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In this note we define two types of matrices, called "special"
and "quasi-special", which we first discuss in their own rights; it
turns out that the quasi-special matrices have a canonical representa-
tion (under permutational similarity) in terms of special matrices.
We show how this fact can, essentially, be expressed in the language
of graph theory, and we also use it to give a new proof of a theo-
rem of Goldberg [1] on matrices with real roots. We shall be con-
cerned, specifically, with the following properties of an n x n matrix
A = (α«):

DEFINITION 1. We call A special if aiό Φ 0 implies aH Φ 0.

DEFINITION 2. Given any integer s with1 3 g s ^ n, we call A
s-special if, for every ordered set (i) = (ilf , is) of integers ir in
the range 1 ^ ir rg n (r = 1, , s), the statement

NΛΐ): ahh Φ 0, - -, αfV_lίf Φ 0 , ahh Φ 0

implies

NΛΐ): ahh Φ 0, - , aisis_x Φ 0 , aiχU Φ 0 .

For example, every symmetric matrix is special (and the same is true
of hermitian matrices over any ring with involution). Also, obviously,
every special n x n matrix is s-special for each s = 3, , n, and it
will be convenient to call any matrix with this latter property quasi-
special. Thus every special matrix is quasi-special. The converse of
this is easily seen to be false: e.g.

/ 0 0 0 \
A = [ 1 0 0

\ 1 1 0 /

is 3-special (since N^(ii, i29 i3) is always false), hence quasi-special, but
this A is evidently not special. Nevertheless, every quasi-special
matrix does have certain special matrices associated with it. More
precisely, our main result is
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1 Clearly s — 1, 2 would lead to properties enjoyed by every matrix A, and so we
meed not consider these values of s.
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THEOREM. (1) Given any n x n matrix of the lower-triangular
block form

I Bn 0 0 0

B21 B22 0 0

\ Bml Bm2 Bm3 Bmrt

where each block Bkk occuring on the diagonal of B is special (in
particular, square), and given any n x n permutation matrix P9

then the matrix A = PBP~X is always quasi-special.

(2) Conversely, every quasi-special n x n matrix A can be ex-
pressed in the form A = PBP'1, with B, P as in (1).

For matrices over any integral domain, of course N4(i) becomes
simply ailh aish Φ 0. However, our Theorem is essentially com-
binatorial, in that its proof involves no genuinely algebraic operations
on the elements of the matrices A, B, which may consequently be of
quite arbitrary nature. All that we need is that there be given some
classification of these elements into two disjoint subsets, say Z and
iV (standing for " z e r o " and "nonzero"), in which case we must
replace each inequality airir+ι Φ 0 occurring in N4(i) by a correspond-
ing statement aiγir+1 e N (or, equivalently, by a relational statement
ir Rir+1). Since our arguments will not require any further properties
of Z or N we might, with no real loss of generality, equally well
have stated the theorem for matrices whose elements are all 0 or 1
(hence our title). Nevertheless, for the sake of its application in a
Corollary below, where the elements will be complex numbers, we
have preferred to state the result in the apparently (but rather il-
lusorily) more general from above.

Proof of (1). This is relatively trivial. Since the property of
being quasi-special (or not) is clearly preserved under similarity trans-
formation by any permutation matrix P, we need only prove that a
matrix of the type B must itself be quasi-special. To this end, let
(i) = (iu , is) (where 3 ^ s ^ n) be any sequence for which N£(i)
holds. We shall show first that this can happen only if each of the
birir+1 (where we define is+1 = ix conventionally) lies in some diagonal
block Bkk (and indeed all in the same block, though this is not vital
to our argument).

For, since NΛ(i) requires all the birir+1 to be nonzero, each birirJh
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must lie in some block Buυ with v ^ u (where u, v depend on r).
Among all those Buv which contain a birir+l, choose one with minimum
u; without loss of generality, we may suppose that the correspond-
ing r = 1, i.e. that bhh e Buυ with u minimum and v ^ u. Then,
since all the Bkk are square, buu e BΌW for some w, and, by the mini-
mality of u> we must have v = u, i.e. 6iji2 e Buu. Repeating the argu-
ment, we see that bhh e Buuy , bis_lis e Buu, bhh e Buu.

Thus all the birir+1 corresponding to any sequence (i) for which
Nβ(i) holds must belong to the same diagonal block Buu. Since each
such Buu is given to be special (even quasi-special would be enough
for our present purpose) and since all the birir+1 are nonzero (by Nfi(i)),
it follows that all the bir+lir are nonzero too, i.e. Nβ,(i) holds. To
summarize, Nβ(i) implies NB(ΐ), so that J5, and hence A, is indeed
quasi-special, as required.

Proof of (2). If A is not itself special, i.e. if for some u, v we
have auυ = 0, aΌU Φ 0, then, since of course u Φ v, by applying a suita-
ble permutational similarity (specifically, the one that interchanges
the first row with the wth and the vth with the wth, and the columns
similarly), we may take u = 1, v = n, i.e. we may suppose throughout
that

(*) aln = 0 , anl Φ 0 .

We now apply a double induction, first on the order n of A and
secondly on the row index i within A. Thus, supposing the theorem
already proved for all square matrices of order <n, we let A be as
stated, assume by way of contradiction that A can not be transformed
to the form B by permutation, and take as our " inner" inductive
hypothesis the proposition

H^ there exist an n x n permutation matrix Qif and integers
klt , k{ satisfying 1 ^ fcx ^ k2 ^ ^ k{ < n such that, for each
h — 1, , i, we have

and also cnl Φ 0, where C = (chj) denotes the matrix Q^AQi and we
interpret kQ = 1.

We wish to prove first that Ĥ  is true for each i = 1, , n — 1,
and our chief task in so doing will be to deduce Ĥ  from H ^ . Sup-
pose then, for some i with 1 < i < n, that Hi-i holds. Since the
property of being quasi-special is unaffected under similarity trans-
formation by a permutation matrix, and since any product of per-
mutation matrices is itself a permutation matrix, we may assume
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with no loss of generality that Qi-λ is just the unit matrix (so that
we may speak of A rather than C).

Given H^x, if k^ ^ i — 1, then A would have an (i — 1) x (n — i + 1)
block of zeroes in its upper right hand corner. Also the leading
(i — 1) x (i — 1) block of A and its complementary (n — i + 1) x (n — ί + 1)
submatrix are both quasi-special, of order at most n — 1, and so, by our
inductive hypothesis on n, we could find a n ^ x u permutation matrix P
(of the form P = diag. (Pu P2), where Pu P2 are permutation matrices
of orders i — 1, n — i + 1 respectively) transforming A to the form
B, which is contrary to assumption.

Thus the only possibility is that each k^x ^ i. Let us now per-
mute the columns of A to the right of the fc^th, but omitting the
nth (i.e. n — k^x — 1 columns in all), among themselves so that, in
the set of elements where these columns intersect the ith row, the
nonzero elements (if any) are brought to the left, and the zeroes
(if any) to the right (while, by the definition of kl9 , k{-u such a
permutation of columns leaves the first i — 1 rows unaffected); and
define an integer k{ (clearly in the desired range k{-γ ^ k{ < n) by
writing the number of these nonzero elements as ki — ki^., Then,
since fc^i ^ ί, we may perform a corresponding permutation on the
(ki-i + l)th through (n — l)st rows without interfering with any of
the first i rows (or the wth, so that anl is left nonzero), i.e., with
this kif we have constructed a permutational similarity taking A into
just the form prescribed in H ,̂ provided only that ain — 0.

To prove that we do always in fact have ain = 0, we proceed in-
directly, and shall first consider the elements of the ith column
which lie above the ith row. For i > 1, if api = 0 for each p = 1, ,
i — 1, then this would imply i > k^, a contradiction. Hence there
must be some integer ix in the range ί > ix ^ 1 such that aiχi Φ 0.
By repeating this argument, we can find a sequence of integers
i > ii > % > > it > it+i = 1 such that ahi Φ 0, ahh Φθ, , α<t<f_1 Φ 0,
alit Φ 0 (where we interpret t = 0 if iλ = 1, in which case we need
only the fact that α u Φ 0). But then, if ain Φ 0, we should have
(since anl Φ 0 by H^) a (t + 3)-cycle of nonzero elements

whence, since A is quasi-special and £ + 3 ^ i + l^w, it would follow
that (in particular) aln Φ 0, contrary to Hi-i (at least for n ^ 3);
hence ain Φ 0 cannot occur, i.e. H; holds in its entirety.

Thus, to sum up, given the truth of (2) for all matrices A of
order <n, where n ^ 3, we have proved, for each i with 1 < i < n,
that Hi-i implies Hίβ Since Hi always holds (as is easily verified,
given (*)), it follows that H ^ holds. But, since kn-x < n, this would
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imply that (after a suitable permutational transformation) the nth
€olumn of A (excepting perhaps the (n, n) element) consisted entirely
of zeroes, so that, by our (" outer") inductive hypothesis on n, it
would follow that A could, after all, be permuted into the form B,
which contradiction completes our inner induction argument.

Thus for n ^ 3, the required assertion (2) about any n x n quasi-
special matrix A is implied by the corresponding assertion about all
quasi-special matrices of order <n; the cases n = 1, 2 being trivial,
(2) now follows at once by induction on n.

Though the proof we have given is in a sense quite direct, it is
also possible to regard our Theorem as being just an algebraic formula-
tion of a geometrically almost self-evident result in the theory of
graphs; and, in the process, our apparently somewhat exotic Defini-
tions 1, 2 above will now appear in a more natural light.

We suppose given a directed graph G, i.e. a set of vertices
(denoted p, q, p17 p2, •) and a binary relation R on this set (so that,
for given vertices p, q, then pRq may or may not hold); we may
think of the vertices of G as points in a plane, with a directed seg-
ment from p to q for each pair p, q satisfying pRq. By convention,
pRp is always false2. By a cycle of G we shall mean any ordered
subset pl9 •••, ps of its vertices such that pλRp2, , p^Rps, psRpύ
we call such a cycle reversible if p8f p8_lt •••, pλ is also a cycle. If
G has no cycles, we call G acyclic. If, for arbitrary p, q eG, pRq
implies qRp, then we call G symmetric. If, for arbitrary p, qeG
with pφq, there is always a sequence qlf •••, qs of vertices of G
such that qλ = p, qs = q and also, for each i = 2, , s, either
#;_! Rq{ or qiRq^u then we call G connected.

The concept of a subgraph is clear, and we can also define quotient
graphs by factoring G with respect to any prescribed identifications
of its vertices. More precisely, given any equivalence relation S on
the vertices of G, inducing equivalence classes denoted by Gh[h=1.2 ..0,
then we may regard the Gh as vertices of a new graph % by defining
3ΐ on © by the rule that Gh 3t Gk (for h Φk) if and only if there exist
peGh, qeGk such that pRq. We call © the quotient graph of G by
S, and write @ = G/S. We can now state

LEMMA. (1) Given any directed graph G and a quotient graph
G/S of it which is acyclic and of which every vertex is a sym-
metrical subgraph of G, then every cycle of G is reversible.

2 For definiteness, it is desirable to adopt either this convention or its opposite,
and in the present connection this alternative seems the more convenient. However,
there is no general agreement on the point: e.g. Harary uses the opposite convention
in [2], but in effect also uses ours in [3],
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(2) Conversely, if every cycle of a directed graph G is reversi-
ble, then there is a factoring G/S such that G/S is acyclic and each
vertex Gh of G/S is a symmetrical connected subgraph of G.

Proof of (1). By the acyclic nature of G/S, any cycle in G can-
involve only vertices from a single equivalence class Gh under S; and,
since each such Gh is given to be symmetric, any cycle in Gh is cer-
tainly reversible.

Proof of (2). We define a binary relation S on G by the rule
that, for p, q e G, we have pSq whenever either p = q or there is a
cycle of G containing both p and q. We see at once that S is an
equivalence. It is also a trivial matter to check that the induced
equivalence classes are connected and (by our hypothesis on G) sym-
metric with respect to the given relation R on G, and, finally, that
GjS is acyclic.

So transparent a lemma as this deserves stating only for the
sake of its applications, and presumably various forms of the same
result have appeared in the literature; for example, a somewhat more
general version is implicit in [3], However, it seems desirable here
to have an explicit account in a terminology adapted to our present
concerns.

In both parts of the Lemma, clearly G is connected if and onljr
if G/S and all its vertices Gh are. The two parts of the Lemma are
in close analogy with those of our Theorem, and in fact we can set
up a one-one correspondence between directed graphs of n vertices
(numbered in some specified order) on the one hand, and n x n mat-
rices of O's and Γs with zero diagonal on the other (we shall suppose
n finite, for conformity with our statement of the Theorem, but this,
is not really necessary). Specifically, given G, with vertices pι •••,
pn, we define aiS = 1 if PiRpj, and aiS — 0 otherwise; conversely, given
any n x n matrix A of O's and Γs with zero diagonal, we can reverse
this to obtain a unique numbered graph G of order n. Thus we may
write A = M(G)y G = M~\A). We verify at once that A is special if
and only if G is symmetric, that A is quasi-special if and only if the
cycles of G are reversible, and that A is lower-triangular (i.e. ai5 — 0
whenever i < j) if and only if PiRpj implies i > j (in particular, this
makes G acyclic). The restriction that A have zero diagonal is purely
a technicality, since the diagonal elements have no effect on the prop-
erties of being special or quasi-special.

Also, given any equivalence S on G, there is a simple relation-
ship between the matrix A corresponding to G and those correspond-
ing to G/S and its vertices Gh. For the matrix M(Gh), relative to-
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the ordering induced on Gh by the prescribed numbering of G, is
just the submatrix of A formed by the intersections of the rows and
•columns of A corresponding to those vertices of G which lie in GΛ.
Also, if the numbering of G is chosen so that all the vertices of Gλ

•come first (in some arbitrary order), then those of (?2, and so on, and
if we partition A accordingly, then each Gh will have as its matrix
the hth diagonal block of A; and GjS will have as its matrix (ekk),
where ehk = 1 if h Φ k and there exist peGh, qeGk with pRq, and
where ehk = 0 otherwise.

Finally, similarity transformation of A by a permutation matrix
P corresponds to re-numbering the vertices of G according to the
permutation defined by P, while G is connected if and only if there
is no such P transforming A into a diagonal sum of smaller matrices.

Thus our correspondence A = M(G) <-> G = M~\A) embraces all the
•concepts involved in the Theorem and the Lemma, and it is a routine
matter (the only point constituting a minor exception is that we
need to show that any finite acyclic graph can be numbered in such
a way that its matrix is triangular) to check that the various hypo-
theses and conclusions of the two parts of the Theorem translate,
Λinder this correspondence, into those of the Lemma. Thus (at the
cost of introducing several additional concepts and definitions) our
lemma and its proof provide an alternative and more intuitive proof
for the Theorem. This second approach shows also that the set of
diagonal blocks Bkk appearing in the Theorem is uniquely determined
by A (up to permutational similarities applied to the Bkk themselves).

We conclude with our promised application: this could be esta-
blished as a direct consequence of the Lemma, but seems more natural-
ly obtained from the theorem. We first need some terminology ana-
logous to that in Definition 2 above.

DEFINITION 3. Given any complex n x n matrix A and an inte-
ger s with 3 ^ s ^ n, we call A s-hermίtian if, for every ordered
index set (i) (as in Definition 2), we have

If A is s-hermitian for each s = 3, , n, then we call A quasi-hermi-
tian. Thus every quasi-hermitian matrix is quasi-special.

COROLLARY. If, for a given n x n quasi-hermitian matrix A,
we have

(P): all aijdji are real and non-negative (i, j = 1, , ri)>
then A has all its eigenvalues real.
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This result is due to Goldberg [1], whose own proof was by ex-
plicitly exhibiting a certain hermitian matrix having the same princi-
pal minors (and hence the same characteristic function) as A.

Proof. By part (2) of our Theorem, A is permutationally simi-
lar to a matrix of the form B. Since (P) and the property of being
quasi-hermitian are preserved under any permutational similarity,
consequently J3, and hence each of its diagonal blocks Bkk, again
satisfies the hypotheses of the Corollary; thus, since the eigenvalues-
of the Bh1c are collectively just those of A, it will be enough to prove
that all of the eigenvalues of these Bkk are real. In other words,
we need only prove the Corollary for the case of a special matrix;
accordingly, we may suppose from the outset that A is itself special.

We now introduce an n x n matrix D coinciding with A except
where A has zeroes, in which places we let D have l's; i.e., more
formally, let

_ f aiά when aiS Φ 0 ,

( 1 when aiό = 0 .

Since A is special and satisfies (P), we have di5dH real and strictly
positive {i, j = 1, , n). Define also, for all u, v with 1 ^ u < v ^ n,

Juυ = U'u,u+iU/u+i,u+2 * * * &«—i,i> y

Quυ — U'u+l,uU'u+2,u+i ' ' ' dυ,υ-l >

J UU iJuU J- >

and write

U = I QH \2fin9in (i = 1, , n)

Now, since the diό are all nonzero by definition, certainly each
gu Φ 0, while also, for any u, v with u < v, we have

so that each/^0^ is real and strictly positive. In particular fingin > 0
for all i < n, while this is trivially true for i = n. Thus all the t f

are strictly positive real numbers.
We wish to show next that tμ^ = ί^* (i, j — 1, , n), to which

end it will be convenient to write the t{ in the equivalent form
U = Qinffufin There being no loss of generality (since the tt are real)
in supposing that i < j , it will suffice to prove that
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But, under our assumption i < j , clearly gu = gugijf fin = fidfjn, and
so we need only verify that gφa — fijdjif which, on being translated
back in terms of the ai3 , is an immediate consequence of our assump-
tion that A is special, quasi-hermitian and satisfies (P).

Thus we have produced positive real tlf , tn such that tμ^ =
tJhl (i,j = 1, , n), i.e. AT2 = T2A*, where T = diag. (t{12, , tT)
is hermitian and non-singular, and we use an asterick to denote the
conjugate transposed. Thus T~λAT — {T~XAT)*, so that A is similar
to the hermitian matrix T~λAT in particular, the eigenvalues of A
must be real, as required.

In conclusion, we note that, by considering matrices of the form

with characteristic function x{x2 — a12a21 — α13α31), it is clear that a
special quasi-hermitian matrix A can have its eigenvalues all real even
if (P) fails (in particular, A need not be hermitian).

It is a pleasure to acknowledge helpful discussion with Dr. John
C. Stuelpnagel on the subject matter of this paper.
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