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A classical result in the ideal theory of commutative rings is
that an integral domain D with unit is a Dedekind domain if and
only if D is noetherian, of dimension less than two, and integrally
closed. [8; 275]. The statement of this theorem is due essentially
to Noether [6; 53], though the present statement is a refined version
of Noether's theorem. (See Cohen [1; 32] for the historical develop-
ment of the theorem above.) Noether did not, in fact, require that
the domain D contain a unit element. By imposing greater restric-
tions on the prime ideal factorization of each ideal, she showed that
D must contain a unit element.

This paper considers an integral domain J with Property C:
Every ideal of J may be expressed as a product of prime ideals.

In particular, it is shown that an integral domain J with property
C need not contain a unit element. However, factorization of an ideal
as a product of prime ideals is unique and J is noetherian, of dimen-
sion less than two, and integrally closed.1 A domain without unit
having these three properties need not have property C. If J does
not contain a unit element, J is the maximal ideal of a discrete
valuation ring V of rank one such that V is generated over J by the
unit element e, and conversely. The structure of all such valuation
rings V is known. [4; 62].

If J is an integral domain with quotient field k, then J* will
denote the subring of k generated by J and the unit element e of k.
We will assume that all domains considered contain more than one
element.

If D is an integral domain, not necessarily containing a unit, and
if k is the quotient field of D, the definitions of fractionary ideals of
D, of sums, products and quotients of fractionary ideals, and of the
fractionary ideal (uu u2y , ut) of D generated by finitely many
elements uu u2, * ,ut of k, are generalized in the obvious ways. In
particular, D* is a fractionary ideal of D and if Sf is the collection
of all nonzero fractionary ideals of D, S^ is an abelian semigroup
under multiplication with unit element D*. A fractionary ideal F of
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1 A domain D with quotient field k is integrally closed if D contains every element

x of k with the following property: There exist elements do, di, "m,dn of D such that

xn+ι + dnx
n + + dix + do = 0 .
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D is said to be invertible if F has an inverse when considered as an
element of sf. A nonzero principal fractionary ideal is invertible and
(d)~x = (1/d). A product of fractionary ideals is invertible if and only
if each of the factors is invertible. [S; 271].

The following two lemmas may be proved by making minor changes
in the usual proofs given in the case of a domain with unit.
[8; 272-273]. While the proof of Theorem 1 is definitely a modification
of the usual proof for a domain with unit, the author feels enough
difficulties arise to prove Theorem 1 here.

LEMMA 1. If A is an invertible fractional ideal of the integral
domain D, then A~λ — D*: A. Further, A has a finite module basis
over D.

LEMMA 2. Suppose A is a proper ideal of the domain D such
that A may be expressed as a product of invertible prime ideals of
D. This representation is unique if DcD*, or unique to within
factors of D if D = D*.

Henceforth in this paper, J will denote an integral domain with-
out unit such that J has property C.

THEOREM 1. Every nonzero proper prime ideal of J is inver-
tible and maximal.

Suppose first that there exists a nonzero proper invertible prime
ideal P of J such that P is not maximal. We chose a such that
P c P + (a) c J. We express P + (a) and P + (α2) as products of prime
ideals: P +(α) = JkP1 --* Pr, P+ (a2) = JlQx. Qs where each P, and
each Qj is a proper ideal of J. In J — J/P we have: (a) = JkP1 Pr,
(a)2 = JtQ1 Qs. By Lemma 2, s — 2r and by proper labeling P{ =
Qn-i — Q*i If J does not contain a unit element, then Lemma 2 im-
plies also that t — 2k so that P + (a2) = [P + (a)]2. If J contains a
unit, then (a) = JkP1 Pr so that r is positive and (a) — P1 Pr.
Similarly, (α)2 = Qx Qs. Therefore [P + (a)]2 = PI.. P2 = P + (a2).
For either case, therefore, P + (α2) = [P + (a)]2. The remainder of
the proof of the theorem is the same as the proof appearing in [8; 273].

THEOREM 2. J is a noetherian domain.

We first show that / is finitely generated. Thus if J contains
a proper nonzero prime ideal P, then P = (plf , ps) is maximal and
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finitely generated by Theorem 1 and Lemma 1. Therefore if de J,
dgP, then J = (plf -—,ps, d). If (0) is the only proper prime ideal
of J, then given de J, d Φ 0, (d) — Jk for seme integer fc^l. Then
J is invertible, and hence finitely generated.

It follows that every prime ideal of J is finitely generated. Since
J has property C, every ideal of J is finitely generated.

THEOREM 3. Every nonzero ideal of J is a power of J and, in
fact, J is a principal ideal domain.

Since J is noetherian and J c J*, J2dJ. [5; 172-73], We choose
x e J, xgj\ Because J has property C, (x) is prime. We shall show
that (x) = J. We suppose that (x) c J. Because (x) is invertible and
J c J * , (ft) Z) (ft) J ID (ft2). If A is any ideal such that (x) ZD A z> (ft2)
and if P is a prime factor of A, then P a (x) so that P = (ft) or P =
J. Because (ft) Z) A ID (ft2), A = (a?)J& for some k^l. But ft£j2 so
that x2 & (x)Jk for & ̂  2. Therefore & = 1 and (x)J is the unique
ideal properly between (x) and (x2).

We next show that (x2) is a primary ideal. Thus if α, beJ,
ab e (x2), and a g (a?), then 6 e (α). Hence (a2) C (x\ b) S (a?). Now (α)
is maximal and prime in J so that J7(a?) contains a unit element C
Because a£{x), uag (x) so that uax g (#2) and therefore u$ 6 (#2, δ).
This means {x2, b) g> (a?) J so that (#2, b) = (x2) by the preceding para-
graph. Hence b e (x2) and (x2) is primary.

Now ua — ae (x) so that (ua — α)36 (x2). If zeJ, then ^(^α — af =
α3(ί^ — «) G (a?2) where ί is a fixed element of J independent of z.
Since a*g(x) and (x2) is primary, ίz — ZG(X2) for each seJ"—i.e.,
Jj{x2) contains a unit element. This means, however, that V = (x)/(x2)
is a vector space over the field Jj(x). There is a one-to-one correspond-
ence between subspaces of V and ideals of J between (x) and (x2).
Hence V has exactly one nonzero proper subspace, which is impossible.
Therefore J = (x) as asserted.

If P is a proper prime ideal of J, the argument above shows that
P^J2 = (ft2). This means for some ideal A of J, P = A(ft). Since P
is prime, P = A. Now (ft) = J c J* so that P is not invertible and thus
P — (0). Hence J is the only nonzero prime ideal of J. Therefore if
A is a nonzero ideal of J, A — Jk — (xk) for some positive integer k.

A ring R with at most two prime ideals is called a primary ring.
Theorem 3 shows that J is a primary domain. The author has in-
vestigated primary rings in [3].

THEOREM 4. J* is a discrete valuation ring of rank one. Con-
versely if D is a discrete valuation ring of rank one with maximal
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ideal M and if D = M*, then M is a domain without unit having
property C.

The proof will use the following.

LEMMA 3. Suppose S is a ring with unit e and that R is a
subring of S such that S is generated by R and e. A subset of R
is an ideal of S if and only if it is an ideal of R. S is noetherian
if and only if R is noetherian.

For the proof of the lemma, see [3],
To prove the theorem, we let ξzk, the quotient field of J*. For

some elements a and b of J, ξ = a/b. By Theorem 3 the ideals (a)
and (6) of J compare—i.e. a/beJ* or 6/αeJ*. Therefore, J* is a
valuation ring. Because J* is noetherian, J* is discrete and of rank
one. [9; 41].

If M is the maximal ideal of J* then J — Mr for some r. Then
Mr+1 c J implies Mr+1 = (Mr)s for some integer s so that r -\- 1 ~ rs
and r = 1 — i.e., J — M. Hence J*/J is a field. Because J* is gener-
ated over J by e, J*/J = Zftp) for some prime integer p.

The proof of the converse is an immediate consequence of Lemma
3 and of the fact that a discrete valuation ring of rank one is a
Dedekind domain. [8; 278].

It is possible to classify all discrete valuation rings V of rank
one such that V = M* where M is the maximal ideal of V, for if
V has this property, so does the completion V of V. [2; 60], If now
p is a fixed prime, if 77 denotes the prime field with p elements,
x an indeterminate over π, if Vx — Z{p) and V2 = (Π[x]){x) then
V± and V2 are discrete valuation rings of rank one and with residue
field 77. Further V1 and V2 are regular and unramified in
Cohen's sense. [2; 88]. Thus V1 and V2 are so-called p-adic rings.
[2; 59-60, 89]. Now Vλ has characteristic zero (unequal characteristic
case for Vx and its residue field) and V2 has characteristic p (equal
characteristic case). The within isomorphism, Vλ and V2 are the only
two p-adic rings of dimension one having residue class field 77. [2; 89].
Now Vx is simply the domain of HenseΓs p-adic integers and V2 is
the domain of formal power series in one indeterminate over the field
77. [7; 242-243]. Finally, V is an Eisenstein extension of Vx or V2,
and in case V has characteristic p, V = V2. In short we have: If
V has characteristic p, then to within isomorphism V is a ring between
V2 and V2. If V is unramified of characteristic 0, then F ^ F g Fx.
If V is ramified of characteristic zero, then V is isomorphic to a
valuation ring contained in an Eisenstein extension of F1# Conversely,
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if V is a ring having any of the three properties just described, V
is a discrete valuation ring of rank one having residue field /7. [2;
59-60].

We add the following remarks:
In the last paragraph of the proof of Theorem 2, it is not neces-

sary to use the fact that Jhas property C to conclude J is noetherian.
That J is noetherian follows from a theorem of Cohen [1; 29] if all
prime ideals of J are finitely generated.

In the proof of Theorem 3, it is not true in general that if Dj{x)
is a field, that the ring Dj{x2) contains a unit element, and hence
that (x)/(x2) is a vector space over Dj(x). One can take D to be the
ring of even integers and x = 6.

Theorem 3 implies that J is noetherian and of dimension less
than two. Using Theorem 4, it is easily seen that J is integrally
closed. That these three conditions do not imply that a domain D
has property C may be seen by taking D to be the domain of even
integers. Theorems 3 and 4 imply a bit more than the above. They
even imply that J is a noetherian integrally closed primary domain.
It can be shown that a noetherian integrally closed primary domain
D without unit is the Jacobson radical of D*, which is a semi-local
ring, and that further, D*/D = Z/ip^ pk) for some distinct primes
Pu "> Pk [3]. However, D need not have property C as can be seen
by choosing D as the Jacobson radical of ZM where M consists of all
integers relatively prime to 6. An analog to the classical Noether
theorem cited earlier in the case of a domain without unit, while
obtainable, now seems not as desirable to the author as Theorem 4.
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