AN APPLICATION OF LINEAR PROGRAMMING TO PERMUTATION GROUPS

W. H. MILLS

Let S_N denote the symmetric group acting on a finite set X of N elements, $N \ge 3$. Let σ and τ be elements of S_N . In a previous paper [1] the following question was raised: If σ and τ commute on most of the points of X, does it necessarily follow that τ can be approximated by an element in the centralizer $C(\sigma)$ of σ ?

We define a distance $D(\sigma, \tau)$ between two elements σ and τ in S_N to be the number of points g in X such that $g\sigma \neq g\tau$. (This differs from the distance $d(\sigma, \tau)$ defined in [1] by a factor of N.) Then $D(\sigma\tau, \tau\sigma)$ is the number of points in X on which σ and τ do not commute. Let $D_{\sigma}(\tau)$ denote the distance from τ to the centralizer $C(\sigma)$ of σ in S_N . Thus

$$D_{\sigma}(\tau) = \min_{\lambda \in \mathcal{O}(\sigma)} D(\tau, \lambda)$$
.

It will be shown that the determination of $D_{\sigma}(\tau)$ is equivalent to the optimal assignment problem in linear programming.

The question raised in [1] can be phrased thus: If $D(\sigma\tau, \tau\sigma)$ is small, is $D_{\sigma}(\tau)$ necessarily small? If σ is not the identity we set

$$D_{\sigma} = \max_{\substack{ au \in \mathcal{G}(\sigma)}} D_{\sigma}(au) / D(\sigma au, au \sigma)$$
 .

Now D_{σ} is large unless σ is the product of many disjoint cycles, most of which have the same length. Some examples of this are worked out in detail in [1]. This leads us to study the case where σ is the product of m disjoint cycles of length n, where N = nm and m is large. In [1] it was shown that if $m \geq 2$, then

- (a) if n is even, then $D_{\sigma} = n/4$, and
- (b) if n is odd, $n \ge 3$, then
 - $(n-1)/4 \leq D_{\sigma} \leq n/4.$

In the present paper it is shown that if n is odd, $n \ge 3$, and $m \ge n-2$, then

$$D_{\sigma} = (n-1)^2/(4n-6)$$
.

1. Relation to linear programming. Let σ be an arbitrary element of the symmetric group S_N . We write σ as the product of disjoint cycles:

$$\sigma = C_1 C_2 \cdots C_m$$
 ,

Received October 22, 1962.

where C_i is a cycle of length n_i , and every point left fixed by σ is counted as a cycle of length 1. Then

$$n_1 + n_2 + \cdots + n_m = N$$
.

Let g_i be a fixed element of the cycle C_i , $1 \leq i \leq m$. Then every element of the underlying set X is of the form $g_i\sigma^a$, where $1 \leq i \leq m$ and $0 \leq a < n_i$.

Let λ be an element of $C(\sigma)$, the centralizer of σ in S_N . Then since

$$(g_i\sigma^a)\lambda=(g_i\lambda)\sigma^a$$
 ,

it follows that λ is determined by its effect on the g_i , and that λ permutes the cycles C_i . Let $\overline{\lambda}$ be the permutation of 1, 2, \cdots , *m* such that $i\overline{\lambda} = j$ if λ maps C_i onto C_j . We will call a permutation α in S_m admissible if $\alpha = \overline{\lambda}$ for some $\lambda \in C(\sigma)$. It is easy to see that α is admissible if and only if $n_i = n_{i\alpha}$, $1 \leq i \leq m$. Let A denote the group of all admissible permutations.

Let τ be a second element of S_N . We wish to determine

$$D_{\sigma}(au) = \min_{\lambda \in \mathcal{O}(\sigma)} D(au, \lambda)$$
 ,

where $D(\tau, \lambda)$ is the number of points g in X such that $g\tau \neq g\lambda$. Let $E(\tau, \lambda)$ denote the number of points h in X such that $h\tau = h\lambda$, and set

$$E_{\sigma}(\tau) = \max_{\lambda \in \mathcal{O}(\sigma)} E(\tau, \lambda)$$
.

Then

$$D_{\sigma}(au) = N - \max_{\lambda \in \sigma(\sigma)} E(au, \lambda) = N - E_{\sigma}(au)$$
 .

We shall show that the determination of $E_{\sigma}(\tau)$ is equivalent to the optimal assignment problem in linear programming.

The elements λ in $C(\sigma)$ are the permutations of the form

$$(g_i \sigma^a) \lambda = g_{i a} \sigma^{a+r_i}$$
, $1 \leq i \leq m, \, 0 \leq a < n_i$,

where α is admissible and r_1, r_2, \dots, r_m , are integers. Moreover

$$E(au, \lambda) = \sum_{i=1}^{m} F_i(r_i, ilpha)$$
 ,

where $F_i(r, j)$ is the number of solutions of

$$(1) \qquad \qquad (g_i \sigma^x) \tau = g_j \sigma^{x+r}, \ 0 \leq x < n_i \ .$$

Set

$$b_{ij} = egin{cases} 0 & ext{if} \;\; n_i
eq n_j \ \max_r F_i(r,j) & ext{if} \;\; n_i = n_j \;. \end{cases}$$

Thus b_{ij} is the maximum number of points of C_i on which an element λ in $C(\sigma)$, that maps C_i onto C_j , can agree with τ . We have

$$E_{\sigma}(\tau) = \max_{\lambda \in \mathcal{O}(\sigma)} E(\tau, \lambda) = \max_{\alpha \in A} \max_{r_1 \cdots r_m} \sum_{i=1}^m F_i(r_i, i\alpha)$$
,

or

(2)
$$E_{\sigma}(\tau) = \max_{\alpha \in A} \sum_{i=1}^{m} b_{i,i\alpha} .$$

Now let β be an arbitrary permutation of $1, 2, \dots, m$. There is an $\alpha \in A$ such that $i\alpha = i\beta$ for all *i* such that $n_i = n_{i\beta}$. Therefore, since $b_{ij} = 0$ if $n_i \neq n_j$, it follows that we can take the maximum in (2) over the entire symmetric group S_m instead of over the subgroup A. Thus

(3)
$$E_{\sigma}(\tau) = \max_{\beta \in S_m} \sum_{i=1}^m b_{i,i\beta}.$$

The determination of a maximum of the form (3) is the optimal assignment problem in linear programming—ordinarily expressed in terms of m individuals to be assigned to m jobs, where b_{ij} is a measure of how well the *i*th individual can do the *j*th job. (See [2]; or [3], pp. 131-136.) Von Neumann [2] has shown that this problem is equivalent to a certain zero-sum two-person game.

The equality (3) can be rewritten in the form

$$(4) E_{\sigma}(\tau) = \max_{P} \sum_{i,j} e_{ij} b_{ij},$$

where P is the set of all $m \times m$ permutation matrices (e_{ij}) . The set P is clearly a subset of the set R of all real $m \times m$ matrices (y_{ij}) such that

(5)
$$y_{ij} \geqq 0, 1 \leqq i, j \leqq m$$
 ,

(6)
$$\sum_{i=1}^m y_{ij} = 1$$
 , $1 \leq j \leq m$,

and

(7)
$$\sum_{j=1}^m y_{ij} = 1$$
 , $1 \leq i \leq m$.

The matrices of the set R form a convex bounded subset of real m^2 dimensional Euclidean space, whose vertices are the permutation matrices. (This result is due to Garrett Birkhoff. See [2], pp. 8-10.) It follows that

$$E_{\sigma}(au) = \max_{P}\sum_{i,j}e_{ij}b_{ij} = \max_{R}\sum_{i,j}y_{ij}b_{ij}$$
 .

It is now clear that the determination of $E_{\sigma}(\tau)$ is actually a problem in linear programming. It is easy to see that the equalities (6) and (7) can be replaced by inequalities (see [2], Lemma 1). Thus if Y is the set of all real $m \times m$ matrices (y_{ij}) satisfying (5),

(8)
$$\sum_{i=1}^m y_{ij} \leq 1$$
, $1 \leq j \leq m$,

and

(9)
$$\sum_{j=1}^m y_{ij} \leq 1$$
, $1 \leq i \leq m$,

then

$$E_{\sigma}(au) = \max_{r} \sum\limits_{i,j} y_{ij} b_{ij}$$
 .

For our purposes this is the most useful formulation of the problem.

2. Blocks. By a block of length $s, s \ge 1$, we mean a set of the form $g\sigma, g\sigma^2, \dots, g\sigma^s$, such that σ and τ commute on $g\sigma, g\sigma^2, \dots, g\sigma^{s-1}$, but do not commute on g and $g\sigma^s$. The length of a block B will be denoted by |B|. If σ and τ commute on every point of the cycle C_i , then we say that σ and τ commute on C_i . In this case the cycle C_i contains no blocks. On the other hand if C_i contains exactly q points on which σ and τ do not commute, $q \ge 1$, then C_i consists of exactly q blocks, and each point of C_i belongs to one and only one block. Now $D(\sigma\tau, \tau\sigma)$ is the number of points in X on which σ and τ do not commute. It follows that $D(\sigma\tau, \tau\sigma)$ is equal to the total number of blocks in all cycles.

If σ and τ commute on the points $g, g\sigma, g\sigma^2, \dots, g\sigma^a$, then it follows, by induction on a, that

$$(g\sigma^{
u}) au=(g au)\sigma^{
u}$$
 , $0\leq
u\leq a+1$.

In particular if σ and τ commute on the cycle C_i , and if $g_i \tau = g_j \sigma^r$, then

$$g_i\sigma^x au=g_i\sigma^{r+x}$$

for all x. Therefore, in this case, the number of solutions $F_i(r, j)$ of (1) is n_i , so that $b_{ij} = n_i = n_j$.

Now let C_i be a cycle on which σ and τ do not commute. Then

 C_i is composed of one or more blocks. Let B be one of the blocks of C_i , and let B consist of the points

$$g_i\sigma^b, g_i\sigma^{b+1}, \cdots, g_i\sigma^{b+s-1}$$

Then |B| = s. Let $g_i \sigma^b \tau = g_j \sigma^{b+r}$. Since σ and τ commute on $g_i \sigma^{b+\mu}$, $0 \leq \mu \leq s-2$, we have

$$g_i \sigma^{b+
u} au = g_i \sigma^{b+r+
u}$$
 , $0 \leq v \leq s-1$

In particular $n_j \geq s$. Moreover if $n_i = n_j$, then the number of solutions $F_i(r, j)$ of (1) is at least s, and hence $b_{ij} \geq s$. It follows that if $n_i = n_j$, then b_{ij} is at least the length of the longest block of C_i that τ maps into C_j .

Moreover since σ and τ do not commute on $g_i \sigma^{b+s-1}$, we have

$$g_i \sigma^{\scriptscriptstyle b+s} au
eq g_i \sigma^{\scriptscriptstyle b+s-1} au \sigma = g_j \sigma^{\scriptscriptstyle b+r+s}$$
 .

In particular if C_i consists of the single block B, then $s = n_i$, and

$$g_j\sigma^{\scriptscriptstyle b+r}=g_i\sigma^{\scriptscriptstyle b} au=g_i\sigma^{\scriptscriptstyle b+s} au
eq g_j\sigma^{\scriptscriptstyle b+r+s}$$
 .

It follows that $s \neq n_j$. Therefore we must have $n_j > s = n_i$. Thus if C_i consists of a single block B, then τ maps B into a cycle C_j such that $n_j > n_i$. This is a generalization of a result noted in [1]: If the cycles C_i all have the same length, then no cycle can consist of a single block.

3. The case n odd. We now restrict ourselves to the case where σ is the product of m cycles of the same length n, n > 1, N = mn, $N \ge 3$. Thus we have $n_1 = n_2 = \cdots = n_m = n$, and every permutation in S_m is admissible, so that $A = S_m$. Set

$$D_{\sigma} = \max_{\tau \notin \mathcal{G}(\sigma)} \left\{ D_{\sigma}(\tau) / D(\sigma \tau, \tau \sigma)
ight\}$$
 .

It was shown in [1] that if n is even and $m \ge 2$, then $D_{\sigma} = n/4$. We now show that if n is odd and $m \ge n-2$, then $D_{\sigma} = (n-1)^2/(4n-6)$. Without loss of generality we can take X to be the set of the first N positive integers, and

$$\sigma = (1, 2, \cdots, n)(n+1, \cdots, 2n) \cdots (N-n+1, \cdots, N) .$$

Thus for g in X we have

$$g\sigma = egin{cases} g+1 & ext{if} \ n
eq g \ , \ g+1-n & ext{if} \ n \mid g \ . \end{cases}$$

We let C_i denote the *i*th cycle:

$$C_i = (in - n + 1, in - n + 2, \dots, in)$$
.

We must show that

$$\max_{\substack{\tau \notin \mathcal{O}(\sigma)}} \left\{ D_{\sigma}(\tau) / D(\sigma \tau, \tau \sigma)
ight\} = (n-1)^2 / (4n-6) \; .$$

We break up the proof into two lemmas.

LEMMA 1. If n is odd and $m \ge n-2$, then there exists a $\tau \in S_N$, $\tau \notin C(\sigma)$, such that

$$D_{\sigma}(\tau)/D(\sigma\tau, \tau\sigma) = (n-1)^2/(4n-6)$$
.

Proof. Suppose first that n = 3. Then

$$\sigma = (123)(456) \cdots (N-2, N-1, N)$$
 .

Here we take $\tau = (12)$. Then $\sigma \tau \sigma^{-1} \tau^{-1} = (132)$, so that σ and τ commute on all but three points, and $D(\sigma \tau, \tau \sigma) = 3$. Moreover

$$b_{ij} = egin{cases} 0 & ext{if} \ i
eq j \ , \ 1 & ext{if} \ i = j = 1 \ , \ 3 & ext{if} \ i = j > 1 \ . \end{cases}$$

Hence

$$E_{\sigma}(au) = \max_{_{P}} \sum_{_{i,j}} e_{_{ij}} b_{_{ij}} = \sum_{_{i=1}}^{^{m}} b_{_{ii}} = 3m-2 = N-2$$
 .

Therefore $D_{\sigma}(\tau) = N - E_{\sigma}(\tau) = 2$, and

$$D_{\sigma}(au)/D(\sigma au, au\sigma) = 2/3 = (n-1)^2/(4n-6)$$
 .

We can now suppose that $n \ge 5$. Set n = 2K + 1. Then $K \ge 2$, and $m \ge 2K - 1$. Set $\tau = \tau_1 \tau_2 \cdots \tau_K$, where

$$egin{array}{ll} au_r = (r,\,n+r,\,2n+r,\,\cdots,\,Kn-n+r,\,K+r\,\,,\ Kn+r,\,Kn+n+r,\,\cdots,\,2Kn-2n+r)\,. \end{array}$$

Thus for g in X we have

$$g au = egin{cases} g+n ext{ if } g=pn+r, 0 \leq p \leq K-2, 1 \leq r \leq K\,, \ K+r ext{ if } g=Kn-n+r, 1 \leq r \leq K\,, \ Kn+r ext{ if } g=K+r, 1 \leq r \leq K\,, \ g+n ext{ if } g=pn+r, K \leq p \leq 2K-3, 1 \leq r \leq K\,, \ r ext{ if } g=2Kn-2n+r, 1 \leq r \leq K\,, \ g ext{ otherwise }. \end{cases}$$

C_{K+1} C_{2K-1} C_2 Сĸ n+1Kn-n+1Kn+12Kn - 2n + 11 to to to to to 2Kn - 2n + KKn - n + Kĸ n + KKn + KK + 1 K+1 to 2KFigure 1

The blocks of τ are shown schematically in Figure 1.

The permutation τ maps the shaded blocks of Figure 1 onto themselves, and it maps the other blocks as indicated by the arrows. The permutations σ and τ commute on the cycles C_i with $i \ge 2K$. Hence these cycles contain no blocks and are not shown in the figure. Let c denote the number of cycles on which σ and τ commute. Thus c =m - (2K - 1). The number of points on which the identity I agrees with τ is

$$E(\tau, I) = cn + 1 + (2K - 2)(K + 1)$$

Clearly I belongs to $C(\sigma)$. On the other hand suppose that λ is an arbitrary element of $C(\sigma)$. If there exists a cycle C_i such that τ and λ do not agree on any points of C_i , then

$$E(\tau, \lambda) \leq cn + (2K-2)(K+1)$$
.

If τ and λ agree on the point *n*, then

$$E(au, \lambda) \leq cn + 1 + (2K - 2)(K + 1)$$
.

If τ and λ do not agree on n, and if τ and λ agree on at least one point of every cycle C_i , then there are at least K - 1 blocks of length K + 1 on which τ and λ do not agree. Hence in this case

$$E(au,\lambda) \leq cn + (K-1)(K+1) + K^2 \ = cn + 1 + (2K-2)(K+1) \; .$$

Therefore

$$egin{aligned} E_{\sigma}(au) &= \max_{\lambda \in \mathcal{O}(\sigma)} E(au, \lambda) = E(au, I) = cn + 1 + (2K - 2)(K + 1) \ &= (m - 2K + 1)n + 2K^2 - 1 = N - 2K^2. \end{aligned}$$

Hence

$$D_{\sigma}(au) = N - E_{\sigma}(au) = 2K^2 = rac{1}{2}(n-1)^2$$
 .

We see from Figure 1 that the total number of blocks is

$$2(2K-2) + 3 = 2n - 3$$
.

Since this is equal to $D(\sigma\tau, \tau\sigma)$, we have

$$D_{\sigma}(\tau)/D(\sigma\tau, \tau\sigma) = (n-1)^2/(4n-6)$$
.

This proves the lemma.

Lemma 1 establishes that $D_{\sigma} \ge (n-1)^2/(4n-6)$ if n is odd and $m \ge n-2$. Our other lemma, which establishes the opposite inequality, does not depend on the size of m.

LEMMA 2. If n is odd and
$$\tau \in S_N$$
, $\tau \notin C(\sigma)$, then
 $D_{\sigma}(\tau)/D(\sigma\tau, \tau\sigma) \leq (n-1)^2/(4n-6)$.

Proof. As before we set n = 2K + 1. Let c denote the number of cycles C_i on which σ and τ commute, and let Q_s denote the total number of blocks of length s. Since the cycles C_i all have the same length n, it follows from the last paragraph of §2 that there are no blocks of length n. Hence

$$D(\sigma au, au\sigma)=\sum\limits_{s=1}^{n-1}Q_s$$
 ,

since this sum is equal to the total number of blocks. Set

$$G(\tau) = N - rac{(n-1)^2}{4n-6} \sum_{s=1}^{n-1} Q_s$$
.

The desired result holds if and only if

$$E_{\sigma}(\tau) \geq G(\tau)$$
.

By §1 it is sufficient to show that there exists a real $m \times m$ matrix (y_{ij}) satisfying (5), (8), (9) and

(10)
$$\sum_{i,j} y_{ij} b_{ij} \ge G(\tau) .$$

Case 1.

$$cn+\sum\limits_{s=1}^{n-1}s^{2}Q_{s}/n \geq G(au)$$
 .

In this case we set $y_{ij} = n_{ij}/n$, where n_{ij} is the number of points of C_i which are mapped into C_j by τ . Now (5), (6) and (7) hold for this choice of (y_{ij}) . Hence (8) and (9) also hold.

Suppose C_i is a cycle on which σ and τ commute. Suppose τ_i maps C_i onto the cycle C_z . Then

$$y_{ij} = egin{cases} 1 & ext{if} \ j = z \ , \ 0 & ext{if} \ j
eq z \ . \end{cases}$$

Moreover $b_{iz} = n$ by § 2. Hence

$$\sum_{j=1}^m y_{ij}b_{ij} = n$$
,

and therefore

$$\sum\limits_{1}\sum\limits_{j=1}^{m}{y_{ij}b_{ij}}=cn$$
 ,

where Σ_1 runs over those c values of i such that σ and τ commute on C_i .

Next suppose that C_i is a cycle on which σ and τ do not commute. Let C_z be a cycle such that one or more blocks of C_i are mapped into C_z by τ . Let us denote these blocks by B_1, B_2, \dots, B_u . We may suppose that these blocks are numbered in such a way that B_1 is the longest of them. Then $b_{iz} \geq |B_1|$ by § 2. Moreover

$$n_{iz} = |B_1| + |B_2| + \cdots + |B_u|$$
 ,

and

$${y}_{iz} b_{iz} \geqq n_{iz} \, | \, B_1 \, | / n \geqq \sum\limits_{\mu=1}^u | \, B_\mu \, |^{\scriptscriptstyle 2} / n \; .$$

Hence

$$\sum\limits_{2}\sum\limits_{j=1}^{m}y_{ij}b_{ij} \geq \sum\limits_{s=1}^{n-1}s^{2}Q_{s}/n$$
 ,

where the summation Σ_2 is taken over those values of *i* such that σ and τ do not commute on C_i . Combining these results we obtain

$$\sum\limits_{i,j} {y}_{ij} b_{ij} \geqq cn + \sum\limits_{s=1}^{n-1} s^2 Q_s/n \geqq G(au)$$
 ,

which disposes of Case 1.

Case 2.

$$cn + \sum\limits_{s=1}^{n-1} s^2 Q_s/n < G(au)$$
 .

Since the total number of points of X that do not belong to any block is cn, we have

$$N=cn+\sum\limits_{s=1}^{n-1}sQ_s$$
 .

Therefore

(11)
$$G(\tau) = cn + \sum_{s=1}^{n-1} sQ_s - \frac{(n-1)^2}{4n-6} \sum_{s=1}^{n-1} Q_s ,$$

and we have

(12)
$$\sum_{s=1}^{n-1} s(n-s)Q_s > \frac{n(n-1)^2}{4n-6} \sum_{s=1}^{n-1} Q_s.$$

The inequality (12) cannot hold for n = 3. Hence $n \ge 5$, $K \ge 2$.

Let q(i) denote the number of blocks in the cycle C_i . We denote the blocks of C_i by $B_{1i}, B_{2i}, \dots, B_{q(i),i}$, where we suppose the blocks are ordered in such a way that

$$|B_{1i}| \ge |B_{2i}| \ge \cdots \ge |B_{q(i),i}|$$
 .

We note that if σ and τ do not commute on the cycle C_i , then $q(i) \geq 2$,

$$\sum\limits_{w=1}^{q(i)} |\,B_{wi}\,| = n = 2K + 1$$
 ,

and $|B_{\mu i}| \leq K$ for $\mu \geq 2$. If σ and τ commute on the cycle C_i , then q(i) = 0.

We call C_i a special cycle if σ and τ do not commute on C_i and $|B_{1i}| \leq K$. Let d denote the number of special cycles. Since every cycle that is composed of blocks and is not a special cycle contains exactly one block of length at least K + 1, we have

$$c+d+\sum\limits_{s=K+1}^{n-1}Q_s=m=N/n=c+\sum\limits_{s=1}^{n-1}sQ_s/n$$
 ,

or

(13)
$$nd - \sum_{s=1}^{K} sQ_s + \sum_{s=K+1}^{n-1} (n-s)Q_s = 0$$
.

We call the block B_{wi} a special block if C_i is a special cycle and either

- (a) q(i) = 3, or
- (b) q(i) = 4 and $w \leq 2$.

The image $B\tau$ of a block B is a block of τ^{-1} . We call $B\tau$ a block image. Let v(i) denote the number of block images in the cycle C_i , and let $B'_{1i}, B'_{2i}, \dots, B'_{v(i),i}$ denote these block images. We can suppose that

$$|B_{1i}'| \geq |B_{2i}'| \geq \cdots \geq |B_{v(i),i}'|$$
 .

We call the block image B'_{wi} a special image if it is a special block of τ^{-1} . More precisely B'_{wi} is a special image if $|B'_{1i}| \leq K$ and either

(a) v(i) = 3, or (b) v(i) = 4 and $w \le 2$. If σ and τ commute on the cycle C_i set

$$y_{ij} = egin{cases} 1 & ext{if } au ext{ maps } C_i ext{ onto } C_j ext{ ,} \ 0 & ext{otherwise .} \end{cases}$$

If C_i consists of blocks and is not a special cycle, then we set

$$y_{ij} = egin{cases} 1 & ext{if } au ext{ maps } B_{\scriptscriptstyle 1i} ext{ into } C_j ext{ ,} \ 0 & ext{otherwise }. \end{cases}$$

If C_i is a special cycle we set

$$y_{ij} = \Sigma''(K - |B|)/(K - 1)$$
 ,

where the summation Σ'' runs over all special blocks B of C_i that τ maps onto special images contained in C_j . Notice that replacing τ by τ^{-1} has the effect of replacing the matrix (y_{ij}) by its transpose. Clearly $y_{ij} \geq 0$ for all i, j. Moreover if the cycle C_i is not special, then

$$\sum\limits_{j=1}^m {y_{ij}} = 1$$
 .

Now suppose that C_i is a special cycle. Then

$$\sum\limits_{j=1}^m {y_{ij}} \leq {\Sigma'(K-\mid B\mid)}/{(K-1)}$$
 ,

where Σ' runs over all special blocks B of C_i . Since C_i is special we must have $q(i) \ge 3$. If q(i) = 3, then every block of C_i is special, $\Sigma' |B| = 2K + 1$, and

$$\Sigma'(K - |B|)/(K - 1) = (3K - \Sigma' |B|)/(K - 1) = 1$$
.

If q(i) = 4, then

$$|B_{1i}|+|B_{2i}|+|B_{3i}|+|B_{4i}|=2K+1$$
 ,

so that

$$\Sigma' \, | \, B \, | = | \, B_{\scriptscriptstyle 1i} \, | + | \, B_{\scriptscriptstyle 2i} \, | \ge K + 1$$
 ,

and

$$\Sigma'(K - |B|)/(K - 1) = (2K - \Sigma' |B|)/(K - 1) \leq 1$$
.

Finally if $q(i) \ge 5$, then C_i contains no special blocks, so that

$$\Sigma'(K - |B|)/(K - 1) = 0$$
.

Thus we have

$$\sum\limits_{j=1}^m y_{ij} \leqq 1$$
 , $1 \leqq i \leqq m$.

By interchanging au and au^{-1} we obtain

$$\sum\limits_{i=1}^m y_{ij} \leqq 1, 1 \leqq j \leqq m$$
 .

Thus conditions (5), (8), and (9) are satisfied. We must show that (10) is satisfied also.

Let T_s denote the total number of special blocks of length s. Similarly let U_s denote the total number of special images of length s. Since there are exactly $Q_s - U_s$ block images of length s that are not special images, it follows that there are at least

$$T_s-(Q_s-U_s)=T_s+U_s-Q_s$$

special blocks of length s that are mapped onto special images by τ .

If σ and τ commute on the cycle C_i , then

$$\sum\limits_{j=1}^m {{y_{ij}}{b_{ij}}} = n$$

If C_i consists of blocks and is not a special cycle, then $|B_{1i}| \ge K+1$, and

$$\sum\limits_{j=1}^m {y_{ij}} b_{ij} \geqq |B_{1i}|$$
 .

If C_i is a special cycle, then

$$\sum_{j=1}^m {y_{ij} b_{ij}} = \sum_{j=1}^m {{\varSigma''(K-|B|) b_{ij}}/(K-1)} \ \ge {{\varSigma^{\sharp}|B|(K-|B|)/(K-1)}} \;,$$

where Σ'' runs over those special blocks B of C_i that are mapped onto special images contained in C_j by τ , and Σ^* runs over all special blocks B of C_i that are mapped onto special images by τ . It follows that

(14)
$$\sum y_{ij}b_{ij} \ge cn + \sum_{s=K+1}^{n-1} sQ_s + \sum_{s=1}^{K} s(T_s + U_s - Q_s)(K-s)/(K-1) .$$

To complete the proof of the lemma it is sufficient to show that (10) holds. Suppose that (10) does not hold. Then

$$G(au)>\sum\limits_{i,j}y_{ij}b_{ij}$$
 .

Using (11) and (14) this gives us

$$cn+\sum\limits_{s=1}^{n-1} sQ_s - rac{(n-1)^2}{4n-6} \sum\limits_{s=1}^{n-1} Q_s \ > cn+\sum\limits_{s=K+1}^{n-1} sQ_s + \sum\limits_{s=1}^K s(T_s+U_s-Q_s)(K-s)/(K-1) \; ,$$

or

(15)
$$\sum_{s=1}^{K} s\{Q_s - (T_s + U_s - Q_s)(K-s)/(K-1)\} > \frac{(n-1)^2}{4n-6} \sum_{s=1}^{n-1} Q_s.$$

We multiply (15) by n-3 and add (12). Since n-3=2(K-1) this gives as

(16)

$$\sum_{s=1}^{K} s\{(2n-s-3)Q_s - 2(T_s + U_s - Q_s)(K-s)\} + \sum_{s=K+1}^{n-1} s(n-s)Q_s$$

$$> \frac{1}{2}(n-1)^2 \sum_{s=1}^{n-1} Q_s = 2K^2 \sum_{s=1}^{n-1} Q_s .$$

Now we multiply (13) by K-1 and add (16). This yields

(17)
$$(K-1)nd - V_1 - V_2 + W_1 + W_2 > 0$$
,

where

$$egin{aligned} &V_1 = 2\sum\limits_{s=1}^K sT_s(K-s) \;, \ &V_2 = 2\sum\limits_{s=1}^K sU_s(K-s) \;, \ &W_1 = \sum\limits_{s=1}^K \{s(2n-s-K-2)+2s(K-s)-2K^2\}Q_s \ &= \sum\limits_{s=1}^K \{s(3K-s)+2s(K-s)-2K^2\}Q_s \ &= \sum\limits_{s=1}^K (K-s)(3s-2K)Q_s \;, \end{aligned}$$

and

$$egin{aligned} W_2 &= \sum\limits_{s=K+1}^{n-1} \left\{ (K-1)(n-s) + s(n-s) - 2K^2
ight\} Q_s \ &= \sum\limits_{s=K+1}^{n-1} (s-1)(K-s+1)Q_s \ . \end{aligned}$$

The effect on (17) of replacing au by au^{-1} is to interchange V_1 and V_2 .

Now $D(\sigma\tau, \tau\sigma) = D(\sigma\tau^{-1}, \tau^{-1}\sigma)$ and $D_{\sigma}(\tau) = D_{\sigma}(\tau^{-1})$. Thus it is sufficient to prove the desired result with τ replaced by τ^{-1} . It follows that we can assume, without loss of generality, that $V_1 \leq V_2$. Then we obtain

or

(18)
$$(K-1)nd > \sum_{s=1}^{K} \{(K-s)(2K-3s)Q_s + 4s(K-s)T_s\} + \sum_{s=K+1}^{n-1} (s-1)(s-K-1)Q_s.$$

Let $Q_s^{(i)}$ denote the number of blocks of length s in the cycle C_i , and let $T_s^{(i)}$ denote the number of special blocks of length s in C_i . Then (18) can be written in the form

(19)
$$(K-1)nd > \sum_{i=1}^{m} Z_i$$
,

where

$$egin{aligned} Z_i &= \sum\limits_{s=1}^K \left\{ (K-s)(2K-3s)Q_s^{(i)} + 4s(K-s)T_s^{(i)}
ight\} \ &+ \sum\limits_{s=K+1}^{n-1} (s-1)(s-K-1)Q_s^{(i)} \;. \end{aligned}$$

If σ and τ commute on the cycle C_i we have $Q_s^{(i)} = T_s^{(i)} = 0$ for all s, so that $Z_i = 0$.

If the cycle C_i contains exactly two blocks, B_{1i} and B_{2i} , then we set $s' = |B_{2i}|$, and we have $s' \leq K$, $|B_{1i}| = 2K + 1 - s' \geq K + 1$, $T_s^{(i)} = 0$ for all s, and

$$egin{aligned} Z_i &= (K-s')(2K-3s') + (2K-s')(K-s') \ &= 4(K-s')^2 \geqq 0 \;. \end{aligned}$$

Now suppose that C_i is a cycle that is not special, but that contains three or more blocks. Thus $q(i) \ge 3$, and $|B_{1i}| > K$. Set f(x) = (K-x)(2K-3x). The second derivative of the function f is positive, so that f is a convex function. Now $|B_{2i}| + |B_{3i}| \le n - |B_{1i}| \le K$. Therefore $f(|B_{2i}|/2 + |B_{3i}|/2) > 0$. Now for $w \ge 4$, we have $|B_{wi}| \le K/3$ and $f(|B_{wi}|) > 0$. Whence

$$egin{aligned} &Z_i \geqq \sum\limits_{w=2}^{q(i)} f(\mid B_{wi} \mid) \geqq f(\mid B_{2i} \mid) \ &+ f(\mid B_{3i} \mid) \geqq 2f(\mid B_{2i} \mid /2 + \mid B_{3i} \mid /2) > 0 \;. \end{aligned}$$

We have shown that $Z_i \geq 0$ for every *i* such that C_i is not a special cycle. Hence these terms can be dropped from the right side of (19). Now there are exactly *d* special cycles. Therefore, by (19), there is a special cycle C_i such that

$$Z_{\scriptscriptstyle t} < (K-1)n = 2K^{\scriptscriptstyle 2} - K - 1$$
 .

Since C_t is special we have $Q_s^{(t)} = 0$ for s > K, and so

(20)
$$2K^2 - K - 1 > Z_t = \sum_{s=1}^{K} \{ (K - s)(2K - 3s)Q_s^{(t)} + 4s(K - s)T_s^{(t)} \}.$$

Now set q = q(t); and $s_w = |B_{wt}|, 1 \leq w \leq q$. Then (20) can be written in the form

(21)
$$2K^2 - K - 1 > \sum_{w=1}^{q} (K - s_w) H(w)$$

where

$$H(w) = egin{cases} 2K+s_w & ext{if } B_{wt} ext{ is a special block ,} \ 2K-3s_w & ext{if } B_{wt} ext{ is not a special block .} \end{cases}$$

Since C_t is a special cycle we have $q = q(t) \ge 3$.

(A) Suppose $q \ge 5$. Then C_t has no special blocks, and (21) becomes

$$2K^{\scriptscriptstyle 2} - K - 1 > \sum\limits_{w=1}^q f(s_w)$$
 ,

where f(x) = (K - x)(2K - 3x) as before. Since f is a convex function we have

$$\sum\limits_{w=1}^q f(s_w) \geqq qf(\varSigma s_w/q) = qf(n/q)$$
 .

Now f(x) is a decreasing function of x for $x \leq 5K/6$, and

$$n/q \leq n/5 = (2K+1)/5 < 5K/6$$
 .

Hence $f(n/q) \ge f(n/5)$. Moreover

$$25f(n/5) = (5K - n)(10K - 3n) = (3K - 1)(4K - 3)$$
,

which is positive. Therefore

$$5(2K^2 - K - 1) > 5qf(n/q) \ge 25f(n/5) = (3K - 1)(4K - 3)$$
,

 \mathbf{or}

$$0>2K^{\scriptscriptstyle 2}-8K+8=2(K-2)^{\scriptscriptstyle 2}$$
 ,

which is impossible. This disposes of the case $q \ge 5$. Hence q = 3

or q = 4.

(B) Next suppose that q = 3. Here all blocks of C_t are special blocks so that (21) gives us

(22)
$$2K^{2} - K - 1 > \sum_{w=1}^{3} (K - s_{w})(2K + s_{w})$$
$$= 2K \sum_{w=1}^{3} (K - s_{w}) + \sum_{w=1}^{3} s_{w}(K - s_{w}) .$$

Now

$$\sum_{w=1}^{3} (K - s_w) = 3K - \sum_{w=1}^{3} s_w = 3K - n = K - 1$$

We have $K \ge s_1 \ge s_2 \ge s_3 \ge 1$, $s_1 + s_2 + s_3 = 2K + 1$, and $K \ge 2$. Hence $s_3 < K$. Therefore $1 \le s_3 \le K - 1$, and we have

$$\sum\limits_{w=1}^3 s_w(K-s_w) \geqq s_3(K-s_3) \geqq K-1$$
 .

Substitution in (22) now gives us

$$2K^{\scriptscriptstyle 2}-K-1>2K(K-1)+K-1$$
 ,

a contradiction. Thus we have eliminated the case q = 3. There remains only q = 4.

(C) Suppose finally that q = 4. Here B_{1t} and B_{2t} are special blocks, B_{3t} and B_{4t} are not. Thus (21) gives us

(23)
$$2K^2-K-1>L_1+L_2+M_3+M_4$$
 ,

where $L_w = (K - s_w)(2K + s_w)$ and

$$M_w = f(s_w) = (K - s_w)(2K - 3s_w)$$
.

If n = 5, then K = 2, $s_1 = 2$, $s_2 = s_3 = s_4 = 1$, $L_1 = 0$, $L_2 = 5$, $M_3 = M_4 = 1$, which contradicts (23). Hence $n \ge 7$ and $K \ge 3$.

Now set $J = s_3 + s_4 = 2K + 1 - s_1 - s_2$. Then since

$$s_1 \geqq s_2 \geqq s_3 \geqq s_4$$
 ,

we have $J \leq K$. Since f(x) is convex we have

$$M_{3}+M_{4}=f(s_{3})+f(s_{4})\geq 2f(J/2)=(2K-J)(4K-3J)/2$$
 .

combining this with (23) we get

$$2K^2>L_1+L_2+M_3+M_4 \ge L_1+L_2+4K^2-5KJ+3J^2/2$$
 ,

or

$$0>2L_{\scriptscriptstyle 1}+2L_{\scriptscriptstyle 2}+4K^{\scriptscriptstyle 2}-10KJ+3J^{\scriptscriptstyle 2}$$
 .

Since $K \ge 3$, we have $2K + 1 \le 7K/3$, and

$$J \leq 7K/3 - s_1 - s_2$$

Since $s_1 + s_2 > K$, we have $7K/3 - s_1 - s_2 \leq 4K/3$. Now $3x^2 - 10Kx$ is a decreasing function of x for $x \leq 5K/3$. Hence

$$egin{aligned} 3J^2 - 10KJ &\geq 3(7K/3 - s_1 - s_2)^2 - 10K(7K/3 - s_1 - s_2) \ &= -7K^2 - 4K(s_1 + s_2) + 3(s_1 + s_2)^2 \;. \end{aligned}$$

Combining inequalities we get finally

$$egin{aligned} 0 &> 2L_1 + 2L_2 + 4K^2 + 3J^2 - 10KJ \ &\geqq 2(K-s_1)(2K+s_1) + 2(K-s_2)(2K+s_2) \ &- 3K^2 - 4K(s_1+s_2) + 3(s_1+s_2)^2 \ &= 5K^2 - 6K(s_1+s_2) + s_1^2 + 6s_1s_2 + s_2^2 \ &= 4(K-s_1)(K-s_2) + (s_1+s_2-K)^2 \ . \end{aligned}$$

This is impossible since $K \ge s_1 \ge s_2$. This contradiction completes the proof of the lemma.

Lemma 2 shows that $D_{\sigma} \leq (n-1)^2/(4n-6)$ if n is odd, regardless of the size of m. Combining this with Lemma 1 we obtain our main result:

THEOREM. If σ is the product of m cycles of length n, where n is odd, $n \geq 3$, N = nm, and $m \geq n - 2$, then

(24)
$$D_{\sigma} = (n-1)^2/(4n-6)$$
.

In the notation of [1], (24) becomes

$$d_{\sigma} = rac{(n-1)^2}{2n(2n-3)}$$

References

1. Daniel Gorenstein, Reuben Sandler and W. H. Mills, On Almost-commuting permutations, Pacific J. Math. 12 (1962), 913-923.

2. John von Neumann, A Certain Zero-Sum Two-Person Game Equivalent to the Optimal Assignment Problem, Contributions to the Theory of Games, Vol. 2 (Edited by H. W. Kuhn and A. W. Tucker), pp. 5-12.

3. Samuel Karlin, Mathematical Methods and Theory in Games, Programming and Economics, Vol. 1, (1959).

YALE UNIVERSITY, INSTITUTE FOR DEFENSE ANALYSES