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1. Introduction, (β, ^/ί, P) is a probability space i.e. Ω is an ab-
stract set of points w, . /ί\$ a tf-field of subsets of Ω and P is a nonnega-
tive countably additive set function defined on Λί such that P(Ω) = 1.
G is a locally compact Hausdorff abelian metric topological group.
The group operation in G, as well as in the several other groups to
be dealt with, will be denoted by +. Let e denote the identity element
of G. By the Borel sets of G we mean the sets belonging to the σ-
ring generated by the class ^ of compact subsets of G. Let £& be
the class of subsets of G whose intersection with every compact set
is a Borel set. Notice that 3f is a σ-field containing the open subsets
of G. The character group of G will be denoted by G. A single
valued mapping / of Ω into G will be called a generalised random
variable (g.r.v.) if f"\A) e ^ whenever A e &. An immediate
consequence of this definition is that if / is a g.r.v. then rj{f) is an
ordinary (complex valued) random variable for every ηeG. A finite
or a countably infinite collection of g.r.v.'s is said to be independent
if and only if for every finite subset {Xif i = 1, 2, , n} of distinct
members of the collection and for every choice of sets Aj e £?, j =
1, 2, , n it is true that P{w: X&w) e Aiy ί = 1, 2, - , n} = Πί P{w.

If G is the real line, G is the real line too. For t e G and x e G,
t(x) = exp (ίtx). Given the random variable X and any real number
c > 0 we define a new random variable Y = toa where t0 — c/π and
a is the principal amplitude of exp (iπX/c). The two sets
{w: —c< X(w) S c) and {w: X(w) Φ Y(w)} are then seen to be equal.
Denoting by N the interval (—c, c], the classical three series theorem
[2] may be stated thus: If {Xn, n — 1, 2, •} is a sequence of inde-
pendent real valued random variables then ΣΓ X* exists with prob-
ability 1 (a.e.) if and only if, for some c > 0, the following three
series converge.

( i ) Σ*
(ii) Σ
(iii) ΣΓ var Yn.
E and var denote respectively the mathematical expectation and
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variance. an is the principal amplitude of exp(iπXJc) and Yn = tQan.
The convergence of the above three series is easily seen to be equivalent
to the convergence of

( i ) Σ,TP{w:Xn(w)^N}
(ii) Σ?Elogt(Xn) and
(iii) ΣΓ v a r logί(-aΓn) for every ίeG, \ogt(Xn) being defined to

be equal to iθn where θn is the principal amplitude of exp (itXn). It is
in this form the classical three series theorem lends itself for extension
to the case of generalised random variables. In § 2 three lemmas are
proved leading to the generalisation. In § 3 we give a neccessary
and sufficient condition for the convergence almost everywhere of ΣΓ Xn

in terms only of characters and not using characterstic functions.
The following two known results are quoted for the sake of

completeness and ready reference.

THEOREM A. (Cor. (2.1) [4]).

If {hny n = 1, 2, •} is a sequence of continuous homomorphisms
on a topological group Gx to a toplogical group G2 which converge
pointwise to h throughout some Baire set of the second category then
h is continuous.

THEOREM B. (§2.21 [3]).
Let G be a locally compact abelian group. Let N be a compact

symmetric neighbourhood of e. Let G' be the subgroup of G gene-
rated by N. Then G' contains a discrete subgroup D with a finite
number of generators such that the quotient group G'jD is compact
and D Π (N + N + N) = {e}.

2. For a sequence of real or complex numbers gn, n = 1, 2,
we say that ΠΓ On exists if ΠΓ 9k is nonzero for sufficiently large n.

LEMMA 1. For ηeG, a necessary and sufficient condition that
ΠΓ V(Xn) exists a.e. is that ΠΓ Eη(Xn) exists.

Proof. If ΠΓ V(Xn) exists a.e. then, by the bounded convergence
theorem, Y[T Eη(Xn) exists.

Conversely let ΠΓ Eη(Xn) exist. Hence ΠΓ I Eη{Xn) \ exists. Let
rj(Xn(w)) = exp (iθn(w)) where θn(w) is the principal value of the
amplitude. Hence θl9 θ2, is a bounded, independent sequence of
real valued random variables. Let θ'n be the symmetrised version of
θn and let θ'n (1) be θ'n truncated at 1. One has (p. 196, [2]) var θ'n
(1) ^ 3{1 - I Eη{Xn) |2}. Hence ΣΓ var θ'n (1)< « . By the classical
three series theorem it follows that ΣΓ θ'n converges a.e. Consequently
(p. 250, [2]) there exist constants an such that ΣΓ (θn — an) exists
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a.e. or equivalently Y[~ exv(—ian)Eη(Xn) exists. This implies the
convergence of ΣΓ^n since ϊ[? Eη(Xn) is assumed to converge. We
now conclude ΣΓ Θn exists a.e. or, what is same, ΠΓ V(%n) exists a.e.

LEMMA 2. For a given ηeG, the following two sets of conditions
are equivalent.

(2.1) Π Eη(Xn) exists; Σ var η{Xn) < oo
1 1

(2.2) Σ Eθn converges; Σ v a r θ* < °°
1 1

where η(Xn) = exp (iθn), θn being the principal amplitude.

Proof. Suppose (2.2) holds. Therefore by the three series theorem
on the line, ΣΓ θn exists a.e. This implies that ΠΓ V(Xn) exists a.e.
Hence ΐlΓ Eη(Xn) exists by the bounded convergence.

Let now an == Eθn; βn = var θn and θn = an + yn. As in the last
lemma, Eη(Xn) = (1 + dJ3J2) exp (ian) where | d n\ ^ 1.

E\η{Xn) - EV(Xn) |2 = E\exp(iyn) - (1 + dj8./2) |2

^ c/3ra where c is an absolute constant

= c var θn .

Hence ΣΓ var y{Xn) < oo.
Conversely, suppose (2.1) holds,

var y(XJ = E\ exp (iy.) - (1 + djβ.,/2) |2

= 1 + 11 + djS./212 - 2 real part of £"(1 + dnβj2) exp (%„)

= 1- |1 + dJ3J2 \\

Hence ΣΓ {1 - 11 + dw/3J212} < oo. Now, 11 + dj3J21 is the absolute
value of the expectation Eexτp(iyn) and hence is less than or equal
to 1. It follows therefore that ΣΓ {1 - 11 + dJ5J21} < « As 1 -
11 + dnβj21 ^ βJ2, this implies that

Σ β* < m i e. Σ var ί, < « .
1 1

From the convergence of ΠΓ Eη(Xn) and ΣΓ/5W and the relation
Eη{Xn) = (1 + d»/8n/2) exp (ίαj, we see that ΣΓ ##„ = ΣΓ *n converges.
Thus (2.1) implies (2.2).

LEMMA 3. A necessary and sufficient condition that ΣΓ Xn exist
a.e. is that ΐ[Γy(Xn) exists a.e. for every ηeG, and for some com-
pact neighbourhood N of e
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(2.3) £ P(w: Xn(w) « ΛΓ)< oβ .
1

Proof. Suppose ΣΓ Xn exists a.e. Consequently, for every compact
neighbourhood N of e, P(w: Xn{w) £ N i.o.1) = 0 or, equivalently,
ΣΓ P{w: Xn(w) £ N} < oo by the Borel-Cantelli lemma. That ΠΓ η(X%)
exists a.e. for each rjeG follows from the continuity of the characters η.

Conversely, let N be any compact neighbourhood of e for which
(2.3) is satisfied. Since N - N a N, we have P{w: Xn(w) <£ N - N} ^
P{w: Xn{w) £ N}. Hence the symmetric neighbourhood N — N of e
also satisfies (2.3). Without loss of generality we may therefore assume
that JV in (2.3) is symmetric.

Denote by G* the closed subgroup generated by N. Necessarily
G* is σ-compact. Further, by Theorem B, G* contains a discrete
subgroup D with a finite number of generators such that Gx — G*/D
is compact and D (Ί (N + N — N) — {e}. Hence by the Borel-Cantelli
lemma, (2.3) implies that P{w: Xn(w) ί N i.o.} = 0; that is, if Aλ —
{w: Xn(w) e N for all n ^ no(w)} then P(A^ = 1. Let σ be the natural
mapping of G* onto G1 and write Yn(w) = σXn(w).

As Gx is a compact, metric group, Gx (and consequently Gx) satisfies
the second axiom of countablity. Also Gx is discrete, since Gλ is com-
pact. Further Gx consists precisely of those elements of G which are
identically one on D (cf: Theorem 34 [5]). In view of (2.3), we have
YLTξ(Yn) exists a.e. for each ξeGλ. As Gt is countable we conclude
that, with probability 1, ΐ[Γ ξ(Yn) exists for all ζeG,. Observe that
Glf being a compact metric space, is a Baire set of the second category.
It is now immediate from Theorem A that XΓ Yn exists a.e.

Let A2 be a set of probability 1 on which ΣΓ Y% exists. If A =•
Ax Π A2 then P(A) = 1. Let we A and n ^ nQ(w). Hence

(2.4) Xn(w) + Xn+1(w)eN+N.

As σ(N) is a neighbourhood of the identity in Gx and since
ΣΓ Yn(w) exists, it is clear that Yn(w) + Fw41(w) e σ(ΛΓ), if ^ is larger
than a certain nλ{w). That is

(2.5) Xn(w) + Xn^(w) eN+ D if n ^ tt^w) .

From (2.4) and (2.5) and the property D C) (N + N — N) = {β}, we
conclude that Xn(w) + -3Γn+1(w) e N if w ^ max (n0, nj. Repeating the
argument a finite number of times it is seen that all finite tails of
the series ΣΓ -3Γ«(W) lie in N. By exactly similar reasoning, all finite
tails lie in any preassigned neighbourhood M of e with M ξΞ= N. As
N is compact, we can show (by arguments similar to the ones

infinitely often
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on p. 193 [1]) that ΣΓ Xn(w) exists. Thus on A, which is a set of
probability 1, ΣΓ Xn exists. Combining these results, we have

THEOREM 1. // {Xn, n — 1, 2, •} is an independent sequence of
generalised random variables then ΣΓ Xn exists a.e. if and only if
the series

( i ) ΣΓ P{W: Xn(w) <g N}, N being any ^reassigned compact neigh-
bourhood of e,

(ii) ΣTElogv(Xn) and
(iii) ΣΓ var log ^(XJ converge for all ηeG. Here log(Xn) is

taken to be iθn where θn is the principal amplitude of η(Xn)-

3* DEFINITION. The measure μ induced in & by a generalised
random variable / will be called the distribution function of /. The
distribution μ will be said to be symmetric if μ(A) = μ(—A) for every
A e &. It will be called regular if for every A e &, μ(A) =
sup{/ί(C): C ^A

THEOREM 2. If {Xn, n = 1, 2, •} is an independent sequence of
generalised random variables with regular distributions, then ΣΓ X*
exists a.e. if and only if ΐ[?η(Xn) exists a.e. for every rjeG.

Proof. If ΣiT Xn exists a.e. then UΓy(Xn) exists a.e. for every
ηeG by the continuity property of η.

Conversely, let ΠΓ y(Xn) exist a.e. for each η e G. The assertion
is established through the following steps.

( i ) Let G be compact. That the assertion is true in this case
is seen by the same reasoning as for Gλ in Lemma 3.

(ii) Let G be discrete. The compact subsets of G are therefore
only those subsets with a finite number of elements. As the distri-
bution of each Xn is regular we can find a countable subgroup Gx

such that P{w: Xn(w) eGlfn = l,2, •••} = !.. Observe that Gλ is the
same as G restricted to Gx. Now let the Xn's have symmetric distri-
butions. Hence, if φjjj) = Eη(Xn) then the <£>/s are real and φn(—V) =
φjjl). Now by Lemma 1, ΐlTVi^n) exists a.e. for each ^eG, implies
that ΠΓ ΨΛV) exists. Therefore g{η) = ΣΓ {1 — ΨniV)) exists for every
ηeG. If gjrj) = ΣΓ ί1 ~ Ψki7))} then the gn's are continuous and gn(η)
converges monotonically up to g{η) as n —• co for each f]. Hence
{η: g(η) ^ a} = f|Γ {V- 9n(V) ^ α} is a closed set. G is a compact metric
space and so is complete. Hence it is a set of the second category.
Further, G = \Jζ=1 {η: g{η) ^ n) i.e. G is the union of a countable
number of closed sets. Therefore by the Baire category theorem, one
of these closed sets in the union, say the set A = {η: g{rf) ̂  k), has
a nonnull interior V. Trivially g is bounded on V. By the positive
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deίiniteness and symmetry of φk,

1 ~ Φl(ξ) - ΦliV) + 2φk(ζ)φk(v)φk(ξ + 7 } ) - φl(ξ + v ) ^ 0 .

Let a\ = 1 - φk(ξ), 61 = 1 - Φk{η) and 4 = 1 - ^(f + η). Then the
above inequality implies that

c\ ^ a\ + b\ - a\b\ + akbkV(2 - αl)(2 - 61) ^ (αfc

Consequently,

(3.1) g(ξ + 7])^ {[g{ξ)Γ +

For any ξeG consider the open set ξ — V. From (3.1) it is immediate
that g is bounded on ξ — V. The family ξ — V, ξeG is an open
covering for the compact G. Therefore there exists a finite subcover
from this. As g is bounded on each member of this subcover it fol-
lows that g is bounded on G.

Let m be the Haar measure of G with m(G) = l . As P{w: Xn(w)φe} =

ί {1 - <Pn(V)}dm(y), we obtain Σ Γ •p('w ; : ^ ( ^ ) ^ e l = \.9(V)dm(η) < oo.
Since G is discrete this means that for the compact neighbourhood
N = M of e, ΣΓ P{w: Xw(w) $ N} < oo. That Σ Γ Xn exists a.e. follows
from Lemma 3.

(iii) Let G be discrete but the distributions of the Xn's need not
be symmetric.

Let Yn, n = 1, 2, be another independent sequence of g.r.v/s
and independent of the Xn's; let Yn have the same distribution as
X%, n = l,2, . . . .

Write Zw = Xn — F w . The Zn's therefore have symmetric distri-
butions. Also the hypothesis yields that ΠΓ V(Zn) exists a.e. for every
yjeG. Hence by (ii) above

(3.2) Σ piw' zn(w) Φ e} < oo .
1

The distribution of each Xn is assumed to be regular. Hence there
exists a countable set A such that P{w: Zn(w) e A for all n] = 1. Now,
if pn(a) — P{w: Xn(w) — a}, we have

P{w: Zn(w) = e} = Z P{w: Xn(w) = a}P{w: Yn(w) = a} .
aβA

= Σ P2»(α) ^ S^P ^^(α)
ogi αe-4

Since there can only be a finite number of 'values' of Xn for which
the associated probability is larger than any preassigned number, the
supremum is attained. Let an be any one of the values taken by Xn

with probability equal to this supremum. Therefore P{w: Xn(w) φ an} ^
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P{w: Zn(w) Φ e). Consequently, using (3.2), we obtain

(3.3) Σ Pi™*- Xn(w) Φan}<™
1

(3.4) or Σ p i w Xn(w) -an$N}<co .
1

Where N is the compact neighbourhood of e consisting only of itself.
From (3.3) we conclude that, with probability 1, Xn — an except for
a finite number of n's. This fact together with the hypothesis implies
that Π Γ ^ ( O ^exists for every ηeG. That ΐ[?y(Xn — O exists a.e
for every ηeG is then immediate. Now using (3.4) we see by lemma
3 that ΣΓ (X» — an) exists a.e. By Theorem A or by applying Lemma
3 to the random variables an we see however that ΣΓ α» exists since
ϊlTV(an) exists, for every rjeG. Hence ΣΓ-X* exists a.e., as was to
be proved.

(iv) Let G be any metric abelian locally compact group. Let N
be a compact symmetric neighbourhood of e and G* the closed sub-
group generated by N. Necessarily G* is σ-compact and open. Let
σλ be the natural mapping of G onto Gx — G/G*. As G* is open, Gx

is discrete. Further Gx consists precisely of those elements of G which
are identically one on G*. Hence HTV(Xn) exists a.e. for each rjeG
implies that Ή.Γξ(Yn) exists a.e. for each ξeGlf where Yn = σλXn.
By part (iii) above, P{w: Yn(w) Φ e1 i.o.} — 0 where eλ is the identity
of Gx. That is

(3.5) P{w: Xn(w) ί G*} - 0 .

In other words, there is probability 1 that all except a finite number
of the Xn's lie in G*.

As G* is generated by a compact symmetric neighbourhood of e
there exists, by Theorem B, a discrete group D with a finite number
exists, by Theorem B, a discrete group D with a finite number of
generators such that G2 = G*/D is compact and D Π (N — N) = {e}.
Let e2 be the identity element of G2 and σ2 the natural mapping of
G* onto G2. Write Zn = σ2Xn if XweG* and =βa if X w ίG*. Hence
Zn, n = 1, 2, is an independent sequence of g.r.v/s in G2. Recall
that G* consists of all the elements of G restricted to G* and that
G2 consists precisely of those elements of G* which are identically 1
on D. Using the hypothesis and the equation (3.5) we get {\T ξ(Zn)
exists a.e. for every ξeG2. Therefore we have

P{w: Zn(w) ί σ2{N) i.o.} = 0 i.e. P{w: Xn(w) $N+ D i.o.} = 0 .

Define sn = Xn if XneN + D and sn = e iΐ Xn$N+ D. Then
for each sn we have the unique decomposition sn = un ± vn where
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un e N and vn e D. The un's form an independent sequence of g.r.v.'s
and so do the vn'&. It is immediate from the hypothesis that ΠΓ^(s«)
exists a.e. for each ηeG. Also, since ΠΓξ{Zn) exists a.e. for each
ζεG2, ΐ[TV(un) exists a.e. for each ηeG. Hence ΠΓfOO exists a.e.
for each ξ e D. As D is discrete we have, by part (iii), P{w: Xn(w) Φ
e i.o.} = 0. This is equivalent to saying P{w: sn(w) Φ un(w) i.o.} = 0.
Or P{w: Xn(w) $ N i.o.} = 0 i.e. ΣΓ P{w- XJLw) ί N} < co. That ΣΓ -3Γ«
exists a.e. follows now by Lemma 3.

I thank the referee for his suggestions leading to a shorter proof
of Lemma 1.
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