
DIVISORIAL VARIETIES

MARIO BORELLI

Introduction* The purpose of the present work is to introduce a
new type of algebraic varieties, called Divisorial varieties. The name
comes from the fact that the topology of these varieties is determined
by their positive divisors. See §3 for a more detailed discussion of
the above statement.

In the first two sections we lay the groundwork for our study.
The result obtained in Proposition 2.2 is new, and constitutes a natural
generalization of a well known result of Serre. (See [3], page 235,
and Lemma 2, page 98 of [5]).

Section 3 is devoted to the study of the categorical properties of
divisorial varieties. We prove that locally closed sub varieties of divi-
sorial varieties are divisorial, and that products and direct sums of
divisorial varieties are divisorial. Furthermore we give a characteri-
zation of divisorial varieties which shows how such varieties are a
natural generalization of the notion of protective varieties.

We show in §4 that all quasi-projective, and all nonsingular
varieties are divisorial. A procedure is also given for constructing a
large class of divisorial varieties which are neither quasi-projective
nor nonsingular, both reducible and irreducible ones.

In §5 we study the additive group of equivalence classes (under
linear equivalence) of locally linearly equivalent to zero divisors of a
divisorial variety. We show that such group is generated by the
semigroup of those classes which contain some positive members. As
a matter of fact the statement of Corollary 5.1 is more general than
the one above, but we omit the details here for brevity's sake. The
results of §5 are a generalization of the operation of "adding hyper-
surface sections," well known to the Italian geometers for projective
varieties.

Finally, in §6, we give one instance of a theorem which is known
to be true for either quasi-projective or irreducible and nonsingular
varieties, and show that it holds for divisorial varieties. The theorem
considered, which we refer to as the polynomial theorem of Snapper,
is Theorem 9.1 of [6], generalized by Cartier (See [1]) to either quasi-
projective or irreducible and nonsingular varieties.

We believe that the notion of divisorial varieties represents a
natural extension of the notion of quasi-projective varieties.

Our notation and terminology are essentially those of [3]. The
word sheaf always means, unless other-wise specified, algebraic coherent
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sheaf. The symbol ^2 is used to denote all sorts of isomorphisms, and
the type has not been specified, unless there is danger of confusion.
Whenever the expression a ® a ® (&a9m times, is meaningful,
we shall denote it by α(m). When we refer to, say, Theorem 3.2,
without any further designation, we mean Theorem 3.2 of the present
work, to be found as the second theorem of the third section.

1. We wish to review briefly some of the ideas and theorems
concerning the functorial properties of line classes; for a more detailed
treatment see [6], §§1 to 5, and [7].

Let X denote an abstract algebraic variety, defined over an
algebraically closed groundfield k. Let & x denote the sheaf of local
rings of X, and &x the sheaf (not algebraic) of units of &z. The
elements of the (multiplicative) first cohomology group H\X9 έ7\) are
called the line classes of X.

Let fe H\X, <^\) and let <%s = (Uit I) be an indexed open cover-
ing of X which admits a 1-cocycle b with values in d7\ which repre-
sents /. We shall briefly say that the system ( ^ , b) represents /.

If F is an algebraic sheaf over X, there exists a uniquely defined
(up to ^^-isomorphisms) algebraic sheaf K, and local isomorphisms
Uii K\ Ui~^F\ Uif such that, for every α?e Z7<Π U3 and aeFx,

The sheaf K depends only upon F and /, while, of course, the
local isomorphisms ut depend upon the choice of the system (^/, 6).
We denote the sheaf K by f(F).

In this way / can be looked upon as a functor from the category
of (classes of ^Visomorphic) algebraic sheaves and (classes of equi-
valent) ^jrhomomorphisms into the same category. Such functor is
covariant and exact. Furthemore, if F and G are two algebraic
sheaves over X, and / and g are two line classes of X, then

f(F) <g> σxg{G) -fg{F®σxG) ,

where fg denotes the product in the group of line classes.
Since F and f(F) are locally isomorphic sheaves, if F is of finite

type or coherent so is f(F), and conversely. Furthermore the stalk
of f(έ?χ) over any point x e X has a unique maximal submodule,
which we shall denote by nz, corresponding to the unique maximal
ideal mx of ^x,x.

2. Sections of f{^x)i We shall keep the same notation as in
the previous section. Furthermore, for every sheaf F over X, and
any subset U of X, we shall denote by Γ{ U, F) the set of sections
of F over U.
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PROPOSITION 2.1. Let X be an abstract algebraic variety, / a
line class of X, and se Γ[X,f(έ?x)]. Then the set

is an open subset of X.

Proof. L e t ( ^ , b) be a system representing /, where ^ = (Ui9 I).
Let n{: f(tfz) | t/* —• & x \ Ut be the local isomorphisms as in §1.
If xeUi then, by the definition of nx,xeXsf) U{ if, and only if,

(Uios)(x) ί m,

or, equivalently, if, and only if, (Uios)(x)e έ?x, X. Since &x is open
in έ? x, and since the u{ is a local homeomorphism, Xs Π ZTi is open in
t/i. This proves the proposition.

The following proposition generalizes Proposition 5 of §43 of [3],
as well as Lemma 2, page 98 of [5].

PROPOSITION 2.2. Let X be an abstract algebraic variety, / and
g two line classes of X, U an open subset of X. Let s e Γ[X, g(^x)]
and t £ Γ[U,f(έ?x)] be given, such that Xsd U. Then, for a sufficient-
ly high integer n, there exists a section s * e Γ [ I , / f ( ^ I ) ] , such that
s* = ί(g)s(w) on X8.

Proof. Let %s = (Ui9 /), ^ ~ = (VΛ9 A) be open affine coverings
of X which admit 1-cocycles with values in ^ x representing / and g
respectively. We may assume that ^ ~ is a refinement of <%/. Let
ut and vΛ be the usual local isomorphisms. Since XscUwe have that
teΓ[X.tf(έ?z)]. Let:

tΛ = v~\l) fΛ = vβoί

^ = ^ ( l ) gt = ^os

Let F*c i7ie Observe that ^ is regular on Ui9 and that

Since FΛ is affine and /Λ is defined on X8 Π Fα, we see by Lemma 1
of §55 of [3] that there exists a sufficiently large integer mω and a
section

such that

rLoύ — J a Ui

on VaΓ\X8* Since X is compact (we do not include T2 in the defini-
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tion of compactness) we may assume all m]β to be equal, and denote
their common value by m.

Let now s'aeΓ[VΛ,fg
m(6?x)] be defined as follows:

Clearly s'Λ — s'β = 0 on VanVβnX,. Hence, since g{ is regular on
Va Π Vβ, we have that the section

(s'a — sβ) 0 s e Γ[ Va Π Vβ, fgm+1(^x)]

is 0 on VΛ Π Fβ. Therefore the system of sections si 0 s defines a
unique section s* of fgm+1(^x) over X On FαΠX s we have:

which finishes the proof.

COROLLARY 2.1. Let X be an abstract algebraic variety, g a line
class of X, se Γ[X, g(^x)], h a regular function on Xs. Then, for
a sufficiently high integer n, the section h*s{n) can be extended to X.

Proof. Let / = 1, t = h, U = Xs in the above proposition.

REMARK. Let X be an irreducible, normal algebraic variety, with
constant sheaf (not coherent) of rational functions denoted by E.
There exists a group isomorphism between the multiplicative group
H\X, έ?x) and the additive group of equivalence classes (under linear
equivalence) of locally linearly equivalent to zero divisors of X If g
is a line class of X shall denote by | g | the equivalence class of divisors
which corresponds to it. Then there exists an isomorphism between
Γ[X, g(E)] and \g\. Sections of g(^x) over X correspond to the
positive members of \g\. See [6], §5 for the proof of the above
statements.

The geometrical meaning of Proposition 2.2 is then the following:
if D is a locally linearly equivalent to zero divisor of X, such that the
variety of its negative components is contained in the variety of some
positive divisor (also locally linearly equivalent to zero), say P, then,
for a sufficiently high integer n the divisor D + nP is locally linearly
equivalent to zero and positive.

PROPOSITION 2.3. Let X be an abstract algebraic variety, Y a
locally closed subvariety of X Then there exists a homomorphism

φn: H«(X, <?%) > £Γ (Γ f ^ ? ) , n = 0,1,
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and, for every feH^X, έ?%)9 there exists a homomorphism

φf: Γ[X, f(^x)] > Γ[Y, φ1(

such that, for every se Γ[X,

Proof. There exists a unitary ring epimorphism φ: έ?'x \ Y—> έ?τ,
Tience a sheaf homomorphism φ': <^% \ Y —> £?£. This proves the exis-
tence of the homomorphisms φn.

Let now fe H\X, έ?%). Let ( ^ , b) be a system which represents
/, where ^ = (Uif I). The system (^", V), where ^ ' = (I/in Γ, /)
and 6'(i, j) = φΌb{i, j), represents φx{f). Let

) I Ut xFxlUi

{ ><<?r\ Yf] Ut

be the usual local isomorphisms. Let se Γ[X,f(έ?x)]. We define
ψf(s) by the formula:

We easily verify that φf(s)(x) does not depend on the index ί. We
now assert that <P/(s) does not depend on the particular system (g/, b)
chosen to represent /. Let therefore ( 5 ^ , c) be another such system,
where W — (V3, J). We proceed in steps.

Case 1. *W" is a refinement of ^ , the mapping t: J —+1 is such
that c = ί*(6). From [6], Case 1 of Proposition 2.1 we know that the
usual isomorphisms vό: f(έ?x) \ Vό —> ^ x | V3 can be chosen in such a
manner that ut{j) = Vy on Fy. The system (^"', c'), where W~f =
{Yf] Vj, J) and c'(j, jf) = φ'°c(j, j'), clearly represents £>i(/), hence we
can furthermore choose the isomorphisms

in such a manner that ^ί(i) = v] on Ffl
Hence, if x e Yf] Vj we have

(u'tZj\°<P°Ut{j)os)(x) = (v'j-'

which finishes the proof of Case 1.

Case 2. <fs — W* b and c cohomologous. Hence there exists a
Ό-cochain e of ^ , with values in £7%, such that b~Ύc is the coboundary
of e. We can hence choose the isomorphisms v{ in such a manner that,
if xe Uif then u{ = e(i)(x) vif on the stalk of f(^x) over x. Let
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er = φo(e). Then it is easily seen that &'~V is the coboundary of ef

r

hence, if xe F n Ui9 u\ = e'(i)(x)-v'i9 on the stalk of <px(f)(tfT) over $.
Hence we have that v'r1 = e\i)(x)*u\~1

$ and a trivial computation now
finishes the proof of Case 2.

Case 3. The systems ( ^ , 6) and (^~, c) are arbitrary. Let
be a common refinement of ^ and W~. Hence there exist two
cohomologous 1-cocycles of *Wf with values in έ?x, say g and fc, such
that the systems (^^', #) and i^r\ h) represent /, and the pairs (δ, g)
and (c, fc), with their respective coverings, fall under Case 1. Further-
more the pair (g, h) falls under Case 2, and this finishes the proof of
Case 3.

The map φf is now easily seen to be a homomorphism.
It remains to prove that Yf] X8 — Yφf{s). From the definition of φf(s)

we see immediately that, for x e Y, Ui[s(x)] g mx implies ^/(sXαOttJ-Xmi),
where m'x denotes the unique maximal ideal of ^XtY. Hence YC\X8 is
contained in Yφ {a). Conversely, if we have \u\oφf(s)\(x)$m'x, then
(<poUiθs)(x) $ mXf and since φ~\mx) = mX9 we have (Uios)(x) ί mz. There-
fore Yφ/{s)czYC)Xs, which completes the proof of the proposition.

3. Divisorial varieties* Let X be an abstract algebraic variety,.
and let Gx denote the collection of open subsets of X. We define

Bx = {Ue Gx I U = X., s G Γ[X, g(^x)l g e IP(X, έ?°x)}

DEFINITION 3.1. An abstract algebraic variety X is called divisorial
if Bx constitutes a base for the topology of X.

REMARK. Keeping in mind the remark of the previous section,,
the geometrical meaning of our definition becomes clear. If Y is
irreducible and divisorial, then, for every point xe Xand every closed
subset Y of Xy not containing x, there exists a positive divisor of X9

which is locally linearly equivalent to zero and whose variety contains
Y but not x. In other words the topology of X is entirely determined
by the positive, locally linearly equivalent to zero divisors. This justi-
fies our terminology.

We now begin the study of the categorical properties of divisorial
varieties.

THEOREM 3.1. Let X be α divisorial algebraic variety, and Y a
locally closed subvariety of X. Then Y is a divisorial algebraic
variety.

Proof. Let U' be an open subset of Y and let x e U'. Let IT
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t>e an open subset of X such that U' = Yf] U. Since X is divisorial
there exist a line class / of X and a section s e .Γ[X, / ( ^ *)] such that
x e X s c EΛ By Proposition 2.3 the section φf(s) of the sheaf <Pi(/)(^V)
over Y is such that

Yφf{s)=Yf]X8.

Hence xe Yφ/(s)czU', which proves the theorem.

THEOREM 3.2. The direct sum of divisorial varieties is divisorial.

Proof. Let X be the direct sum of Xlf X2, , Xn. It is easily
seen that

where the product on the right hand side is direct. Furthermore, if
freH\Xr,έ?°XrX and s r 6 Γ [ l r , / r ( ^ ) ] , then the rule

Mx) if xeXr

(0 otherwise

defines a section of (1 x 1 x x fr x x l)(^x) over X such
that X8 = XSr. This proves the theorem.

Before proving that the category of divisorial varieties is a category
with product, we need to prove the following very useful characteri-
zation of divisorial varieties.

THEOREM 3.3. Let X be an abstract algebraic variety. A neces-
sary and sufficient condition for X to be divisorial is the following:
there exists an open affine covering <%/ = {Uif I) of X, line classes
Qi> ft, , gm of X, and sections Sj e Γ[X, g3i<S?x)], j = 1, 2, , m,
such that the collection of open sets {XSj, j = 1, 2, , m) constitutes
a covering of X which refines <%/.

Proof. The condition is obviously necessary, as it suffices to
consider any open affine covering of X, and then use the fact that
Bx is a base for the topology of X, and that X is compact.

To prove the sufficiency, let xe X, and let Y be a closed subset
of X, not containing x. Let xeXSp and XSpczUi. Since Ut is affine,
there exists a section h of έ?'x over XSp such that

h{x)0mx h(y)emyf ye Yf]XSp .

By Corollary 2.1 there exists a sufficiently high integer n such
that the section h s{

p

n) extends to a section s* of gn

P{^x) over X.
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Since sp(x) £ nx, and h(x) &mx1 we have

s*(x) = h(x) s{

p

n)(x) g n'x

where nx denotes the unique maximal submodule of [gK&x]*. Further-
more, if ye YΓϊX8p

s*(y) = h(y)-sp

n)(y)en'y .

Finally, n can be chosen high enough so that, if y £ XSp, then s*(y) e n(

y.
Hence xeXs,dX — Y, and the proof is finished.

The above proof immediately yields the following corollary.

COROLLARY 3.1. A necessary and sufficient condition for X to
be divisorial is that there exists a finite number of line classes of
X, say glf g2, , gm, such that the collection of open sets {Xs}, where
s ranges among the sections over X of gnj(^x), j = 1, 2, , m; n =
1, 2, , form a base for the topology of X.

Proof. The condition is obviously sufficient. If X is divisorial,
the proof of the above theorem shows that the line classes given by
the criterion in the theorem satisfy the condition stated.

REMARK. Corollary 3.1 shows that the notion of divisorial variety
is an extension of the notion of quasi-projective varieties in a natural
way. In fact every quasi-projective variety satisfies the condition
stated in the Corollary, with only one line class, namely the line class
p of hyperplane sections, (sections of p\έ?x) over X correspond to
hypersurface sections) which was introduced by Serre in [3], §54, page
246.

We believe that a slight modification of the condition stated in
Corollary 3.1, with only one line class, will yield a characterization
of quasi-projective varieties.

The above reasoning already shows that every quasi-projective
variety is divisorial. We shall give another proof of the same state-
ment in the next section.

Let X, Y be abstract algebraic varieties. There exists a natural
monomorphism

μ: H\X, <?%) > H\X X Y, &xxγ)

and, for every g e H\X, d?%) a monomorphism

μ9: Γ[X, g(<?x)] > Γ[X x F,

such that

(Xx Y)μ ,., = * . x Y.
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The proof of the above statements is entirely straightforward,
and we omit it here for brevity's sake. In what follows we will
identify H\Xf <?%) and Γ[X,g(έ?x)] with their images in H\Xx Y,
έ?xxγ) and Γ[X x Y, μ{g){^x^γ)\ respectively. Similarly for Y.

THEOREM 3.4. The product of divίsorial varieties is a divisorial
variety.

Proof. Let X, Y be divisorial varieties. We shall use the criterion
of Theorem 3.3. Accordingly, let <%/ = (Uif I), glf g2, , gm, sl9 s2, ,sm

and <W~ — (Vj, / ) , hlf h2, , hrf tlf t2f , tr be the affine open cover-
ings, line classes and sections satisfying the condition of Theorem 3.3
for X and Y respectively. Observe that:

(Xx Y)SpΘtq = (Xx Y)Spn(Xχ Y\

= (xSpχ η n ( i χ γtq) = x.px γtq

for all values of p from 1 to m and of q from 1 to r.
Hence the open affine covering

(ϋix VjfIxJ)

of X x Y, the line classes gphq and the sections sp 0 tq, p = 1, , m
and q = 1, # ,r, satisfy the condition of Theorem 3.3 applied to
X x Y. Hence X x Y is divisorial.

4 Existence of divisorial varieties. As we have already seen in
the previous section, all quasi-projective varieties are divisorial. We
shall show in the present section that the category of divisorial
varieties also includes all nonsingular varieties and lots more.

We call an abstract algebraic variety factorial if the local ring
of every one of its points is a unique factorization domain. As Zariski
has shown in [9], all nonsingular varieties are factorial.

In what follows, if h is a rational function on an irreducible
variety X, we shall denote by (h) the divisor of the function h on X.

THEOREM 4.1. Every irreducible factorial variety is divisorial.

Proof. Let X be an irreducible factorial variety, whose function
field we shall denote by E. For every irreducible subvariety W of
X, we denote by έ7w the local ring of W in E.

Let U be an open subset of Xy and let x e U. We proceed in
steps.

Case 1. W = X — U is an irreducible subvariety of X. Since
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x$ W, it follows that <£?\<£<?w. Let hence he E be such that he έ?x

and h 0 έ?w. Let (fe) = A — D2, where A and A denote respectively
the zeros and poles of the function h. Since h e #*,, we have
xίYar(D2), where Var(D) denotes the variety of the divisor D.
Furthermore yeW implies h £ &y, hence, since X is normal, y e Var (A).
Therefore TFcVar(A). Since X is factorial, D2 is locally linearly
equivalent to zero, i.e. there exists an open covering <gs — (Ui91) of
X and rational functions h{ e E, such that h{ is regular on U{ and
(hi) — D2 on Ui. Hence, since X is normal, (hjhj) = 0 on Z7{ Π U3

implies that the system hjhj defines a 1-cocycle of ^ with values in
έ7°Σ. Let g be the line class of X represented by the system ( ^ , hjhj),
and let u{: g(^x) \ Ui —> 0x \ Ui be the usual isomorphisms. If we
define s(y) = (u^oh^iy), for y e Uif we clearly obtain a section s of

°ver X such that

Hence a? e Xs = X - Var(A)c U.

Case 2. T7= X - U is arbitrary. Let Wi, W2, -*-,Wp be the
irreducible components of W. From Case 1 we know that there exist
line classes gl9 , gp of X and sections s{ e Γ[X, g^x)\ i — 1, ,2>,
such that C C G X S £ C X — Tfi. We easily verify that the section

8 = §! (g) S2 (g) (g) Sp G Γ[X, ^ ^ flrp(^x)]

is such that X8 = Π?=i-̂ .4» hence xeX8cU. This finishes the proof
of the theorem.

THEOREM 4.2. Every factorial variety is divisorial.

Proof. By definition, every unique factorization domain is an
integral domain. Hence every factorial variety is the direct sum of
its irreducible components, which, by Theorem 4.1, are all divisorial.
Then we apply Theorem 3.2.

THEOREM 4.3. Every quasi-projective variety is divisorial.

Proof. Protective space is nonsingular, hence divisorial. Then
we apply Theorem 3.1.

THEOREM 4.4. There exist divisorial varieties which are neither
quasi-protective nor nonsingular, of any dimension > 3.

Proof. There exist nonsingular, nonprojective varieties of any
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dimension > 2. (See [2]). We use any singular, quasi-projective variety,
and apply Theorem 3.4.

REMARK. The above theorems provide us with a large class of
divisorial varieties. It is not settled at the moment, though, whether
there are divisorial surfaces which are not protective. Such surfaces
must necessarily be singular, as it follows from the fact that every
nonsingular surface is quasi-projective (See [8]).

For an example of a normal, nonprojective surface see [2], page
492.

5 The group of line classes of a divisorial variety* Let X be an
abstract algebraic variety. As in [6], §4, we shall call regular any
line class g of X such that, for some s e Γ[X, g{^x)\ Xs Φ Φ. Let
x be a fixed point of X. A regular line class g is called free at x if,
for some s e Γ[X, g(^x)], xe Xs. The set of line classes which are
free at x is easily shown to form a subsemi-group of H\X, &%),
which we shall denote by Lx.

The following proposition generalizes the well known operation
of ''adding hypersurface sections." (See [6], Proposition 8.2.).

Let X be a divisorial algebraic variety, and let

<%S = (Uif I), glf , gmJ 819 •••,«„

be the open affine covering, line classes and sections satisfying the
criterion of Theorem 3.3.

PROPOSITION 5.1. Let X be a divisorial algebraic variety, / a
line class of I , a; a fixed point of X. Then, for a sufficiently high
integer n, and for some integer p between 1 and m, the line class
fgl is regular and free at x.

Proof. For a suitable open subset U of X, containing x, we can
find a section teΓ[U, f(έ?x)\ such that t(x)$nx. By Corollary 3.1
there exist an integer p> with 1 ^ p ^ m, and a sufficiently high
integer q such that the sheaf g%{0>

x) has a section s over X with
xeX8(zU.

Applying Proposition 2.2 to the line classes / and g%, and their
respective sections t and s, we see that, for a sufficiently high integer
q' the section t (g) s{qf) extends to a section s* of fgψi^x) over X.
We have:

8*(x) = t(x) <g) s{qn(x) $ n'x

where rix denotes the unique maximal submodule of [fglq'(^x)]x<
Hence x e X9*f which finishes the proof of the proposition.
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COROLLARY 5.1. Let X be divisorial, and xeX. The group
generated by Lx in H\X, έ?°) is H\X, 0>°x).

Proof. By the above proposition, for any / in H\X, έ?%), fgn

v G Lx*
Clearly gn

PeLx.

6 The polynomial theorem of Snapper. Let λ be an additive
sheaf function, i.e. a function defined over the category of sheaves,
with values in an arbitrary abelian group G, and such that the exact
sequence

0 > Ff -> F > F" > 0

implies \(F) - \{Ff) + \(F"). (See [5], §4, page 105, or [1], §3.).
The following theorem is an extension to divisorial varieties of the

polynomial theorem proved by Snapper in [6], Theorem 9.1, as well as.
the more general form given by Cartier in [1], §4.

THEOREM 6.1. Let λ be an additive sheaf function, and X a
divisorial algebraic variety. Then, for every sheaf F over X and
every finite set of line classes flf •••,/„ of X, the expression

is a polynomial in mu « , m Λ of degree at most d im(Supp F).

Proof. The theorem is an immediate consequence of the follow-
ing lemma, which generalizes the theorem given in §3 of [1]. The
formal algorithm used in §4 of the same paper, identically repeated,
proves our theorem. Therefore we limit ourselves to the proof of the
lemma.

LEMMA 6.1. Let X be a divisorial algebraic variety, λ an addi-
tive sheaf function, g any line class of X. If X(F) = 0 for every
sheaf F such that dim (Supp F) < r, then X{F) = X[g(F)] for every
sheaf F with dim (Supp F) ^ r.

Proof. We proceed in steps.

Case 1. We assume dim (Supp F) < r. Since F and g(F) are
locally isomorphic we have dim (Supp g{F)) < r, hence

χ(F) - 0 - X[g(F)] .

Case 2. We assume Supp FaS, where S is an irreducible closed
subset of X, and dim S ̂  r. Let x e S. Since X is divisorial, by
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Corollary 5.1 we can write g = fjf29 where fieLx, i = 1, 2. Let
therefore s^ Γ[X,fi(έ?x)] be such that x e I S i , i = l,2. We now
define

as follows:

ω(α) = α 0 s<(y) aeFy

Since α? e Xs. we see that s^x) generates the stalk of fi{έ?Σ) over x,
hence ω{ induces an isomorphism on Fx. Therefore Supp (kerα>;) and
Supp (coker ω^ are proper closed subsets of S, hence

λ (ker (ύi) = λ (coker o)i) = 0 .

Since λ is additive, the exact sequence

0 > ker ω{ > F >MF) > coker ω{ > 0

shows that X(F) = λ[/,(F)]. Let F' = g(F). Then F and Ff are
locally isomorphic, hence Supp F = Supp F\ Hence, by the above
proof applied to F', we obtain:

χ[g(F)] = λ(F') = \[fΊ(F')] - λ[/2g(F)l = λ[Λ(F)] = X(F) .

Case 3. We only assume dim (Supp F) g r. Let Si be the irre-
ducible components of Supp F, and let T be the union of the closed
sets Si ΓΊ Sj, for i Φ j. We have dim S< ̂  r, and dim T < r. From
[4], page 11, we know that there exist sheaves Fif G, such that
S u p p l e S ^ and SuppGcΓ, and that there exists an exact sequence

0 >G > F > Σ Ft > 0,

where the sum at right is direct. Applying Case 2 to each pair
(Fi9 S^ we get λ(i^) = X[g(Fi)], and from the exact sequence

0 > g(G) > g(F) > g(Σ Ft) > 0

we get X[g{F)] = λ[ff(Σ Fi)l Hence:

This finishes the proof of the lemma.

Final Remark. We wish to point out the following question,
which stems from the above study of divisorial varieties:

If a divisorial variety X has a line class g such that, for any
finite set of points Pl9 , Pn of X, there exists an open affine subset



388 MARIO BORELLI

Xs, seΓ[X, g(^χ)], containing them, is then X quasi projective?
The above question is more restrictive, in a natural way, than

the original one asked by Chevalley, (See [2], footnote to Introduction),
and we believe the answer to be in the affirmative.
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