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1. Motivated in part by connections with problems in transonic
gas dynamics there has been considerable interest in equations of
the form

(1.1) utt — K(t)uxx + bux + eut + du — h = 0

where d, 6, e and h are functions of (x, t) (see here Bers [4] for a
bibliography and discussion). In particular there arises the Cauchy
problem for (1.1) in the hyperbolic region with data given on the
parabolic line t = 0 (see in particular Protter [20], Conti [9], Bers [3],
Berezin [2], Hellwig [12; 13], Frankl [10], Weinstein [25], Krasnov
[15; 16], Carroll [8], Germain and Bader [11], and Barancev [1]). Protter
assumes that K{t) is a monotone increasing function of ί, K(0) = 0, and
shows that the Cauchy problem for (1.1) with initial data u(x, 0) and
ut{x, 0) prescribed on a finite a?-interval, is correctly set (under suitable
regularity assumptions) if tb(x, t)lλ/K{t) —• 0 as t —> 0. Thus in particular
if b = 0 the condition is automatically true. Krasnov considers generalized
solutions and the equation

(1.2) nu-Σ±- (a*) + Σb{^- + e £ + du = h.
dx{ \ dxk I dXi dt

Again the presence of first order terms ί̂  complicates the matter and
(as with Protter for Kit) - t«) it is assumed that b{ = O(t«l2-^(t))
where β{t) —• 0 (additional assumptions are also made). Krasnov supposes

Λl + δ 0

^ ct°Σξ\ with hjt s e U (δ0 > 0 is a number for which bounds
α+l+δ0

are determined in the proof) and finds solutions u such that utjt a
l + δ 0

e L2 and uxjt~*~e L2. Thus the growth of h appears to play an im-
portant role in determining a solution in this more general equation
(1.2). Slightly more general degeneracies for Σaikξiξk are mentioned
by Krasnov but always in some comparison to a power of t.

It is one of the aims of the present paper to give a more precise
estimate of the allowable degeneracy in relation to the growth of h
and to give estimates for the solution. In particular we will not require
that K(t) be monotone. For simplicity we omit here first order terms
in du/dXi; this will be dealt with, in an abstract framework, in a
subsequent article. A summary of some of the present work was
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given in [8]. We remark that an operational treatment of the type
of degenerate problems considered by Tersenov [24] and Hu Hsien
Sun [14] is also contemplated (this involves an equation of the form
K(t)utt — uxx + bux + eut + du — h = 0 with data given for t — 0). As
indicated above our results generalize in certain respects those of
Krasnov, however the methods employed here are quite different; for
example Krasnov relies heavily on a Galerkin type method for existence
whereas we employ an energy method based on work of Lions [17].
Further generalizations in our framework are clearly possible (see [16]).

2» Following Lions (see [18] for an extensive bibliography and
treatment of operational differential equations) we reformulate (1.2)
as follows. Let V and H, VaH, be Hubert spaces, V dense in H,
with the topology of V being finer than that induced by H.* The
norms in V and H are denoted by || || and | | respectively. Let
(u, v) —» a{t, u, v) be a continuous sesquilinear form on 7 x 7for tfixed,

O^t^b< co, with a(t, u, v)=a(t, v, u). Assume that t—>a{t, u, v) e Cι[§, δ]
for (u, v) fixed. We recall (see [18]) that the form a(t, u, v) defines an
unbounded operator A(t): D(A(t)) —> H by defining D(A(t)) to be the
set of ue V such that v—>a(t,u,v) is continuous on V in the topology
of H. Then we can write for u e D(A(t)), (A(t)u, v) = a(t, u, v) for ve V.
Now let {B(t)} be a family of bounded Hermitian operators in H with
t-*B(t) e &\£f£H, H)) (here &m{G) is the space of m-times continuously
differentiable functions of t with values in G and =&ζ(H, H) is the
space of continuous linear maps H-+Ή with the topology of simple
convergence—see [5]).

Let now ψ > 0 be a numerical function with ψ ] as ί-^0,
ψe C°(0, 6]. Here ψ does not necessarily approach co. We assume q
is another numerical function such that q > 0 on (0, 6] with q —• 0 as
t —* 0 (in what follows all limits such as q —• 0 will refer to t —• 0).
Let / be given such that ψfeL2(H) (for the spaces LP(H) and the
integration of vector valued functions see [6; 7]). We assume q e Cx(0, δ].
Let j^Γ be the Hubert space of functions u on [0, s] such that u(0) —
0, ψu' e L\H), and ωu e L\ V) with

(2.1) \\u\\^s

(a) is a numerical function to be determined, o) > 0, co—> co). Here
all derivatives are taken in the sense of vector valued distributions in
£^'(if)(see [23]) and ̂ m a y be proved complete by standard arguments.
Let now Jg% be the space of functions h which satisfy h(s) — 0,
hlir e L\H), h'lf e L\H), and qh/ω e L\ V). Set

* H is also assumed to be separable for simplicity in a later argument; this condi-
tion is not necessary however.



SOME DEGENERATE CAUCHY PROBLEMS 473

(2.2) E.(u,h) = \'{qa(t, u, h) + (B(t)u', h) - (u'9 h')}dt
Jo

and define

(2.3) L8(h) = \\f, h)dt .
Jo

We note that (2.2) and (2.3) are well defined for ue J^^he ^T8, and
/ as described. Thus assume ω as indicated has been given; then we pose

Problem 1. Find s and ue^such that for all he££*8

(2.4) E.(u, h) = £.(Λ) .

Naturally we wish to find the best co in some sense when posing
problem 1. Here best will be left vague for the present in remarking
only that ft) furnishes a measure of how rapidly the solution u tends
to 0 as t —• 0. We define now 3ΓS to be the space of functions k

S t
φhdξ for k ^ ; where φ is a numerical function to

0

be determined (in general φe C'[0, s], φ > 0 on (0, s], and cp-^O as
t -> 0). Clearly k' = φh and thus fc'/^f = h/ψ 6 L2(£T). For suitable
choice of the numerical function S > 0, δ—>oo, we define J%^s as a
prehilbert space with norm

(2.5) k' -dt

LEMMA 1. Define v = φ/g and assume
( i ) φf2eL°°
(ii) ω ^ δ
(iii) ft>VeZ/

ω^dξeL1 with φ, q, ω, ψ, δ e C°(0, s] αii positive on (0, β].
0

Then ^ ^ c ^ " algebraically and topologically.

Proof. The following estimates are straightforward

(2.6)

(2.7)

\fk'\ =

= I \δ[-0-ωvhdξ
I I Jo <w

φψ2k'

lξ

< ¥
φψ

= Jo J

*| I ^
01 1 ft)

dξ.

Thus by (2.7) for & € J¥f and <5 satisfying the hypotheses we have
( < <x>; also by (2.6) and the fact ω ^ δ it follows that p | | ^ s ^

^ From (2.7) we obtain also the result that ||fc||2-^0 as ί—>0
which proves that in fact



474 ROBERT CARROLL

(2.8)

LEMMA 2. Assume (i)-(iv) and

(v) llv[ω2v2dξ eL°°
Jo

(vi) φ'ψ2 e L~
(vii) l/vd2eL~
(viii) -(l/α>)' 1/δ2 e L~, V ̂  0. Assume also tfcat a(t, u, u) ̂  a ||ujf,

8(fc, k) 2>

dt

φ/ιcί̂ , £7s(u, fc) = Es(u, h) .
o

Proof. Formally we have

(2.9) 2ReE8(k, k) = I α ( ί , fc, * -\llJL\a(t,k,k)-(±)a'(t,k,
o }o(\φ/ \φ

2Re[ — {Bkr, k')dt - <p\h\2 'dt .

Noting that lim φ \ h |2 = lim 1/φ | fcf |2 = θ2 ̂  0 will exist if all the other
terms make sense we have

1- α(ί, fc, fc) g — || fc ||2 ̂  - ( W d f Π 1^-1 Γ
φ V V Jo Jo I I ft) I I

(2.10)

which vanishes as t-+0. Note by the Banach Steinhaus theorem it
follows that (see [18])

(2.11)

(2.12)

(2.13) \\'λ(Bk',k')dt
I Jo φ

fc'

Moreover under the hypotheses above

(2.14) dt <oo

(2.15) I [ £a'(t, k, k)dt\ g cX ~ \\δk\\2dt <<
I Jo φ \ Jo vδ2

(2.16) - (Y-2-Y a(t, k, k)dt g c\ - (—Y i Hίfclpd
J o V φ / Jo V t ^ / δ 2
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Thus (2.9) is valid and (2.8) follows.
The formula (2.8) indicates the properties desired of δ and φ in

order to obtain an estimate ReE3(k, k) ̂  Ω ||fc||^β thus enabling us to
apply the Lions projection theorem (see [18]). We will give here a
natural choice for 8, φ etc. without seeking the best possible result.
To this end set

dξjψ2 ^ Nt.
0

Hence φψ2 — cφ\φ' —* 0 also and thus 1/φψ —> co. Next let R Φ 0 be
a constant and

<2.18)

where δx > 0 is determined by v(s). Thus v —» 0 corresponds to δ g U

and in any case, noting v' = RvΨ,

d, + \ Rδ2d

1- J*
O

(This shows that [ω2v2dξ < co and that 1/v [ω2v2dξ ^ M. The last
Jo Jo

term in (2.19) is taken to be zero if δ g U or t (O) = 0, and v(0)lv(t) is seen
to be bounded by one in all other cases.) Thus (i), (ii) (by assumption),
(iii), (v), (vi), and (viii) hold. Also the φ'ψ2 term dominates in the
second integral of (2.8) for s small. Now for (vii) we note that 1/vδ2 =
(vlv')R and v' — (φ/q)'; thus

(2.20) —
v φ q φ L q JO ψ'

S t
dξjψ2 g l - S i for t small

0

then v'jv ̂  ^φ'jφ —* co since φ, φf > 0 on (0, b] and φ\φ' —> 0. In any
case if v'/v —> co then v/i;' —> 0 and 1/vδ2 —* 0 which means not only
that (vii) holds but that the — α(l/v)' 1/δ2 term dominates in the first
integral of (2.8) for s small. Note here that φ and hence v are defined
on [0, 6] independently of s by say (2.17) whereas (2.18) determines δ2

on any interval (0, s] for v given. Finally with regard to (iv) there
are various hypotheses on ω and v which would work but we assume
simply that
<2.21) ω2 = -2—, 0 < e < 1
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Then if say v e C°[0, b]

(2-22) j ., ,

It should be noted that v e C°[0, b] now implies that ω^cδ since ω2β2 =
Rv* and this would be a condition equivalent to (ii). We remark that

v->0 implies ω$U since \ω2dξ = (V/v2-βd£ = 0(l/^- ε). This proves

LEMMA 3. Assume a(t, u, u) ^ α||w||2, v'/v-*oofve C°[0, 6], ω2 =

v'lv2-*, φ = c^dξlψ2, and v = 1/δ, + \*Rδ2dξ. Then ω g cδ and (i),
Jo Jί

(iii)-(viii) hold with ReEJJk, k) ^ β p | | ^ for s sufficiently small.
Using the above lemmas and the Lions projection theorem (see [18])

there results

THEOREM 1. Under the hypotheses of Lemma 3 and the conditions
on a(t, u, v), B{t) stipulated above there exist functions o) (cogL2 if
v—>0) such that for s small problem 1 has a solution.

Proof. We need only check that the map u —• E£u, k): Jζ—> C is
continuous for k e ^ fixed and that the map k —> L£k) = Lβ(h):
St9 —> C is continuous. This verification is immediate.

Now since q > 0 on (0, 6] we can treat qa(t, u, v) as a nondegenerate
form on say [s/2, 6] and apply Lions' results for such problems (see
[17; 18]). We want to solve

Problem 2. Find u e J^ such that Eb(u, h) = Lb(h) for all h e
Thus suppose the problem has been solved for [0, s], that is suppose

problem 1 has been solved with solution uγ. Then following [17] let
peC1 with p — 1 on [0,2/3 s] and p = 0 in a neighborhood of s. Set
u2 = u — pux\ then u2 = 0 on [0,2/3 s] and u2 — u for t^s. The problem
2 for w becomes

(2.23) £ 6(^ 2, Λ) = ( V , λ)dί - (p'[(Bulf h) + (u[, h)]dt
Jo Jo

- \\qa(t, ulf ph) + (Bu[, ph) - « (jΛ)')}dt .
Jo

Now if he 3% we see that phe 3%\ hence

(2.24) Eb(u2, h) = ( V , * ~ P^)^ί - \bpr[(B^u h) + (u[, h)]dt .
Jo Jo

In particular we see that everything vanishes on say [0, s/2]; hence
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we pose the Cauchy problem with initial data given at s/2 as follows.
Let Ĵ ~/2 8 l be the space of u such that ωu e L\v) and ψuf e L\H) on
[s/2, s/2 + sj with u(sl2) = 0. The space <^β/2 βl corresponding to £ίfs

is defined similarly on [s/2, s/2 + s j . We extend ω and δ to be constant
on [s, 6]; then since ψ, ω, 3 etc. are positive and continuous we may
define say ^ / 2 , S l in terms of u e L2( V) and v! e L\H). Let Eφ 8χ denote
the terms in Eb integrated over [s/2, s/2 + sj, and denote the right
side of (2.24) integrated from s/2 to s/2 + sx by Lsj2 8l (h). Then consider

Problem 3. Find u2ej?ζnsi such that Esi2,Sl(u2, h) = Lsl2 Sl(h) for
all h e <βέ?al2t8l.

Problem 3 has a (unique) solution for sλ sufficiently small by [17]
and the above extension procedure may be repeated in steps of length
sJ2. Thus u will eventually be determined on [0, b] satisfying problem
2. Hence

THEOREM 2. Under the hypotheses of Theorem 1 there exists α
solution of problem 2.

3. Suppose now that E8(u, h) — 0 for all h e ̂ %fs. Let h —

— \*Judξ, hf = Ju, J-> co. Then

LEMMA 4. Assume

(a) jηωλ'dξlf'eL1

(b) J/ωψeL00

(c) J2lω2[\q2lω2) dξ e IΛ Then he£^s ifue ^ζαnd h = - \'judξ.
Jo Jί

Proof. Clearly h'/ψ = (J/ωψ)ωu e L\ V) (hence certainly A'/^ e
and h(s) — 0; also

ΊJΓ Jί 0) / ψ

Jo a)2 \Jί ω 2 / Jo

Using the Fubini and Tonelli theorems (see e.g. [19]) the lemma follows.
We note now explicitly the fact that if u e L2(H) and v! e L2(H)

{uf taken in 2$\H) on (0, s)) then u may be identified with a continuous
function and w(0) = 0 makes sense. Indeed for u, determined almost
everywhere, we see that u' e L\H) on [0, s] and clearly Du — u' in

&'{H) where u = ( V d | e ^(jff) (see [23]). Thus D(u - u) = 0 and
Jo

by [21] for any h e H, (u — u, h) = ch in ^ ' . Hence (# — u,h) = ch
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almost everywhere as a function and thus u may be identified scalarljr
with the continuous function u. Since H is separable we may then
identify u with a continuous function and u(0) = 0 is meaningful (see
[23], [22]). Hence u = u follows. Thus setting u = ['u'dξ, h = — ['h'dξ-

Jo Jt

(3.3) |(it,Λ)| =

^ sup

~ 2 u .

i<

Ψ

Thus (w, λ) = 0 at t = 0 and we note that [(Bu', h)dt = - [(B'u, h)dt —

S 8 „ JO JO

{Bu, h() dt. Hence Es(u, h) = 0 becomes, with h as above
0(3.4) ^ α(ί, A', A) - (Bfuy h) - 0 .

Set now θ2 = lim qlJa(t, h, h) which will exist if everything else makes,
sense in the following. Then we have

LEMMA 5. Assume (a)-(c) from Lemma 4 and

(d) jΓdf/f 2 eL~

(e) -J'lω2eL°°;J' < 0
(f) J->oo; J7J'->0

(g) (QIJYKQIJ)-*00 Γfcβw ifh=— ['judξ, uej^, and ifa(t, h, h) ^

a: ||A||2 iί follows that

^-\\ dt

ft)2 ft)2 ft)2 ft)2 J

Proof. By (d) we have

J\u\> ̂
f o ψ2

whereas from (e) there results — J'\u\2 = —J'lω2\ωu\2eL\ Next by
(f) and (e) it follows that lim Jqjω2 = limίJZ-JOί-e/'g/ω2) = 0; hence
Jqlω2eL°° and

ι« ιr«
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Note here q\J— 0 and qjj= \\qlJY dξ; also by (g) surely Γ ? / / | | A| | f dξ <
oo. Now by (f) i t follows t h a t J\u\2 = {JfJ') J'\u\2eb and finally
we remark t h a t

(3,7) 2Re \\B'U, h)dξ ^β \'['j(ξ) {\ u(t) |2 + Iu(ξ) |2} dξdt
Jo J o j ί

[jdξ)dt+ [
ω2 it / Jo a)2

Here the Jϊ/α>2 term makes sense since Jt/ω2 = (Jj—J')(—J't\ω2) —>0
by (e) and (f). Then we note that

but by 1' Hospital's rule lim 1/J ['jdξ = lim J / - J 1 = 0 (here note that

J' Φ 0f J Φ 0 for ί > 0). Hence we may write

(3.8) θ* + \[{{jj «(«, A, A) + (-̂ r) αf(ί, λ, A)} dt

2J?β ί V(Sw, %)dί
Jo

- \'j'\u\*dt
J

The lemma follows immediately.
Now let o)2 = v'lv2~2 as before and consider the following choice

for the function J

(3.9) J = i + c \Sω2dξ; - - ^ 1 = 5 .
J* α>2

It follows that (e) holds (we assume ω, v etc. are as before) and since
v = 9>/g (d) is a consequence of the fact that

(3.10) c \ω*dξ Γ *Z ^ c^ (Vdf = cφ [ - ( i Y
it io ψ2 it it \v /

Note now that with the above choice of ω we can write J in the

form J=j + c J'v'/v2-*dξ = j-(a/1 -ε)(1/φ)) 1 - 8 + (c/1 - e )

If i is taken to be i = (c/1 - ε) (l/vis))1-* then

(3.11)

Thus if v\vf —• 0 then J\—J'-* 0. Moreover since ω2 = (v'/v) (l/^)1"8 it
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follows that ω—> co if v-+0 and v\vf —> co and also by (3.11) J—>co

if v-+0. Hence if v'lv—*co and v—+0 then (f) holds and ω—> co.

Consider now condition (a); using (d) we have J2/a)2 \ dξ/ψ2 ^ c J\of =
Jo

—cc JjJf —> 0 which implies (a). For (c) we note

(3.12) [ ^ ( f ' J ^
Jo of VJo O)2

VJo ft)2 /

However l/β>2 ί'βΛif = v*-e/v' \'vΊv*-dξ - (1/1 - β) {v/v' - c/ω2} and if

v/v' —* 0 and ω —> oo it follows that the first two integrals in (3.12)

exist. The last integral in (3.12) is bounded by

The first term in the integrand vanishes as t —> 0 by the above remarks
and using V Hospital's rule on the second term we note that

ω2dξ \ drjjω2 = Km (I ω2dξ) ω4 which is zero by the above (note
ί JO \J< / /

here if ωeL2 (3.12) is seen immediately to exist and no recourse to
the preceding argument is intended). Thus if v'jv —* co and o) —* co
(c) surely holds.

Now since J/ωψ = (c/1 — ε) l/ωψv1-2 it follows that (b) holds if
o)2v2~2s > c/ψ2 or (v'lv)ε > c/ψ2. It is not necessary that ψ f co in general;
when v -> 0 (b) will hold if v' > clψ2. Thus (b) holds if v -> 0 and

(3.13) l

S t

dξlψ2. In particular (3.13) holds
S o

^ | / ^ 2 ^ 1 — Si, since q —> 0 (see here also'
0

equation (2.20)). This proves

S t
dξlf2 ^ 1 — s± for t small. Then

0

if J — (c/1 — ε) Ijv1-2 (/' = — cω2) and v —> 0 it follows that vf\v —> co
ami (a)-(f) ΛoϊcZ.

We recall that 9 and v are defined independently of s (see (2.17))
and our constructions and proofs have shown that for t small
enough the (qlJ)'(02lq2 and —J'/a)2 terms will dominate in the first
and second integrals respectively of (3.5). It remains to check only
a few terms in order to see whether by suitable choice of s this
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domination prevails over [0, s]. Now by (3.11) JjJ' is independent of
s as is J/ω2 (indeed a priori ω2 and d2 depend only on v). Now since
— J' = cω2 > 0 we have J monotone decreasing and clearly

At)
[SJ(ξ)dξ ^ s - t ^

Hence referring to the proof of Lemma 5 we can establish domination
over an interval [0, s] in the second integral of (3.5). There remains
the (qlJY term for which we may write

(3.14) ®- = 3L
ίq_\- q * K ' V - φ V ~ r qφ'

Thus in particular the ratio in (3.14) is a priori independent of s and
the desired domination may be obtained on an interval [0, s] by choosing
s sufficiently small. Thus we have proved

LEMMA 7. If the hypotheses of Lemma 6 hold and (g) is true it
\ωu\2dt ^ 0.

0

Clearly the condition (h) in Lemma 6 is much stronger than is
necessary but it gives a manageable criterion. We note now that if
q' ^ 0 then by (h) εx ^ [1 - q'φ/qφ'] S 1 and from (3.14) it results that
(qlJ)Ί(qlJ) ^ (1 — ε) φ'/φ —> oo. Thus if q is monotone, for any ε, 0 <
ε < 1, (g) is a consequence of (h). Another case of interest would be
if 1 — q'φ/qφf ^ Q; then if ε ^ 1/Q (g) holds. A somewhat better
result may be obtained as follows. We note that

ιdξ_ __ (log q)'

loq — T )

S t

dξ/ψ2 exists as ί-»0. We note
0

that the conditions needed to apply 1'Hospital's rule hold and thus Q =

S I

dξ/ψ2. Therefore for t small (h) implies that
S

0
log g/log I iS . g 1 - ε2, 0 < ε2 < εx .

Jo *ψΔ

But for t small the logarithms are negative and thus loq q ^

G t \ i-ε 2 /rt \i-ε2

df/i/r2 or g ^ c?^/αίr2) = cφ1^2. Converse ly if q ^ c ^ 1 " 8 2

p / VJo /
a n d if Q = lim q'φ/qφ' e x i s t s t h e n Q g 1 — ε3 for some ε3, 0 < ε3 < ε2.
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Hence if Q exists as defined and q ^ cφ1^2 then (h) holds and moreover
v = φ\q ^ φ/cφ1-*2 = (l/c)φS2 —> 0. We note that by construction if Q

S t
dξ/ψ2 ^ 0; hence ε[l — q'φjqφ'] < ε(l + ε4)

0

for t small enough and ε4 > 0 given. Choose now ε4 such that ε(l + ε 4 ) < l

or ε4 < (1 - ε)/ε then from (3.14) (q/JYUq/J) ^ cφ'/φ for t small. This

proves

dξjψ2 exists and that q ;>

M dξ/ψ2) ", 0 < ε2 < 1. Then (h) holds, v-^+0, and (q/JY/iq/J) — oo for

J = c/v1^ as above. Hence for s small enough the solution of problem

1 is unique.
Again using [17] we conclude

THEOREM 4. Assume a(t, u,u)^a \\u\\\ t-^a(t, u, v) e C1 [0, 6], t -*
B(t) e &\£Z(H, H% α(ί, u, v) = α(ί, v, u), qeC1 (0, 6], q > 0 for t > 0,
q->0 as t->0,ψeC°(0,b],ψ>0,ψ] as t -^0, ψfeL2(H), q ^

C\dξlf2V '2 (0 < ε2 < 1), αtid Q = lim (q'ψ^q)^ dξ/ψ2 exists. Then there

exists a unique solution of problem 2 for spaces JPζ, <§$fh based on

functions ω£L2(ωeC0 (0, 6]).
We note now that if Q Φ 0 then qf < 0 for t small is not possible.

dξ/ψ2 ^ ε4 > 0 then <? g (I dξ/ψ*) and we may
o VJo /

assume ε4 < 1 since if q S 71+γ?, V ^ 0, 7 -> 0, then ^ ^ 7s4 for any ε4 < 1

when £ is small. In fact ε4 < 1 is necessary if we are to have q ^

cφ1'*2 and thus the case Q Φ 0 with # ^ (\ dξ/ψ2) amounts to an

estimate of the form ([d&Ψ*)1"** ^ 9 ^ (S?^^ 2 )^ ° < Sa < 1 ? Sa + ε4 ~
1. Finally we remark that under the hypotheses of Theorem 4 if

lim q'ψ2 exists then by ΓHospitaΓs rule lim q'ψ2 — lim q \ dξ/ψ2 =
/ Jo

lim c q\φ = oo. This implies that ^ \ oo if g' is bounded but in a case
such as q — t1'2, ψ | oo is not required.

4. Let now 3ts be the completion of 3ίΓ% for the norm || ||af,.
Then we may pose problem 1 for 3rz instead of J*Γ (call this problem
1') and repeating the procedures of §§ 2 and 3 there will exist a function
it e 3f9 solving problem V if s is small enough. It may be easily seen
that the elements adjoined to 3ίΓ8 by completion correspond to functions
ίc such that δίce L2(V), ίc'lφψe L2(H), and £(0) = 0. Moreover the
injection i: 5^s—*^ may be extended by continuity to a continuous
map i: ^

LEMMA 8. ^%7 a ^ algebraically and topologically.
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Proof. We need only show, after the above remarks, that i is an
injection. Let kn —> ίc in J ^ , kn e 3ίΓ8, and assume that ί{kn) = fcΛ —> 0 =
ί(fc). We want to show that fc = 0 in j£^. First fcn = i(fcΛ) —• 0 in
&l means in particular that ωkn —»0 in L\V). Hence (see [6], p. 133)
there is a subsequence ||α>fcWp||

2—>0 almost everywhere. Therefore
ll^fc.JI1—*0 almost everywhere and by the assumption kn—>ίc in J%Γ
we know δknp —> δίc in L\V). Theorefore we must have (see [6], p. 133
again) δknp -> 0 in L2(V), and δίc = 0 in L 2 (F) (similarly fc'/^f = 0 in
L\H))\ thus in particular ίc — 0 which shows that i(Λ) = 0 implies
£ = 0.

Let now ύ e ^ Γ be the solution of problem 1' above. Then u e ^
by Lemma 8 and by the uniqueness Theorem 3 we must have u = u
for s small where % is the solution of problem 1. Hence

THEOREM 5. Let the hypotheses of Theorem 4 hold. Then there
exists a unique solution u of problem 2 which belongs to J

Now consider the proof of the Lions projection theorem given say
in [17] (see also [18]). We have ReE8(k, k) ^ Ω\\k\\£s for ke 3Γ8

and wish to solve E8(u, k) — L8(k) for u e 3%~8 (the equation holding for
all k e 3ίΓ8). Then we write, following Lions, Ls(k) = ((χ, k))^a, χ e d%Γ8>
and E8(ut k) = ((u, !>&))£,, Lk e 3%. Here L: 3fT%-+ J ; is a densely
defined linear operator in 3ίΓ%. But ke

(4.1) Ω 11 k I \g^ ̂  | ((k, Lk))£s | ^

which implies L is one-to-one. Moreover if Ro = L(^%Γ) then L"1 is
a bounded operator on Ro and may be extended by continuity to Ro

defining L"1: JK0 —> ̂ * . Let P: J£f--> JB0 be the projection and set R —
L~XP which is thus everywhere defined and continuous on ^ . Then
we want to find u such that {{u, Lk)) = ((χ, L'1 Lk)) = ((χ, i2Lfe)) =
((iί*χ, Lfc)) for all k e 3ίΓ.. Thus a solution is w = i2*χ and by the
subsequent uniqueness result u = iϋ*χ is the only solution. Using this
sketch of the proof of the projection theorem we can bound u. Indeed
| |w| |^β ^ ll-β*Zll^β = c llzll^, since R* is bounded. Moreover

A dt
Ψ

(4.2)
<

This means (see [5], p. I l l ) since J%ς is dense in 3rs that | | χ | | ^ F =

. Therefore we have proved(\

THEOREM 6. Under the hypotheses of Theorem 4 αtwί for s suf-
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ficiently small the (unique) solution of problem 1 satisfies the estimate

^ 1 1

The estimate can clearly be extended to [0, b] which given

COROLLARY. Under the hypotheses of Theorem 6 the unique solution

G b \l/2

(ψf\2dt) .
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