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1. Introduction* Suppose that X is a compact Hausdorff space
and that M is an n dimensional linear subspace of C(X), the Banach
space of all real-valued continuous functions / on X, with supremum
norm. If / is in C(X), the local compactness of M guarantees the
existence of at least one function g in M such that \\f — g || = d(f, M) =
inf {\\f — h\\: he M}, i.e., / has a nearest point g in M. A well-known
extension of a classical theorem of Haar (see e.g. [2, Theorem 3.6])
states that M is a Cebysev subspace of C(X) (that is, there is a unique
nearest point in M to / for every / in C(X)) if and only if each
nontrivial function in M has most n — 1 zeros.1 In the present note
we intend to investigate infinite dimensional closed subspaces M of
C(X) in the hope of characterizing those having the Cebysev property.
Except for Proposition 3, our attention will be restricted to closed M
of finite codimension, that is, those M for which the factor space
C(X)/M is finite dimensional. (The dimension of this factor space is
the same as the dimension of the annihilator M1 of M, the subspace
of C{X)* consisting of all those continuous linear functionals on C{X)
which vanish on M.) There is, of course, an additional problem when
dealing with infinite dimensional M. We have no assurance that a
function / in C(X) has even one nearest point in M. A subspace M
with the property that each / in C(X) contains at least one nearest
point in M will be called a Haar subspace (or be said to have the Haar
property). We know of no characterization of the Haar subspaces of
C(X). (A general necessary condition is given in Proposition 2, but
we show by example that it is not sufficient.) Thus, most of our
results are devoted to characterizing the Cebysev subspaces from among
the Haar subspaces of finite codimension.

Mairhuber was the first to show (see the discussion and references
in [2, p. 253]) that if C(X) contains a Cebysev subspace of finite dimension
n, n > 1, then X must be homeomorphic with a subset of the circle
\z\ = 1 in the complex 2~plane. We show that if C(X) contains a
Cebysev subspace of finite codimension n, n > 1, then X is totally
disconnected; we also prove that X can contain at most countably
many isolated points. The examples in §4 show that, for certain
X, C(X) contains Cebysev subspaces of codimension n, for n— 1, 2, 3,
In these examples, X is always extremally disconnected (that is, the
*" Received November 26, 1962.

1 What we call "Cebysev" subspaces were called "Haar" subspaces in [2], but we
»defer here to a more common usage. We now use the term "Haar subspace" (below) to
replace the term "proximinal" used in [2].
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closure of every open set in X is open), but we don't know whether
this property is necessary for the existence of Cebysev subspaces in
C(X). To obtain our examples we make use of the well known fact
[1, p. 445] that the space L°° can be realized as C(X) (for a certain
extremally disconnected X).

As usual, we identify the space C{X)* with rca(X), the space of
regular countably additive real-valued finite measures μ on the Borel
subsets of X [1, p. 265]. (Throughout the rest of this paper we will
refer to an element of rca(X) as simply "a measure on X") If μ is
a measure on X, then μ = μ+ — μ~ (where μ+ and μ~~ are nonnegative
measures on X), \μ\ = μ+ + μ~ and \\μ\\ = \μ\(X). For/in C(X), the

r
value of μ at / is given by (/, μ) — fdμ. The support S(μ) of a

Jx
measure μ is the closed set which equals the complement of the union
of all open sets U for which |μ|(ϊ7) — 0. Most of what we say about
Cebysev subspaces M will be in terms of S(μ) for μ in M1; for instance,
if M is a Haar subspace of finite codimension n in C(X), then in order
that M be a Cebysev subspace it is sufficient that S(μ) = X for each
μ in Mx ~ {0}, and it is necessary (for each μ) that X ~ S(μ) contain
at most n — 1 points. (Since X ~ S(μ) is in some sense the "zero set'y

of μ, this latter property is dual to that discovered by Haar.) The
above sufficient condition is necessary if X contains no isolated points,
and the above necessary condition is sufficient if X contains n or more
isolated points. Examples in § 4 show that for n = 2 and X having
one isolated point, these converse statements are false.

2. General results. In Lemma 1 we give a well-known characteri-
zation of the Haar subspaces of codimension one in C(X) (see, e.g. [3,
p. 165] and references cited there; see [5] for the complex case) which
is basic to much of what follows. In general, if E is a normed linear
space and Mis a subspace of codimension one (so that M = L~\0) for
some continuous linear functional L on E and ML — RL, the one
dimensional space of all real multiples of L), an application of the
Hahn-Banach theorem shows that M is a Haar subspace if and only
if there exists / i n i?such that | |/ | | = 1 and L(f) — \\L\\\ equivalently,
L attains its supremum on the unit ball of E. The set of all linear
functional having this latter property is denoted by P. In the case
E — C(X), then, we are interested in measures which represent such
functionals; the set of such measures is also denoted by P.

LEMMA 1. A measure μ is in P if and only if the supports S(μ+)
and S(μ~) are disjoint.

Proof. If S(μ+) and S(μ~) are disjoint, then we choose / in C(X)r
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| | / | | = 1, such that / = 1 on S(μ+), f = - 1 on S(μ~), and hence (/, μ) =
\\μ\\. Conversely, suppose | |/ | | = 1 and (/, μ) = \\μ\\ - μ+(X) + μ~{X)^
\\μ+\\ + \\μ~\\- If /(») < 1 for some x in S(μ+), then / < 1 in some
open set Ucontaining x; since μ+(U) > 0, it follows that (/, μ+) < \\μ\\
(and — (/, μ~) g \\μ~\\) so that (f,μ)< \\μ\\, a contradiction. Thus,
/ = 1 on S(μ+) and (similarly) / = — 1 on S(μ~), so that these sets
must be disjoint.

It is clear that a measure μ is in P if and only if every real
multiple of μ is in P, so that a subspace M of codimension one in C(X)
has the Haar property if and only if M1 c P. The conjecture that
this latter relation characterizes Haar subspaces of any finite codimension
in C(X) is disproved by Example 3 in § 4. One implication remains
valid, however, as we now show.

PROPOSITION 2. Suppose that M is a Haar subspace of finite
codimension in the normed linear space E. Then M1- c P.

Proof. If L G ML we may represent L as a linear functional on
E/M by L(f + M) = L(f). Since EjM is finite dimensional there exists
an element F of E/M such that \\F\\ = 1 and L(F) = | |L | | . Since F
is a translate of M and since M has the Haar property, there exists
an element / in F of least norm, i.e., there exists f in E such that
F^f+ M and | |/ | | - | | F | | = 1. It follows that L(f) - | |L| | , which
completes the proof.

(Note that the above proof is valid under the weaker assumption
that E/M is a reflexive Banach space.)

In the next proposition the Cebysev property of a subspace M of
C(X) is formulated in terms of functions in M and measures in M1.
The central idea is a slight extension of a construction due to V. Ptak [4].

PROPOSITION 3. Suppose that M is a Haar subspace of C{X).
Then M fails to have the Cebysev property if and only if there exist
f in M ~ {0} and μ in M1 f)P ~ {0} such that f(S(β)) = 0.

Proof. If the Haar subspace M does not have the Cebysev property
there exists h in C(X) and / in M~ {0} with d(h, M) = 1 = | |λ| | =
\\h — f\\. By the Hahn-Banach theorem we can choose μ in ML such
that (h, μ) = (h—f,μ) = l = \\μ\\. As in the proof of Lemma 1 we
see that h^h-f^l on S(μ+) and h = h - f - - 1 on S(μr). It
follows that / = 0 on S(μ) = S(μ+) U S(μ~). To prove the converse,
suppose there exist μ and / with the stated properties; we can assume
\\μ\\ = 1 = \\f\\. Choose g in C(X) such that g = 1 on S(μ+), g = - 1
on S(μ~) and | | # | | = 1. Let h = g(l — | / | ) ; since h = g on S(β), we have
(Λ,/*) = ! . Furthermore, | | f c | | = l and |λ | + |/ | - \g\ + (l-\g\)\f\ ^ 1,
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so \\h - / | | = 1 . Finally, ifeeM, then 1 = (h,μ) = (h- e, μ)^ \\h- e\\y

so d{h, M) — 1 and hence M does not have the Cebysev property.

COROLLARY 4. If M is a Haar subspace of C(X) such that S(μ) =
X for each μ in ML Π P ~ {0}, then M has the Cebysev property.

COROLLARY 5. Suppose that M is a closed subspace of C(X) of
codimension one. Then M is a Cebysev subspace if and only if MLaP
and S(μ) = X for each μ in Λfx ~ {0}.

Proof. By Lemma 1, ML c P is equivalent to the fact that M
is a Haar subspace. If S(μ) Φ X for some μ in ML ~ {0}, then there
exists/in C(X)~{0} which vanishes on S(μ), and hence fe {g: (g, μ)=0} =
M, which shows (by Proposition 3) that M is not a Cebysev subspace.
The remainder of the proof is a consequence of Corollary 4.

(A result of the above nature was pointed out to us (without proof)
by 0. Hustad, who noted that it leads to an easy counterexample to
the sufficiency portion of Theorem 3.4 of [2].)

PROPOSITION 6. Suppose that Mis a Cebysev subspace of codimension
n > 0 in C(X). Then the set X ~ S(μ) contains at most n — 1 points
for each μ in M1- ~ {0}

Proof. Suppose that for some μ in ML ~ {0} the set X ~ S(μ)
contains n or more points. Denote by N the subspace of C(X) consisting
of all functions which vanish on S(μ); N must have dimension n or
greater. Choose a basis μ19 μ2y —->μn for ML, with μt —μ. The
subspace M1 = {g: (g, μ^ — 0, i = 2, 3, , n} has codimension n — 1,
hence there exists / i n Mx Π N ~ {0}. Since we also have (/, μj = 0,
it follows that/G M — {0}; by Proposition 3, Mis not a Cebysev subspace.

3 Main results*

THEOREM 7. Suppose that C(X) contains a Cebysev subspace M
of finite codimension n, n ^ 2. Then X is totally disconnected.

Proof. Suppose that X contains a connected subset K such that
K contains more than one point (and hence contains infinitely many
points). Note that we must have KaS(μ) for each μ in M1 — {0}.
[Indeed, if A = K ~ S(μ) were nonempty, it would (by Proposition 6)
be a finite set and therefore K (being infinite) would intersect both
S(μ) and A. But A and S(μ) are disjoint closed sets whose union
contains K, an impossibility.] Since, by Proposition 2, S(β+) and S(μ~)
are disjoint closed sets, we must have Kcz S(μ+) or Ka S(μ~), so that
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μ(K) Φ 0 for each μ in M1 ~ {0}. But if μλ and μ2 are linearly independ-
ent measures in M1, we see that the nontrivial measure μλ(K)μ2 —

vanishes on K, a contradiction which completes the proof.

THEOREM 8. If C(X) contains a Cebysev subspace M of finite
codimension n(n^t 1), then X contains at most countably many isolated
points.

Proof. Choose μ in M1- ~ {0}; by Proposition 6, X ~ S(μ) contains
only finitely many points. Now, |/*!({&}) > 0 for any isolated point x
in X for which x e S(μ). Since \μ\ is a countably additive finite measure,
its support can not contain uncountably many pairwise disjoint sets
of positive measure. This shows that S(μ) (and hence X) contains at
most countably many isolated points of X.

An example of a space C(X) which contains no Cebysev subspace
of finite codimension may be obtained by letting X be a compactification
of an uncountable discrete set.

THEOREM 9. Suppose that X contains n or more isolated points.
A Haar subspace M of codimension n (n ^ 1) in C(X) is a Cebysev
subspace if and only if X ~ S(μ) contains at most n — 1 points for
sach μ in M1 ~ {0}.

Proof. The necessity portion follows from Proposition 6. To prove
the sufficiency, suppose that M is not a Cebysev subspace of C(X); we
will produce a measure v in M1 ~ {0} such that X ~ S(v) contains n or
more points. By Proposition 3 there exists / in M ~ {0} and μ in
J l ί ^ P - {0} such that / = 0 on S(μ). Thus, X ~ S(μ) is nonempty,
and if it contained n or more points, our proof would be complete.
Suppose that X ~ S(μ) contains fewer than n points. We will show
that if VQQM1 ~ {0} is such that S(vo)czS(μ) and X ~ S(v0) contains
fewer than n points, then there exists vx in M-1 ~ {0} such that Sfa)
is a proper subset of S(v0). (Once we have shown this, an obvious
induction will complete the proof.) Let Xo denote the set X ~ S(v0);
by assumption, Xo contains exactly k points, 1 ̂  k ^ n — 1. We first
obtain an element v2 in M1 for which S(v2) c S(v0) and which is linearly
independent of vQ; this is done as follows: Choose a basis v0, μlf , μn-τ

for M1- and let Mo be the subspace of C(X0)* spanned by the restrictions
of the measures μlt , μn-x to Xo. Since S(vQ) c S(μ), we have / = 0
on S(vQ), while (/, ft) = 0 for i = 1, •••,% — 1; furthermore the restric-
tion of / to Xo is not identically zero. This shows that MQ

L is a proper
subspace of the k dimensional space C(X0)*, so that MQ

L has dimension
at most k — 1 g n — 2. Hence there exists a nontrivial linear combination
:v2 of the measures μ{ which vanishes at each point of XQt so that
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S(v2) c S(v0). By hypothesis, X contains at least n isolated points, so
one of them, say x, is in S(v0). Since vQ and v2 are linearly independent,
the measure vx = v2({x})v0 — vo({x})v2 is nontrivial, has support in S(vo)r

and vanishes at x. The latter property shows that S(v^ φ S(v0), which
completes the proof.

Example 2 of § 4 shows that this theorem is invalid if the codimension
of M is greater than the number of isolated points of X

THEOREM 10. Suppose that X contains no isolated points. A Haar
subspace M of finite codimension in C(X) is a Cebysev subspace if
and only if S(μ) — X for each μ in ML ~ {0}.

Proof. The sufficiency portion follows from Corollary 4. To complete
the proof, suppose that M is a Cebysev subspace and there exists μ
in M1- ~ {0} such that X ~ S(μ) is nonempty. By Proposition 6, this
set contains only finitely many points; since their union is open, they
are isolated points, a contradiction.

Example 1 of § 4 shows that this theorem fails to be true if X
contains an isolated point. It is interesting to note that an argument
similar to (but simpler than) the one in Theorem 7 shows that if C(X)
contains a Haar subspace M of finite codimension n (n ^ 2) such that
S(μ) — X for each μ in ML ~ {0}, then X contains no isolated point.

4. Examples^ As mentioned in the introduction, our examples
are obtained by exploiting the fact that the space L°° can be "realized"
as C(X). The connections between X and the measure space on which
L°° is defined are certainly well known, but we know of no explicit
reference to them, so the next few paragraphs are devoted to a sketch
of the material we need.

Suppose that (T, Σ, λ) is a σ-finite measure space; then there exists
a compact Hausdoff space Xτ and an isometry Jfrom L°°(T, Σ, λ) onto
C(XT) which is linear, multiplicative (i.e., if h — fg a.e. in L°°, then
Jh — JfJg in C(XT)) and carries a.e. nonnegative elements of LΓ into
nonnegative functions in C{XT) (see, e.g. [1, p. 445[). Hence, if χE

is the characteristic function of the measurable set E in T, then JχE

is a characteristic function in C{XT) (since JχE = J(χ2

E) = (JχEf).
Writing JχE = χφE, we have defined a map from the σ-algebra Σ (modulo
sets of measure zero) onto the family of all open and closed subsets
of Xτ (the proof is the same as in [1, p. 312]). It is readily seen that
Φ maps the atoms of (T, Σ, λ) (i.e. those A in I of finite positive
measure such that B c A and B in Σ imply \{B) = 0 or λ(J5) = \{A))
in a one-to-one fashion onto the isolated points of Xτ; this is a consequence
of the fact that the elements of L°°(T, Σ, λ) are constant a.e. on each
atom.
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If fe L\T, Σ, λ), then /defines (in the natural way) a continuous
linear functional on L°°. Since (L°°)* and C(XT)* are isometric there
-exists a unique measure v(f) on Xτ corresponding to the functional
defined on L°° by /. (This correspondence may be described by the equation

)xτ

Since J carries nonnegative elements of L°° onto nonnegative functions
in C(XT), it follows that v(\f\) = \v(f)\. If we define the support S(f)
of / in L1 to be the complement in T of the set on which |/ | = 0
a.e., then φ(S(f)) = S(v(f)).

We may now obtain Haar subspaces of C(XT) as follows: If N is
& closed subspace of L1, its annihilator M in L~ is weak*-elosed and
hence is a Haar subspace [2, p. 239]; it follows that J(M) is a Haar
subspace of C(XT). If JV is finite dimensional, then we may identify
N (by means of the natural embedding of L1 into (L°°)*) with ML =
(iV1)1 in (L~)\ It follows that (JM)X in C(XΓ)* consists of those
measures of the form v{f), for / in N. We now apply these remarks
to the construction of two examples.

EXAMPLE 1. There exists a compact Hausdorff space Xfor which
the following is true:

(i) X contains exactly one isolated point
(ii) C(X) contains a Cebysev subspace M of codimension 2, but

S(μ) Φ X for some μ in M2- ~ {0}.

Proof. We will obtain Xas the space Xτ corresponding to (T9 Σ, λ),
where T = [0,1] U {2}, Σ is the family of Borel subsets of T, and λ
is Lebesque measure on the Borel subsets of [0,1], but λ({2}) = 1.
We define/0 and f± in L\Tf Σ, λ) by /0 = 1 on T,fx(x) = x if 0 ^ x ^
1, /i(2) — 0. If N is the two dimensional space spanned by/0 and/x,
then, as noted above, its annihilator M in L°° is a Haar subspace, and
we may consider N and M1 to be the same subspace of C{XT)*. The
atom {2} corresponds to an isolated point of Xτ, and it is not in the
support of the measure corresponding to fx (since it is not in S(/Ί).
The subspace M is a Cebysev subspace, however. If it were not, then
by Proposition 3 there would exist g in M ~ {0} such that g — 0 on the
support of some measure in ML ~ {0}. Equivalently, there would be
g in M ~ {0} c L°° and constants α0 and ax such that g = 0 a.e. on
S(aofQ + dx/i). If α0 — 0, this implies ^ — 0 a.e. on [0, 1]; since 0 ~
{Of /o) = I Ofodx = flf(2), we see that g = 0 a.e. If α0 ^ 0, then
S(aofo + αχ/0 = Γ and therefore flf = 0 a.e. Thus, no such g exists,
which completes the proof.
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EXAMPLE 2. There exists a compact Hausdorff space X for which,
the following is true:

(i) X contains exactly one isolated point.
(ii) For each n ^ 2, C(X) contains a Haar subspace Mof codimension

n which is not a Cebysev subspace, although X ~ S(μ) is one point
for each μ in M1 ~ {0}.

Proof. We let X = XΓ, where (Γ, J , λ) is defined as in Example
1. Let iVbe the linear subspace of L\T, Σ, λ) spanned by the functions
fo,f» - ,Λ-i, where fk(x) = x* for 0 ̂  a? ̂  1, and Λ(2) = 0, fc =
0,1, , n — 1. As before, the annihilator M of N in L°° is a Haar
subspace of codimension n; it is not a Cebysev subspace, however, since
it contains the function g which is zero on [0,1], while g(2) — 1. (This
function is zero on S(f0), say.) Clearly, the isolated point of Xr

corresponding to the atom {2} is in Xτ ~ S(μ) for each μ in M1-.

EXAMPLE 3. There exists a compact Hausdorff space X and a
closed subspace M of codimension 2 in C(X) such that ML c P but M
is not a Haar subspace.

Proof. We take C(X) to be the space c of all convergent sequences
/ — {fn}n=i of real numbers (so that X is the one-point compactification
of the integers). The space C{X)* is isometric with the space I of
absolutely summable sequences, under the following correspondence:
If / € c and if μ = {μn}ΐ=1 e i, then (/, μ) = Σ ϊ U Λ Λ + ft Mm/,. Define
measures μ1 and μ2 by ̂  = 2~w, w = 0,1, and μ\ = 4~w, ̂  =1, 2, 3, ,
μl = o. For any real number a the sequence (μ1 + aμ2)n is eventually
positive (and equals 1 at n — 0), so that the measure μ1 + α/*2 has
disjoint positive and negative supports. It follows that the same is
true for bμ1 + aμ\ a, b real. Let M = {/: (/, μ1) = 0 = (/, μ2)}; M is a
closed subspace of c, and the previous remarks show that Mx c P.
To see that ikf is not a Haar subspace it suffices to show that the
translate M1 of M defined by Mx = {/: (/, μ1) = 1 = (/, μ2)} does not
contain a point of least norm. Let m = inf {||/||:/e Λfi}, and suppose
that there exists / in Mx such that | | / | | = m. We can choose ^ in
ML such that |[/£|| = 1 and (/, μ) = m; letting βr = m™1/, we see that
| | f f | | = 1 = (Sf μ). It follows that g = 1 on S(μ+), fir = - 1 on S(/r->
and |flf| ^ 1 elsewhere. Since μeM1, the sequence {/£w} is eventually
positive (and μ0 > 0) or it is eventually negative (and μ0 < 0). Letting
ε = sgn μ0, we see that there exists an integer N > 0 such that fn =
εm if n ^ iV, while | / n | ̂  m if n < N. Since (μ1 — μ2)w is eventually
positive, we may assume that N is so large that μ\ — μl > 0 for
n^ N. By assumption,
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+ ± μ'Λ + Σ ' / ^ I (* = 1, 2) .
n = N J n~\

Subtracting and dividing by ε, we obtain

+ Σ (tf. - /θl ^ m Σ' IΛ - /4I

^ m Σ (2~Λ - 4-w) < m ,
n = l

a contradiction which completes the proof.
The connection between L°°( T, Σy λ) and C(XT) described above

may be used to obtain new proofs of Theorems 2.2 and 2.3 of [2]; they
are immediate corollaries of Theorems 10 and 9 (respectively). For
instance, Theorem 9 yields the following result, which is stronger
than Theorem 2.3 of [2].

COROLLARY. Suppose that (T, Σ, λ) is a σ-finite measure space
containing at least n atoms, and that N is a subspace of dimension
n in L1 (T, Σy λ). Then N1 is a Cebysev subspace of L°° (T, Σ, λ) if
and only if each f in N ~ {0} vanishes on at most n — 1 atoms.

Finally, the fact that for w = 1, 2, 3, ••• the space L\T, Σ, λ)
(T — [0,1], Σ = Borel sets, λ = Lesbegue measure) contains subspaces
N of dimension n such that each / in N ~ {0} is a.e. nonzero shows
that C(XT) contains Cebysev subspaces of each finite codimension.
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