions
of this form belong to &(a).

This corollary follows immediately from (2.1) by approximating
*γ(t) by step-functions with n steps of height \\n. The last assertion
of the corollary is established by computation. For a — J, the corollary
.shows that / can be approximated by functions of the form (1.1).

3 Estimates of the function-values,.

THEOREM 2. Let f(z) = z + ao + aλz-χ + e @(α) and \z| = r > 1.
Then

(3.1)

(3.2)

z
^ (l + lαol r- 1 + r~2Y " ^ (1 +

V 1 — a /

+ ^-iy-«5-|αo|i/2 > /j _

Equality can be attained in all inequalities.

For a = 0 we find (1 + r"1)2 ^ | z~f(z) | ^ (1 — r"1)2, and these are
well-known inequalities which hold for all functions f{z) = z +
τmivalent and φ 0 in | z | > 1.

Proof of (3.1). Using (2.1) and the fact that the geometric mean
is not greater than the arithmetic mean we see that

I z-γiz) |1/(1-α) = exp (jQ

2r log 11 - e ^

<3.3) ^ Γ Ί l ~ β"*-1 |a #r(ί)
Jo

= Γπ(l + r-*)dΊ(t) -
Jo

Also by (2.1)

α0 = -2(1 - «)Γπe«(ί7(ί) .
o

Hence | α o | ^ 2(1 - a), and by (3.3)

I z-'fiz) I1'11""" g 1 + r-2 + I α01 r-γ(l - α) ^ (1 + r"1)2

from which inequalities (3.1) follow. We have equality for the function

f(z) = zll + -^^z-1 + z-η = z
\ 1 — a )

-where 0 ^ a0 ^ 2(1 — α), and 2 = r > 1.
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Proof of (3.2). Since zf\z)\f{z) = 1 - aQz~λ + and Rezff(z)/f(z)^
a the function

(3.4) φ(z) = z
*/'(*)//(*) + (1 - 2a) 2(1 - a)

is analytic in \z\ > 1 and satisfies \φ(z)\ < 1. Then

(3.5) JL log i z-f(z) I = - ! + tfβΓA^l <ς 2(1 - a)
Or r L r /(2)J

If δ = I ^(oo) I = I α01/2(1 - α) then [3, p. 287]

I Φ(z) I ̂  (6r + l)/(6 + r) ,

hence by (3.5)

br + 1
— log I z~λf{z) I <g 2(1 — α)-
^r r(r 2 — 1)

Integration over [r, +oo] gives

log I z-yXz) I ̂  (1 - α)(l + 6) log (1 - r"1) + (1 - α)(l - 6) log (1 + r"1) ,

and inequalities (3.2) follow because b = | α01/2(1 — α) = | ^ ( ^ ) | ^ 1.
Equality is attained for z — r > 1 by the function

with 0 ^ α0 ^ 2(1 — a).
We could have proved (3.1) by the same method as (3.2). But

the proof directly from the representation formula seemed to be more
interesting.

4# Upper estimate of the derivative* The best possible upper
estimate of the derivative for the functions f(z) = z + that are
meromorphic and univalent in | z | > l is \f'(reiΘ) \ ̂  1/(1 — r~2) (see
for instance [3, p. 120]). We shall show that this inequality can be
improved for starlike functions and small r > 1.

THEOREM 3. Let 0 ^ a < 1. Then as r —> 1

2«i—>β-i

max max \f'(z)\
1 - r-1) log 1/(1 - r-1)

The proof will show that the function f(z) for which \f'(zo)\ be-
comes maximal for a given z0 has the form

(4.1) f(z) = z(l - ^ - 1 ) 2 ( 1 - α ) Ύ l ( l - zjΓψ1-"^
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with 0 g 7i ^ 1, 7i + 72 = 1 and | ̂  | = | z2 \ = 1.

Proof. 1. Let n ^ 2 and different zv {v — 1, , n) with | zv | — 1 be
given. We consider the functions

(4.2) f(z) = z ft (1 -

with 0 ^ 7V ^ 1, 7i + + 7n = 1. For fixed zo(\ z0 | > 1) let f(z) be
the function of this form for which |/'(#0)l becomes maximal. We
shall show that only two of the 7V can be ψ 0 for this maximal function.
We shall use an elementary variation method (compare [5]).

2. Suppose this were false, and 7V > 0 (v = l,2,3). If βλ + β2 +
β3 = 0, & = = βn = 0 then 7? = 7V ± δβv ^ 0 for sufficiently small
δ > 0, and Σyf = 1. Let f*(z) be the function of the form (4.2) where
7V has been replaced by 7?. Let ξ — z^1. Then

\f*(Zo)\2=\zJ*(Zo)lfΛZo)\
n i i /i

= Σ(Ύv±
— Zvζ

Π I 1 -

For abbreviation let

and

Since /34 = = βn = 0 it follows that

1/ίW I2 = (I c I2 ± 2δΛe[δc] + δ216 |2) I z?f(z«) |2

• (1 ± 4δ(l - α)Z + 8S2(1 - «)2Z2

= I ̂ y f e ) I2 [| e |2 ± £§(^6 [6c] + 2(1 - α) | c \

+ δ2(| b |2 + 8(1 - α)ίJ2e[6c] + 8(1 - α)21 c |

Since |/;(«,) |2 ^ !/'(«„) Γ = | z^f(z0) |2 |c |2 by the maximal choice of / ,
it follows that

Re[bc] + 2(1-a) \c\Π =

and

| δ | 2 + 8(1 - a)lRe[bc] + 8(1 - aγ\c\H% ^ 0 .

Eliminating Re[bc] we obtain
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In particular, I = 0 implies 6 = 0.
The two homogeneous linear equations

I = Σ & log 11 - z£ I - 0
1

A + A + A = 0

have a nontrivial solution βlf β3, /33. With these values it follows,
as we have proved, that

h — v R 1 + (1 ~~ 2oc)zvξ _ Λ

Hence the three different points wv = (1 + (1 — 2α)sv?)/(l — Svf) (^ =
1, 2, 3) lie on a straight line, which is impossible because | #v I = 1 and
|ίΓ| < 1. We have therefore proved that in the maximal function all
exponents γv are 0 except possibly two.

3Φ We can write this maximal function in the form (4.1). Thus,
by (2.1) the function / e &(a) for which \f'(zo)\ is maximal also has
the form (4.1).

We may therefore assume that f(z) has the form (4.1) and also
that 7i ^ 72, hence 7i ^ i ^ 72. Let p = \zI"1. Then

'(Z) I ̂  22(1"α) + 2(1 -

+ 2(1 - α)72 22(1-Λ)^ max

Since

(4.3) max 7(1 - pY{1~a)y = 1/[2(1 - α)β log 1/(1 - p)]

it follows that

(4.4) \f\z) | ^ 4 + 2^-Λ)e-1[(l - /9) log 1/(1 - p)]"1 + 16(1 - p ) - .

4. We finally consider the special function

f(z) = 2(1 - ^-1)2 ( 1-α )^(l + ^i)»(i-)(i-Y)

with 7 = 1/[2(1 - α) log 1/(1 - /9)] for /o < 1 near to 1. Then fe @(α),
and by (4.3)

/'Oo-1) - y ^ β - Ό l - p) log 1/(1 - p)]-1 (P-+1).

Together with (4.4) this proves Theorem 3.
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5* Lower estimates of the derivative. The best possible lower
estimate of the derivative for functions f(z) — z + meromorphic
and univalent in | z | > 1 is \f'{z) | ^ 1 — | z |~2, with equality for f(z) =
z + z"1. This function belongs to @(0). For 0 < a < 1 we can prove
more.

THEOREM 4. If fe @(α) (0 S a < 1) then

(5.1) \f'{z)\^a /(*) + (1 - a)
cύl{l~cύ) 1 \ / 1 X 1"*

L. i > ( 1 — _ )
\z iv ~ V 12 iv *

Equality can be attained in all inequalities.

Proof. By (2.1) we have

= exp log -dy(tή

with dy(t) ^ 0 and \ώτ(t) = 1. Since the geometric mean is not

greater than the arithmetic mean it follows that

1/(1—a)
<Γ 1
~ Jo 11 - euz'x I

Hence by (2.2)

( l - | z Jo 11 — e 'x"11

1 - α V

and therefore

t
/(*)

RezJ- ^ a + (1 - a)
A*)

from which (5.1) follows. Equality is attained by

f(z) = z(l - 2r~1^-1 + ί?;-8)1— e

for « = r > 1.
Though (5.1) is best possible for the whole class

true for each fixed function in @(α) if a > 0.

THEOREM 5. Let fe @(α). (i) If 0 ^ a <

) > 0 ŝ c/̂  that

more is

ί/iere isα/s: =
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The exponent cannot be decreased, (ii) If i ^ a < 1 then

for every ε > 0 where κ(ε) = tc{f, ε) > 0.

Proof. We may take a > 0. Suppose Theorem 5 were false.
Then there would be a sequence zk = rAeie* such that

(5.2) /'(*,) = o((i - n-1)1-2*)

and also

(5.3) /'(s4) - o((l - r?y)

for some ε0 > 0. We may assume that θk —> 0. We have to distinguish
two cases:

Case 1. The point t = 0 is a discontinuity of the function
of Theorem 1. Then let λ0 be the height of the jump of j(t) at 0,
and let λy (j = 1, --^m) be the jumps of height ^λ0, occuring at
tj Φ 0. Let λ* be the highest jump <λ0, and let δ = λ0 — λ*. Then
δ > 0. If σ(t) is the function that is constant except for jumps of
height 1 at 0, ± 2ττ, let

(5.4) 7*(ί) = 7(ί) - \σ(t) - Σ Xjσ(t - ty) .

This function increases and has highest jump λ*. We see from Theorem
1 that

(5.5) zkψ£ = α + (1 - α)λ o i±^ζ + (1 - α)

where

F^) = (1 - α) Γ ^ ς c ί 7 ( t )

is a function of positive real part. Hence [4, Theorem 2]

(5.6) I F*(zh) I 5Ξ (1 - α)(λ* +

for large k. The third term on the right side of (5.5) is bounded as.
k —» oo because θk -* 0 ^ ίy ( i = 1, , m). Hence by (5.5) and (5.6)

I zkf\zh)lf(zk) I 2= (1 - α)(λ, - iδ - λ* -
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for large k. On the other hand, Theorem 2 implies | zk

1f{zk) | 2> (1 —

r-i)»-*»# Therefore \f'(zk)\ ^ iδ(l - r^1)1"^, in contradiction to (5.2).

2. The function y(t) is continuous at t — 0. Let now X3 (j =
1, , m) be the jumps of height ^ εo/4(l — α) occuring at t3- Φ 0. Let
7*(ί) be defined as in (5.4) (with λ0 = 0). Then we see from Theorem 1
that

(5.7) f(z) - ft (1 - e^s-1)*1-*^/*(s)
3=1

where

f*(z) = z exp (2(1 - α ) Γ log (1 - e^z

is a starlike function. Hence l//*^"1) is starlike in | ξ\ < 1. Since
all jumps of τ*(ί) are <eo/4(l — a) it follows [7, Theorem 1] that

Since θk—*0Φtj as & —> co we therefore obtain from (5.7) that

i^-y^i^α-n-1)80

for large &. Because Re zf\z)lf(z) g> α: > 0 it follows that

in contradiction to (5.3).
Finally, that function f(z) = 2(1 - z-1)2-2* e @(α) shows that 1 - 2a

cannot be made smaller.

6 Estimates of the coefficients If f(z) = z + a0 + aλz~ι + is
a starlike function then, as Clunie [1] has proved, | an \ ̂  2/(ii + 1).
To generalise this inequality to the class &(a) we first prove the
following lemma, using Clunie's method.

LEMMA 1. / / fe @(α) (0 ^ a < 1) and n = 0,1,

(w + I)21 an\
2 £ 4(1 - a)2 - 4(1 - α) Σ(v + α) | αv |

2 .

Proof. As in (3.4) let again

r v v «/'(z) + (1 - 2α)/(z)

Then it follows that
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- Σ (y + 1K*-V = Φ(z)Ϊ2(l - a) - Σ (v - 1 + 2a)avz~v-1] ,
V=0 L V=0 J

hence for n = 0,1, •

- Σ 0> + l ) ^ " v - Σ (» + l )^~ v + ^(s) Σ (v -

- 0(s)[~2(l - α) - Σ (» - 1 + 2α)αv^-v

Since the second and third term on the left side involve only powers
z~μ with μ ^ n + 1 and since | ̂ («) | < 1 ParcevaΓs formula gives

ip + I)21 av |
2 g 4(1 - α)2 + Σ (^ ~ 1 + 2α)21 av |

2 ,
V=0 V=0

and Lemma 1 follows at once.

COROLLARY 2. Let fe @(α:), 0 < α < 1, and let A be the area of
the compact complement of the image region {f(z): \ z \ > 1}. Then

π ^ A> πa ,

and these inequalities are best possible.

Proof. The inequality π ^ A is of course classical. Lemma 1
implies

Σ (v + OL) I αv |
2 ^ 1 - a ,

hence

A = πf 1 — Σ ^ I αv I2) ^ TΓ̂ O: + ^ Σ | αv |
2) ^ 7rα:.

\ V=l / \ V=0 /

Equality could only hold if αv — 0 for v = 0,1, . But then A = π.
To show that A > πa is best possible we consider

(6.1) f(z) = s(l + ^—i)«(i—)/(»+« = ^ + 2(1 - a) zr% + . . . G <g(α) #

w + 1

The function w — f(z) maps | z \ — 1 onto a set contained in

{| w I ̂  22(1-α)/(w+1),

^ πa/(n + 1), fc = 0, •••,%}.

Therefore A is smaller than the area ττ# 24(1-*)/(ίl+1) of this last set
which tends —* πα: as w —> oo.

THEOREM 6. Let f(z) = z + ΣΓ=o α ^ " u be in @(α) (0 ̂  α < 1).
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Then

(6.2) I α j g g 2 ( 1 " α )

n + 1

for n = 0, 1, , with equality for the functions (6.1).
Inequality (6.2) follows immediately from Lemma 1. The next

theorem will show that (6.2) cannot be improved much even for a
fixed function in @(α). In particular, there is a starlike function with
an Φ o{n-χ).

THEOREM 7. If fe&(a) then

(6.3) lim sup n \ an | < 2(1 - a) .

For every ε > 0 there is a function f e @(α) such that

lim sup n \ an | > 2(1 — a) — ε

Proof. It follows from Lemma 1 that

lim sup (n + I)21 aJ2 ^ 4(1 - af - 4(1 - a) Σ (y + a) \ αv |
2 < 4(1 - α)2

except when αv = 0 for v = 0, 1, . But then (6.3) is trivial. The
last assertion will be proved at the end of this paper.

We shall now consider bounded starlike functions that are analytic

in | ? | < 1.

THEOREM 8. Let g(ζ) = Σ =ibnζ
n be analytic in\ζ\<l and satisfy

(6.4) Reζg'(ξ)lg(ζ) ^ a .

and i g(ζ) | < 1. Then

(6.5) Σ (n - a) \ b J 2 ^ 1 - α .

For w = 2, 3, •

(6.6) μj fl1")
n + 1 - 2α

T/iβ factor 2(1 — α) cannot be replaced by a smaller factor inde-
pendent of n. For every ε > 0 there is a function g(ξ) such that

(6.7) lim sup n \ bn | > 2(1 — a) - ε .

In the case α = 0 inequality (6.6) has been proved (in a slightly
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weaker form) by Clunie and Keogh [2], and in [7, Theorem 3]. Clunie
and Keogh also gave an example of a starlike bounded function with
K Φ oin-1).

Proof. For 0 < p < 1

(6.8) ±(n-a)\bn |2 ft* = -A- Γ | g(pe«) |2 (Re [peiΘg'lg] - a)dθ .
n=l 2ft JO

Since | g(ρeiθ) | < 1 it follows by (6.4) that

- a) I bn \
2p2n £ J L Γ (Re[peiθgf/g] - α)d# = 1 - α

2TΓ Jo

which implies (6.5)
As in the proof of Lemma 1 we obtain

(n + 1 - 2af I &w |2 ^ 4(1 - a) Σ(v - a)\b,\2 .
V = l

By (6.5) this expression is ^ 4(1 — a)2. If we had equality it would
follow from (6.5) that g(ζ) = 6X̂  + {bx Φ 0) is a polynomial of degree
n> 1. Then ζg'(ζ)lg(ζ) is continuous and | #(f) | < 1 almost everywhere
on I ζ\ = 1, and (6.8) shows that (6.5) holds with strict inequality.

Let go(ξ) = nll{n~x){ζ + 2n~1ζ* + •••) be the starlike function of
Example 1 in [7]. It satisfies \go(ζ)\ < 1- Then

g(ζ) = r-flroί?)1- = n~^^^\ζ + 2(1 -

satisfies (6.4) and | g{ξ) \ < 1. Hence the factor 2(1 — a) in (6.6) cannot
be made smaller. The existence of a function with (6.7) will be proved
in the following.

7 Construction of examples • We shall now complete the proofs
of Theorems 7 and 8 by showing: For every ε > 0 there exist functions

±anz^ (\z\>l)
n=0

in @(α) and

with Reξg'(ξ)lg(ξ) ^ a and | g(ζ) \ < 1 such that

lim sup n \ an \ > 2(1 - a) — ε , lim sup n \ bn \ > 2(1 - a) - ε .

We shall need the following lemma.
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LEMMA 2. Given δ > 0 and η > 0 there exists a function

HO = 1 + Σ cnξ*
n=l

with cn ^ 0 £/&α£ ΐs analytic and has positive real part in \ ζ\ < 1
such that

(7.1) limsupc^ > 2 - δ ,

(7.2) Σ — < 7
1 W

This lemma was first proved by F. Riesz [8] but only with limsup cn^
1. It seems not to be known in the general form given here. It will
be seen that the weaker form is not sufficient to prove the existence
of an /e@(0) with an Φ o(^ - 1). But the weaker form is sufficient to
prove the existence of a bounded starlike function g(ζ) with bn Φ o{n~λ)
[2].

Proof. Let l > λ > l — Id and let p be so large that

P{θ) = 1 + 2λ cos θ + + 2λ3) cos pθ

= Re[l + 2Xeiβ + + 2(Xeiθy] > 0 .

Let q be such that

(7.3) (2p + l ) 2 - 9 < m i n α ^ , i ) .

For m = 1, 2, let

(7.4) Qm(θ) = Π P{2PΘ) .

Then Qm(0) > 0. Because of (7.3) induction shows that

Q»(ί) = l + Σ cncosnθ

where cn is independent of m and 0 ^ cw ^ 2, c29m = 2λ, and cn > 0
only if

(7.5) w = Σ^2 9 f c (-p ^μk^p) .

It follows that

v £ίL ̂  Σ —
1 ^ ^

where the last sum is taken over all n of the form (7.5). For j = 1,2, ,
we group together all those n for which /£,- Φ 0 but μfc = 0 for & > j .
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Then n ^ 2qj - p2q{j-1] - - p2q > 2 ? i(l - 2p 2~q) > 2qj~1 by (7.3)
The number of these n is <(2p + 1)\ Hence again by (7.3)

Σ — ^ 2 Σ (2p + l)j2-qj+1 < 8(2p + l)2~g < η .
1 fl, i = l

The function

is analytic in | ξ\ < 1, and i2e λ(f) ^ 0 by (7.4). Also c2im = 2λ > 2 - δ,
and Lemma 2 is proved.

We shall now construct the starlike functions. Let 0 < ε < 1 and
3 = e/6, β(1-Λ)7? = 1 + ε/6. If h(ξ) is the function of Lemma 2 let

= Σ - Γ .
n=l 71

Let /3 = 1 — a and

(7.6) /(*) = z exp [-/ίiϊ^- 1)] , g(ξ) = ξ exp [/3(iί(O - η)] .

Then zf'(z)lf(z) - 1 + βz^H'iz'1) = a + (1 - αOMz-1), hence /(«) =
z + G @(α). Also, flr(f) satisfies (6.4), and by (7.2)

I g(ξ) I ̂  exp

By (7.6),

(7.7)

Since the coefficients ΎΓΎcn of H(ζ) are nonnegative the function on
the right side of (7.7) has coefficients ^2βn~1cn. Hence

- α * - ! + bn+1e^ ^ 2βn~1cn

and therefore

(7.8) ^ | α w _ 1 |

(7.9) n I 6W+11

By Theorems 6 and 8 we have n \ an^ \ ̂  2/5 and ti | 6W+11 ^ 2/3. There-
fore (7.8) and (7.9) together with (7.1) give

lim sup n \ an \ ̂  2/9(2 - δ - e^) = 2/5(1 - ε/3) > 2/5 - ε ,

lim sup n \ b J ^ 2^(1 - δ)e-* ^ 2/3(1 - e/6)/(l + e/6) > 2/3 - e .
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