
SEMIGROUPS AND THEIR SUBSEMIGROUP LATTICES

TAKAYUKI TAMURA

1. Introduction. Let S be a semigroup of order at least 2, and
L(S) be the system of all subsemigroups of S. Generally L(S), includ-
ing the empty subset, is a lattice with respect to inclusion. L(S) is
called the subsemigroup lattice of S. A semigroup S contains at least
one nonempty subsemigroup besides S itself. In the previous paper
[4], as the first step towards the investigation of the structure of S
with a given type of L(S), we determined all the /'-semigroups,1 namely,
the semigroups S's in which L(S)'s are chains. In the present paper
we shall define Γ*-semigroups as generalization of Γ-semigroups and
shall obtain all the types of /^-semigroups except for infinite simple
Γ* -groups.

Since all the semigroups of order 2 are Γ* -semigroups, we shall
treat non-trivial /^-semigroups, namely, those of order Ξ> 3 in the
discussion below. First, in §2 we shall prove that Γ*-semigroups of
order ^ 3 are unipotent, i.e., having a unique idempotent, and that
they are periodic; and hence a /"^-semigroup is determined by a group
and a ^-semigroup, i.e., a unipotent semigroup with zero. Accordingly,
in §3 we shall determine all the types of Γ* -^-semigroups which will
have to be of order <5; in §4 we shall treat solvable Γ*-groups and
prove that finite /^*-groups or non-simple /""-groups are solvable;
finally in § 5, unipotent Γ*-semigroups which are neither groups nor
Z-semigroups will be discussed. It is interesting that there are no
infinite unipotent Z1*-semigroups except groups.

For convenience, the results from the paper [4] are stated as
follows:

LEMMA 1.1. A semigroup is a Γ-semigroup if and only if it has
one of the following types.2 Except for (1.3) they are all cyclic semi-
groups, i.e., semigroups generated by an element d. We show defining
relations below.

(1.1) Z-semigroups:

(1.1.1) d2 = dz {order 2)

(1.1.2) d* = dA {order 3)

Received February 21, 1962, and in revised form February 23, 1963. This paper was
delivered in the meeting of the American Mathematical Society in Seattle in June, 1961;
and the rapid report was published in [7].

1 The author called them F-monoids in [4].
2 As the trivial case, a semigroup of order 1 is also regarded as a .Γ-semigroup. This

remark will be needed for the definition of a Γ*-semigroup.

725



726 TAKAYUKI TAMURA

(1.2) Cyclic groups G(pm) of a prime power order: d = dpm+1

(1.3) Quasicyclic groups [1]: G(p°°), i.e.,

where Q(p) c G(p2) c c G(pk) c , p being a prime.
(1.4) Unipotent semigroups of order n, the kernel (the least ideal)

of which is a group G(pm):

(1.4.1)

(1.4.2)

(1.4.2.1)

(1.4.2.2)
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DEFINITION. A semigroup S is called a /^-semigroup if every
subsemigroup different from S is a /^-semigroup.

S is a /""'-semigroup if and only if the subsemigroup lattice L(S)
is a lattice satisfying

(2.1) Any subset which can tains the greatest element 1 is a sub-
semilattice with respect to join, equivalently to

(2.1') Let x, y be any elements of a lattice. Then

χ \ j y = xoryorl.

Notation. If Xand F a r e subsets of S, X\ Y means either l £ 7
or 1 3 Y;X\\Y means that X and Y are incomparable, that is,
neither is contained in the other. ((X, Y, •••)) denotes the subsemi-
group generated by X, Y, . In particular, ((α?)) denotes the sub-
semigroup generated by an element x, {{x, y)) the subsemigroup gener-
ated by elements x and y, while {xl9 x2, •••} is the set composed of

Xlt %2i ' * * .

S is a Γ* -semigroup if and only if any two subsemigroups A and
B satisfy the following condition: A\\B implies S = ((A, B)). Of
course a Γ-semigroup is a Γ*-semigroup. Since the homomorphic
image of a F-semigroup is also a /"-semigroup, we get easily

LEMMA 2.1. A homomorphic image of a Γ*-semigroup is a Γ*-
semigroup.

LEMMA 2.2. A Γ*-semigroup is periodic.

Proof. Suppose there is an element x of infinite order. S con-
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tains an infinite cyclic subsemigroup [xl\ i = 1, 2, •}. Hence we can
consider a proper subsemigroup3 T of S.

Γ = {&«; i = 1, 2, ••-}'

which contains two incomparable subsemigroups Tx and T2:

Tx = {α«; ΐ = 1, 2f •} , T2 = {a?M; ΐ = 1, 2, -} .

This contradicts the assumption of S.
By Lemma 2.2, we have seen that a /"*-semigroup has at least

one idempotent. However, we have

THEOREM 2.1. A Γ*-semigroup of order >2 is unipotent.

Proof. Suppose that a /^-semigroup S of order >2 contains at
least two idempotents, say, e, /. First, since β is a right identity
of Se, and / is a left identity of fS, we see easily that if Se = fS,
then e = /. Second, we shall say that either both of Se and Sf or
both of eS and /S are proper subsemigroups. Suppose either of Se
and Sf is equal to S, say, Se = S. Then, by the above fact, fSczS,
and so we have to show eS c S. Let us assume Se — eS = S. There
is a proper subsemigroup {β, /} of order 2 because ef = fe — f; but
{e, /} is not a /"-semigroup since e and / are both idempotents. This
is a contradiction. Therefore eSczS.

Next, assume that both eS and /S are proper subsemigroups of
S. Since eS and /S are /"-semigroups with left identities, they are
groups by Lemma 1.1. We shall prove that {e,f} is a proper sub-
semigroup which is not a /"-semigroup, and then the contradiction
will be derived. For proof, the idempotency of ef and fe is shown
as follows:

(ef)(ef) = (efe)f = (ef)f = e(ff) - ef

(fe)(fe) - (fef)β = (fe)e - f(ee) = fe

because e and / are two-sided identities of the groups eS and fS res-
pectively. Since efeeS and feefS, we have

whence {e, /} is a subsemigroup. We can have the same result, when
Se c S and Sfd S. Thus the proof of the theorem has been completed.

LEMMA 2.3. The index of an element a of a Γ*-semigroup S
cannot exceed 3.

3 By "a proper subsemigroup ϊ 1 of S" we mean "a subsemigroup T which is differ-
ent from S."
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Proof. Let a have index greater than 1. Then ((α)) — {α} is a
/"-semigroup, so ((α2)) | ((α3)). Hence there is a positive integer n such
that either

a2 = adn or α3 = a2n .

This shows that a has index 2 or 3.

3. Γ^-Z-Semigroups* In this section we shall determine the types
of /^-Z-semigroups, i.e., unipotent /^-semigroup with zero 0.

Let S be a /7*-^-semigroup with 0. Since S is periodic, every
element of S is nilpotent, that is, some power of the element is 0.
By Lemma 2.3,

x* = 0 for all x e S .

LEMMA 3.1. x — xy implies x — 0; x — yx implies x — 0.

Proof, x = xy ~ xy2 = xys = Q; the proof of the second part is
obtained in a similar way.

LEMMA 3.2. If x2 = 0, £foew xy = yx = 0 for all y.

Proof. We may assume x Φ 0, let y Φ 0. If ((^)) | ((a?a/)), ajy = 0
because of Lemma 3.1. If ((a?)) || ((ί»2/)), then S = ((x, xy)) and so y —
α;̂  for some u.

Xy — χ2u = 0 .

The proof of yx = 0 is similar.

To determine the types of Γ^-Z-semigroups, we consider the possi-
ble three cases:

Case I. x2 = 0 for all a? ̂  0.

Case II. There exists only one nonzero element x such that x* =
0, #2 =£ 0.

Case III. There exist at least two nonzero elements x and y such
that #3 = 0, x2 φ 0, τ/3 = 0, y2 Φ 0.

THEOREM 3.1. S is a non-trivial Γ*-Z-semigroup if and only if
S is isomorphic or anti-isomorphic to one of the following:

Case I. S — {0, α, 6} where xy — 0 for all x,y e S.
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Case II. S = {0, α, α2} wfoere α3 = 0. This is a I"-semigroup which
is isomorphic to (1.1.2).

Case III. S — {0, α, δ, c} where a2 = b2 = c, a2x = xa2 = 0 for all
xeS.

Subcase ΠIj ab = ba = c
Subcase III2 αδ = c, δα = 0
Subcase IΠ3 αδ = δα = 0

Proo/.

I. Let a and δ be distinct nonzero elements of S. Since
((&)) II ((&)), S = ((α, δ)). By Lemma 3.2, we have αδ = δα = 0. Hence

S = ((α, δ)) - {0, α, δ} .

Case II. Let a be an element with index 3. Suppose that there
is beS — ((α)). In the present case we know δ2 = 0. By Lemma 3.2,
ab = ba = 0, whence A — {0, α2, δ} is a subsemigroup which does not
contain α, and hence A is a /"-semigroup. On the other hand, since
δ Φ α2, we have ((α2)) || ((δ)). It is impossible in a /^-semigroup S.
Therefore S = ((α)).

Case III. Let a and δ be distinct nonzero elements, both of which
have index 3. Since (α2)2 = (δ2)2 = 0, Lemma 3.2 gives us

(3.1) α2δ = δα2 = δ2α = αδ2 = 0 and so α2δ2 = δ2α2 - 0 .

Using (3.1) and Lemma 3.2 repeatedly, since (αδα)2 = aba2ba = 0, we
have

(3.2)

and hence

(3.3)

Similarly we get

(3.3')

(aby = (aba)b

aba — 0 .

bob = 0 .

Now we have two subsemigroups T — ((α2, δ2)) and U — ((ab, a2)):

T=((a\b2)) = {0,a\b2}$a

where we see a Φ δ2, otherwise, a — b2 would imply α2 = 0; also

U = ((αδ, α2)) = {0, αδ, α2} ί δ .
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Accordingly both T and U are Γ-semigroups and so

((α2))|((δ2)) and ((ab)) | ((α2)) .

The first implies (3.4); the second implies (3.5)

(3.4) α2 = δ2

(3.5) αδ = α2 or 0 .

Similarly we have

(3.5') ba = a2 or 0 .

Clearly ((α))|| ((&)). By (3.1) through (3.5'),

S = ((α, b)) = {0, a, b, α2}

which consists of exactly four elements. Thus we have obtained the
three types for Case III. It is easy to show that the systems thus
obtained are Γ^-ϋΓ-semigroups.

4 /^-groups* By Lemma 2.2, a group G is a F*-semigroup if
and only if it is a F*-group, i.e, every proper gubgroup of G is a
F-group. By Lemma 1.1, every F-group is of type G(pk),k ^ oo. In
this chapter we determine all solvable Γ*-groups. We also show that
every finite /""-group is solvable. The question whether infinite simple
/^-groups can exist remains open.

LEMMA 4.1. Let G be a non-abelian solvable Γ*-group which is
not also a Γ-group. Then G contains a proper normal subgroup
N Φ 1 and an element a not in N, such that

(4.1) JVΊ| ((α)), so that G - ((N, a))

(4.2) ag e N for a prime number q .

Proof. Since G is solvable, it contains a proper normal subgroup
N such that G/N is abelian. NΦl since G is not abelian. Since N
is a proper subgroup of (?, it is a /'-group. Since G is not itself a
jΓ-group, there exist a and b in G such that ((a)) || ((&)), and then we
have G = ((α,δ)). If ΛΊI ((&)), then (4.1) holds with b instead of
a. To prove (4.1) suppose N\\((b)). If NΏ((b)), then N£((a))t

since N is a Γ-group; and ((a)) ||((δ)), and N£((a)) since otherwise
((&)) S 2V S ((α)). Hence iSΓ||((α)) in this case. If i V s ((&)), then,
since G/iSΓ is abelian, α&cr^-16 ΛΓ S ((6)), so α&or1 e ((δ))δ S ((&)). Since
G ~ ((α, 6)), we conclude that Nr = ((&)) is a normal subgroup of (?,
and (4.1) holds with N' instead of N. Hence N and a exist such
that (4.1) holds. Let k be the least positive integer such that ak e N9
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and let k = k!q with q a prime. Let ar = ak\ Then (4.1) and (4.2)
hold with α' instead of α.

THEOREM 4.1. Let G be a solvable Γ*-group which is not a Γ-
group. Then one of the following holds:

(4.3) G is a group of order pq, p and q primes excluding the
cyclic group of order p2.

(4.4) G is the quaternion group of order 8.

Proof. First let us take the case G abelian. If G were directly
indecomposable, it would be isomorphic with G(pk) for some k ^ co
(cf. Theorem 10, p. 22, [2]), and so would be a Γ-group. Hence G is
directly decomposable: G = Gx x G2 where G1 Φ 1, G2 Φ 1. Let αt be
an element of G{ of prime order p{ (i — 1,2). Then ((ax))\\(a2)), so
G = ((a19 α2)) - ((αO) x ((α2)). Thus G has type (4.3).

Let G be non-abelian. By Lemma 4.1, G contains a proper normal
subgroup NΦ 1, and an element α not in iSΓ such that N\\((a)) and
aq e N for some prime #. Since AT is a proper subgroup of (?, it is
isomorphic with G{pk) for some prime p and some k ^ co. Hence α9

has prime power order pn, say.
If # Φ P, then ĉ  = apn & N, and αf = 1. If b is any element of

N of order p, we have ((α^) || ((&)) and hence G = ((al9b)). Since
a^aΐ1 S Af and every subgroup of JV is characteristic, α1((6))αr1 C ((&)).
Hence G is an extension of the cyclic group ((&)) of order p by the
cyclic group ((aj) of order q.

We may now assume q = p. Since iV g ((α)), there exists 6 in iV
such that δp = ap. Let c = ap = bp. Since c commutes with α and 6,
and G = ((α, 6)), c belongs to the center C of G. If c = 1, then, as
in the above statements, G is an extension of the cyclic group ((6))
of order p by the cyclic group ((a)) of order p. Hence we may assume
that the order of c is pn with n > 0.

Since {(b)) is invariant under α, we have abarΛ — br for some
positive integer r > 1. Then

c = bp = α6^α^

whence r = 1 + sp71 for some integer s. Hence

aba~ι — br — bd or b~λaba~~λ — d Φ 1

where cί = b*p* — c^*1"1 is an element of C of order p. As in the
familiar way,
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If p is odd, we conclude that (ab'ψ = 1. Let a1 = ab~\ Then αf = 1
and this case is reduced to the previous case c = 1. We are left with
the case p — 2. Setting ax = ab~τ, we have a\ = d. Let bλ be an
element of N such that b\ = d. Then G = ((al9 &0), and ((60) is invariant
under ax. Since 6} = 1, and G is not abelian, we must have

a&az1 = b\ .

Together with a\ = b\ = 1, this shows that G is the quaternion group
of order 8. Thus this theorem has been proved.

THEOREM 4.2. A finite Γ*-group is solvable.

Proof. For /"-groups, the theorem is obvious. Let G be a finite
jP*-group which is not a /"-group. If G is of order pm of a prime
power, then this theorem holds, since G has a normal subgroup of
order p™"1 by the familiar theorem of p-groups. So we may assume
that the order of G has at least two distinct prime divisors.

First we shall prove that G has a proper normal subgroup. Let
M be a Sylow subgroup of G, and consider the normalizer H of M.
If £Γ= G, then M is normal; if M g F c G , then H is a Γ-group, a
cyclic group. By Burnside's theorem ([8], p. 169), G has a proper
normal subgroup N such that G = ΛΓiί, N Π H = 1.

Since JV" is a proper subgroup, it is a Γ-group, say, G(pai). Then,,
suppose the order of the factor group G/N is

(4.5) j / V r γ . . . f a2^0, / 3 ^ 1 , 7 ^ 0 , •••

which has a prime divisor qφ p. Since G/ΛΓ has a subgroup of order
q, G has a proper subgroup of order p*ιq, which contains two incom-
parable subgroups, unless

(4.6) aΛ = 0,β = l .

Thus we have proved that the index of N is a prime q.

THEOREM 4.3. A non-simple Γ*-group is solvable.

Proof. Let G be a non-simple /^-group and N be a proper normal
subgroup of G. We may assume that G/N contains a proper subgroup
H of prime order p, since G/N is a jP*-group and so G/N is periodic.
Consider a coset xN which is a generator of H and take an element
a e xN. Then H — ((a)) is a group of order p, and there is a subgroup
K of G such that JSΓ/iSΓ ̂  i?. Clearly iΓ = NH. On the other hand,
since N\\ H, we have G - ((ΛΓ, iί)) - NH = K. Accordingly, G/N = Ήy

which is prime order. Thus the proof has been completed.
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Consequently, (4.3) and (4.4) of Theorem 4.1 give us all the types
of finite or non-simple /^-groups which are not .Γ-groups.

5 Unipotent /^*-semigroups*

l In this chapter we shall discuss unipotent Γ*-semigroups S's
which are neither groups nor Z-semigroups. By Lemma 2.2 and Theorem
2.1 we see that a /"^-semigroup S of order > 2 is a unipotent inversible
semigroup. By "inversible" we mean "for any element a of S there
is an element b such that ab = e where e is a unique idempotent."
According to [5], [6], a unipotent inversible semigroup which contains
properly a group is determined by a group G (or kernel, i.e., least
ideal), and a ^-semigroup D (the difference semigroup of S modulo G),
and certain mapping of the bases of D into G: a —> ea.

First of all we shall prove that the kernel is finite.

LEMMA 5.1. Let S be a unipotent inversible semigroup with the
kernel G of type G(pk), k being infinite or finite, and let d be an
element of S which is not in G such that ed generates G(pm), m < k,
and dι~~τ & G(pk), dι e G(pk). Then there is a subsemigroup H of order
pm+1 + 1 — 1 of S which contains two incomparable subsemigroups:
G{pmvι) and {&; i ^ 1}.

Proof. Let a = ed. As is easily seen (cf. [5]), we have

(5.1) a = ed = de, dι = α\ i ^ I

(5.2) x d — d x — x a — a x f o r e v e r y x e G .

Especially for x e G(pm+1), xd = dxe G(pm+1). Therefore the set union
H = G(pmJrl) U {d{; I - 1 ^ i ^ 1} is a subsemigroup of S; and the two
subsemigroups G(pm+1) and {dim

f i ^ 1} are incomparable, because
{*'; i ^ 1} S G(pm).

THEOREM 5.1. Let S be a unipotent inversible semigroup ivhich
is neither a group nor a Z-semigroup. If S is a Γ*-semigroup, then
S is finite.

Proof. The proper subgroup G is a Γ-group G(p°°) or G{pn), and
the difference semigroup D = (S: G) of S modulo G in Rees' sense [3]
is a /^-Z-semigroup of order ^ 4 by theorems in §3. There is an
element z1 outside G such that z\eG, for example, we may take a
nonzero annihilator as z1 (cf. [6]); and let m be a positive integer such
that ezx generates a subgroup G(pm). If S is infinite, then G is of
the type G(p°°) and so S has a proper subsemigroup of order pm+1 + 1,
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which contains two incomparable subsemigroups by Lemma 5.1. This
contradicts the definition of /^-semigroups of S. Thus the theorem
has been proved.

Hereafter we shall determine the desired semigroups S in each
case according as the order of D.

2. The case with D of order 2.
Let G(pn) denote the kernel of S, and let d be a unique element

outside G(pn). Of course d2 e G(pn). G{pk) denotes the subgroup gener-
ated by a — ed. If k — n> then, by (5.1), we have

S = {d*; i ^ 1} , G(pn) = {#; i ^ 2}

that is, S is a /"-semigroup of type (1.4.1) or (1.4.2.1).
If k < n, then by Lemma 5.1 there is a subsemigroup H =

G{pk+1) U {d} of order pk+1 + 1 which contains two incomparable sub-
semigroups, so that S = H and hence we have k = n — 1. In other
words, a is a generator of G{pn~ι); this a determines S and there is-
a unique S to within isomorphism, independent of choice of generator
a (cf. [6]). Conversely, a semigroup S thus obtained is easily seen
to be a /^-semigroup. In fact, by (5.1) we see that a proper sub-
semigroup incomparable to G(pn) is nothing but

G{p^) U {d} = ((d)) .

3. The case with D of type Case I of order 3.
Let S = G(pn) U {dlf d2} where dxd2, d\, d\, d2dλ e G(pn). S is de-

termined by the two elements alf a2, i.e.,

aλ — edx , α 2 = ed2

where ax and α2 can be taken independently arbitrarily. The proper
subsemigroups G(pn) U {d^ and G{pn) U {c£2} are .Γ-semigroups of type
(1.4.1) or (1.4.2.1). We have already known that αx and αx are the
generators of G{pn), and

G(pn) U {dx} = ((d,)) , G(pn) U {d2} =

We can easily prove that there are two possible distinct types

in all cases except for the case p = 2 and n = 1. They are immediately
seen to be /^-semigroups.

4 The case with D of type Case II of order 3.
Let d be a generator of D: D = {0, d, d2}, d3 = 0, and let S =
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G(pn) U {d, d2}. We shall prove that a — ed generates G(pn). Suppose
that an element a generates G(pk), k < n. Then, since ed2 = (ed)2 and
(d2)2 6 G(pn)y ed2 generates a subgroup G{pm)> m ^ fc, and a subsemigroup
K — G(pm+1) U {d2} contains two incomparable subsemigroups by Lemma
5.1. K is a proper subsemigroup of S because

This contradicts the assumption of Γ*-semigroup of S. Hence it has
been proved that G(pn) is generated by ed. Accordingly we get G(pn) —
{d{; i ^ 3} by (5.1), whence S is generated by d. In the same way
as the Case with D of order 2, we see that arditrary different gener-
ators of G(pn) give some isomorphic S's.

The remaining thing to do is to testify the subsemigroup lattice
of such semigroups.

If p Φ 2, then ed2 generates G{pn), and only a proper subsemigroup
between S and G(pn) is

((d2)) - G(pn) U {d2} by (5.1)

and so S is a /"-semigroup of type (1.4.2.2).
If p = 2, then eώ2 generates G(2W~1) and so, by Lemma 5.1, we

have a proper subsemigroup

G(2") U {d2}

which contain, two incomparable G(2n) and ((d2)). Therefore, S is not
a Γ*-semigroup.

5. The case with Z) of order 4.
Let S = G(pn) U {di, d2, d3} where d2 = ^ = dl. D has any one of

the types of Case III with elements denoted by dlf d2y dz instead of
α, 6, c, respectively. Since the proper subsemigroups G(pn) U {du d2}
and G(pn) U {dlf d3} are both /"-semigroups of type (1.4.2.2), we have
by (5.1)

G(pn) U {dlf d2} - ((ds)) , G(pn) U {dx, d8} - ((^))

where p ^ 2, and α2 = ed2 and α3 = βcί3 are both generators of G(pn).
One the other hand, there are relations between α2 and α3 as follows:
(We called these relations the primary equations for D in [6], §3.)

a\ = a\ in Case IΠ3 ,

α2 = a3 in Cases IΠj and ΠI2 .

We see easily that a\ = a\ in G(^%) implies α2 = α3 because p =̂ 2.
Thus for G(p%) and each D, there is a unique S to within isomorphism.
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As far as the subsemigroups containing G(pn) are concerned, besides
((d2)) and ((4)), there is ((d^) and we have

((dύ) = (W) n ((d3))

because p Φ 2. Accordingly it can be seen that S is a jΠ*-semigroup.
Thus we have

THEOREM 5.2. When G(pn) is given, all the possible unipotent
Γ*-semigroups S whose kernel is G(pn) and which are not Γ-semigroups
are determined as shown below. Let e be the unique idempotent of
S, and let D = (S: G{pn)). We remark G(p°) = 1, G{p-χ) = empty.

(5.3.1) In the case D of order 2, S = G(pn) U {d}, n Φ 0,
ed e Gip71-1) - G(pn~2)

(5.3.2) In the case D of order 3, D is of Case I and
S = G(pn) U {dlf d2}, nΦO

(5.3.2.1) ed, = ed2 e G(pn) - G{pn~λ)

(5.3.2.2) pn Φ 2, ed1 Φ ed2f and edl9 ed2 e G(pn) - Gip71-1)

(5.3.3) /^ the case D of order 4, S = G(pw) U {c ,̂ da, d3}, d2

2 = cί23 = d l f

(5.3.3.1) D of type Case IIIX

(5.3.3.2) D of type Case IΠ2

(5.3.3.3) D of type Case ΠI3

ed2 =

After all, under the given G(pn), if p Φ 2, then there are six types
of S; ifp = 2 and n Φ 1, then three types of S; ifp — 2 and n = 1,
then two types of S.
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