ON THE COMPACTNESS OF INTEGRAL CLASSES

WiLLiAM P. ZIEMER

1. Introduction. In a previous paper, [8], integral currents were
used to develop a concept for non-oriented domains of integration in
Euclidean 7n-space. This concept has been designed to be useful in
the calculus of variations and this, therefore, demands that the do-
mains of integration satisfy certain ‘‘smoothness’’ and ‘‘compactness’’
conditions. It was shown in [8] that these non-oriented domains, which
are called integral classes, do possess the desired smoothness property
and it was also shown that the integral classes possess the following
compactness property: every N-bounded sequence of k-dimensional
integral classes has a subsequence which converges to some flat class.
In the case that £k =0,1,n — 1, or n, it was shown that the limiting
flat class is, in fact, a rectifiable class, and therefore, a desirable
compactness property is obtained.

The main purpose of this paper is to extend this compactness
property to integral classes of arbitrary dimension under the assump-
tion that certain ‘‘irregular’’ sets have zero measure (8.1). This is
accomplished with the help of a theorem concerned with the behavior
of the density of a measure associated with a minimizing sequence
(2.8), and by relying heavily on the tangential properties of rectifiable
sets. In the case of the Plateau Problem, two theorems concerning
densities are proved (2.3, 2.4) which are analogous to results obtained
in [6] and [3; 9.13].

Most of this work depends upon the paper [8], and therefore,
the terminology and notation of [8] is readopted here without change.
It will be assumed throughout that 1<k < n — 1.

2. Densities. In this section, the Plateau Problem is formulated
in terms of integral classes and two theorems are proved which are
analogous to results obtained in [3; 9.18] and [6]. Theorem 2.8 asserts
that a portion of the irregular set, A;, which appears in (3) below,
has zero measure. A similar result, which states that D}(x, RB", x) <o
t-almost everywhere and therefore that pt(4;) = 0, is still lacking.

2.1. DgrINITION. If £¢ is a measure over R*, AC R", a(k) the
volume of the unit k-ball, and x e R", then

Dy, 4, @) = limak)™"r*mAN{y: [y — 2| <7}
is the k-dimensional /¢ density of A at «; the upper and lower densities
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Dlj(ﬂy A’ x) and D*k(ﬂ’ A, w)
are defined as the corresponding lim sup and lim inf.

2.2. REMARK. Recall that if {r;} is a sequence of integral classes
with the property that sup {M(z)): 1 =1,2, ---} < o, then the se-
quence of total variation measures, {||z;]|}, possess a subsequence that
converges weakly to some non-negative Radon measure f, [8; (3.2),
(3.3)], [2; Chapter III}.

2.3. THEOREM. Suppose o€ I,_,(R"2) is a cycle and let

2(0) = inf {M(z): e [(R", 2), 0t = d}.
Let {z;} be a sequence of integral classes such that
or, =0, lim M(z;) = 2(o) ,
and {||7;||} converges weakly to a non-negative Radon measure (L.
Then, for all x ¢ spt o,
(¢, R, @) < Qo) (ak)rs)™

where r, = distance (x, spt 7).

Proof. Let ¢; be a sequence of real numbers tending to zero where
o) = M(z;)) < 2(0) + &; .
Let B, be the set of all 0 < r < r, with the property

| z: [ILS(x, 7)] — £[S (%, 1],
spt [0(z; N S(x, r)] S {y: distance (y, x) = 7},
7, N S(x, r) is integral for 1 =1,2,8, ---,

and notice that L,[(0, ) — B] =0. For reB,and ©=1,2,3, :--,
o, =7;nN 8%, r)+ z;N[R" — Sz, )] .
Letting
¢ = w0[t; N S, r)] + 7. N [R™ — Sz, )],
[8; 3.14] implies
o, =o0r,=0,

M[xd(z; N S(x, r))] < r/kM[a(z; N S(x, 7))] .

Therefore,
M) < M@&) + &,
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which implies

(1) Mz, N S(x, r)] £ M[28(z; N S(x, r))] + &
= rlkM[o(z;n S, r)] + &,
for reByand ©=1,2,8, ---. For 0<r<7r,and 1=1,2.8, ---. let

Pir) = M[z; N S, r)] = ||z || [S(=, 7)],
Yilr) = M[o(z; 0 S(@, )] ,

and note that Fi(r) =Sr«,hi(t)dt < @ir), by [8; 4.1]. Again by [8; 4.1],
0

Fyr + h) — Fy(r) = p;(r + k) — @,(r) and therefore F!(r) < @!(r) for
L-almost all 0 < » < r,. This implies

1) = Pilr)
which, along with (1), implies
Pir) = rE7'Pir) + &
for ©+=1,2,8, .+, and for re€ B,C B, where LB, — B, = 0.

After passing to a subsequence, we may assume by Helly’s theo-
rem that @(r) = lim,_... ;(r) exists whenever 0 < r < r,, and therefore
by [3; 9.7], we have

lim inf @i(r) < @'(r)

for r € B,C B, where L(B, — B,) = 0. Since
pi(r) < rk7'@ir) + ¢, for re B,,
it follows that
P(r) = lim p,(r) < lim inf rk~"@{(r) < ri~'@/(r)
for re B,. Therefore, for L-almost all 0 < r < 7,
(2) P(M)P(r) = kfr .

Letting 0(r) = p[S(x, )], we have that 6(r) = @(r) for L;,-almost all
0 < r <7, and thus, from (2), it follows that

0'(r)]0(r) =< k/r for L;-almost all 0 < r <7y .

Since logof is non-decreasing, one finds by integrating this inequality
that 6(r)r—* is non-decreasing on {r: 0 < r < r,} and therefore, es-
tablishes the theorem.

2.4. THEOREM. With the same hypotheses and notations as in
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2.8, for p-almost xe R" — spto,
D, (¢, B, ©) Z (k- a(k)'*- 251 )
where c, is as in [8; 4.6] with k replaced by k — 1.
Proof. Choose x3spt ¢ so that o(r) #+ 0 provided » # 0. For

each re B, and for ¢=1,2,3, ---, from [8; 4.7] one obtains o;¢ I,
({y: distance (x, y) < 7}, 2) such that

o0; = o[z N S(x, 7],
(1) [M(o)]F* = 2 exyrilr)

Henece, @r) < M(o;) + &; which implies
(2) [P < [M(03) + e < [M(o)]* + e,

where ¢} — 0 for appropriate subsequences. From the fact that
¥i(r) < Pi(r) and from (1) and (2), we have

[Pim)1* < 2%0,l(r) + &f
and therefore, from [3; (9.7)]

[p(r)]*~1* = lim [py(r)]*"* < 2*7¢, lim inf @(r) < 2*~'e,p'(r) .

That is, for L,-almost all 0 < r < 7,

[¢(,r)]k—-1/k é 2k—lcz¢1(,r) ,
[P](r) = (kg*e) .

Now, integration of this inequality implies
P(r)[r* = (k25 e,) ™

and therefore establishes the theorem since @(r) = ¢[S(x, r)] = 6(r)
for L, almost all 0 < » < 7,, and since @ is left-continuous.

2.5. LEMMA. If ¢t is a mon-negative Radon measure over R",
then for p-almost all x<c R",

WS,
lmsop = S@, ) 0

Proof. For p-almost all x€ R*, we have

lim g[S(x, r)]-r™ = <

where m > n. For all such & the lemma must hold for, if not, there
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would exist an 7, > 0 such that for » < r,,

pS@, r[2)] o o-m
MSw,nl

This would imply

pIS@, r2M)] _ AS@, r27)] 27 pS(, )] _ MS@, 1] .
(r2—ym pmommn o 2-mnpm rm

hence, it would follow that

lim inf g[Sz, )] 7™ < oo,
r—0
a contradiction.

2.6. A CoVERING THEOREM. From [1] and [5], we have the follow-
ing theorem:

If ECR" F is a family of closed spherical balls in R™ such
that each point of E is the center of arbitrarily small members of
F, and ¢ is a mon-negative Radon measure over R, then F has a
disjointed subfamily covering (-almost all of E.

2.7. DEFINITION. If 7€ W, (R", 2), then let

L(c) = inf {nm inf M(z,): ;e I(R", 2), 6z, = 0, W(z; — 7) — o} )

2.8. THEOREM. Suppose t;€ I(R",2) are cycles for 1=1,2,8,--,
{llz: 1} converges weakly to a mon-negative Radon measure (t over R™,
lim;_.. W(z; — 7) =0 and lim,.., M(c;) = L(zr) where t €¢ W, (R"). Then,
for p-almost all x € R™,

D (¢, B, %) >0 .

Proof. The proof is by contradiction: by 2.5 we may assume
the existence of a set £ and a real number a > 0 such that for x ¢ E,

KME) >0,
‘Dk*(/l! R”’ x) = 0 ’

3 H[S(wr 7‘/2)]
s S

Therefore, for a given ¢ > 0 and for x € E, there exists a set B, < (0, 1)
such that B, contains at least a denumerable number of elements and
such that, if re B,,
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1Sz, r)] < ea(k)r*,

LIS, r/2)] > ap[S(x, )],

!l{y: distance (z,y) =17}] =0,

!l{y: distance (z,y) = 7r/2}]] =0,

7; N S(x, r) is integral for 1 =1,2,8, ---,
inf{r: re B,} = 0.

(1)

Hence, by 2.6, there exist points z,, @,, « - -, ,, and numbers r, 7y, + -+
7, such that S(x;, ;) N S(x;, 7;) =0 for ¢ + j, r;€ B,, and

/‘[E - QX S(;, 7‘:‘)] <e.

From (1), we have the existence of an integer ¢, > 0 such that for
t>%and 17 m,

Iz ILS @3, 7312)] > @] 7 [I[S(@;, 73]

(2) 12 S5, )] < eaxlyr’s .

For ¢t =4 and 1 < j < m, [8, 4.1] provides a ball S;; C S(x;,7;) with
radius between 7;/2 and 7r; and center at x; such that

7; N S;; is integral ,

(3) Moz, 01 Ss)] < 2077 < 1S @s, 9] -

Now by use of [8; 4.6] one can find a constant ¢ and integral classes
0:.;, 0;; such that,

TN S — 0;; =005,
(4) M(0;;) = eM[o(z; N S; )]*
M(o;,;) < c[M(z; N S;;) + M(p; )" .

For i= 1% and 1 =5 < m, (2) and (3) imply

M[o(e; 0 S )1 < @r7) e[| 2 [S (e, 7)1+
| = @7 2 S @, L1 7 SGrs, 7)o
< it 2l (e, 7))

hence, from (4),
(5) M(p;,;) = /¥ 28 (k) e e || 74 ||[S(s o 75)]

Similarly,
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(6) M@..) < elM(z: 0 8,5) + M(pi )]

17 Sz, )] + €25 (e | 7, |[S(ws, 7]

(L + 2Ry |2 I[S(@s, 7)) |74 S, 7
|7 ll[S(@s, )]+ (L + e 2H =t Ryt o) 2, [ SCa, )]
Sheo(L + €20 ) e} ey 7 | [S(@s, )]

A A A BIA

Let a = 2¢ 1 q(k) "¢, B(e) = e(1 + &/ 1. 2Kk q(k) k=2 g)rtilk. () U,
Notice that B(e) — c**+*V*+.a(k)'* as ¢ — 0. If we let

G=mt 30 =m0 8,

(4) and (6) imply that, for 7 = 4,
(7) W — 7)) = ¢*Be)M(z) .
Since

G=m— 37080 + 300,
it follows from (5) that, for ¢ = 4,
(8) ME) = M<z',~ - jm%ri n Si,j> + e'*aM(z;) .
Now, with U = U~.S(«;, r;), we have from (1)
(9)  M(zi— B Su) = 7 @) = Fllwli(S:)

< [l IR = 35 1w S @i, ]

< [l (B — @ 33 117 IS (s, )]
< lle:|I(B") — all 7. (V) for i 4,
|12 (0) = (U) | < e ;
therefore, from (8) and (9),

There exists an integer ¢, = 1, such that for ¢ = <,

ME) + oll7||(U) = M(z) + e "a-M(z) ,
ME) + a(U) = M(z)) + &*a-M(z)) + ae.

But #(U) > ((E) — ¢, and therefore we finally obtain, for 7 = %,
ME) + a(E) = M(z;) + e/* " ea-M(c;) + 2a¢ .
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Hence, from this inequality and (7), it is now clear that we can find
a sequence of integral cycles +; such that

lim Wy, —7) =0,
lim sup M(+) + a(E) < lim M(z)) = L(z),

which is a contradiction since ¢#(E) > 0 and a > 0.

3. The main theorem. In this section, the main theorem, which
is concerned with the compactness of integral classes, is established.
In the proof, an essential role is played by a decomposition theorem
due to Federer [4], which will now be discussed.

Recall from [8; 5.18], that if A is a compact subset of R~
;€ I(4,2) fort=1,2,---, and sup {M(z;) + M(3z;): 1=1,2,---}< oo,
then there exists a subsequence, {r;}, and a e Wi(R", 2) such that
W(z;, —t)—0. Of course, it would be desirable to show that z is,
in fact, a rectifiable class. To this end, assume without loss of gener-
ality that 9z = 0 and let {r;} be a sequence of integral cycles for
which

lim W(z; —7) = 0 and lim M(z;) = L(z) .
Hence, by passing to a suitable subsequence if necessary, we have
the existence of a non-negative Radon measure f such that {||z;|[}
converges weakly to 2. Then, from [4; § 9] we know that R™ can be
decomposed into four f-measurable sets 4,, A,, 4;, A, such that:

(1) R"=AUAUAUA,

(2) AlﬂAz=A1ﬂA3=AgﬂA3=0,

(38) A, is a countably k-rectifiable set and at each point x€ A4,
there exists a p-approximate tangent k-plane to A4, at «; for this,
(2.8) is needed,

(4) Either t2(4,) = 0 or A, contains no k-rectifiable set B for
which ¢#(B) > 0,

(5) L,[p(A)] =0 for almost all orthogonal projections of R™
onto RF,

(6) A, = {z: D¢, R*,x) =0 or D}(¢, R", x) = o}. Observe
that from 2.8, p[{x: D.(¢, R*, ) = 0}] =0,

(7) m(A)=0.

Now let A = A, N {x: D,(H" A,, ) =1} N B, where B is the set de-
seribed in the proof of [8; 5.14]. We now are in a position to state
the main theorem.

8.1. THEOREM. Suppose that H*(A,) < o and that (t(A,) = ((A,) =
0. Then, there exists a (t-measurable set E C R™ such that (A — E) =
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0 and
lim Wz, —ANE)=0.

Since AN E is a Hausdorff k-rectifiable set, by [8; § 3], we can iden-
tify AN E with a rectifiable class. Hence, the theorem asserts the
existence of a rectifiable class to which {z;} converges.

For the proof of the theorem, we will need the following lemma.

3.2. LEMMA. Suppose that A is a countably k-rectifiable set
with H*(A) < . Then, for any real number 0< a <1, and for
any real number b such that b >1 and b* < a™,

. H*S(z, 7/b) N A]
l}_{r()l H¥S(x, r) N A] >

for H* almost all x e A.

Proof. Since D,(H* A, x) =1 for H* almost all x€ A, we have
the following at all such «:

lim -+ H1S@, 7/b) 0 4] r*

=0 (r/b)* HS@,nnAl e

Proof of the theorem. It is sufficient to show that the conclusion
holds for a subsequence of the given sequence. Passage to subse-
quences, which often occurs in what follows, will be indicated by
words but not notationally. The proof will be divided into four main
parts.

Choose 0 < 0 < 1 and let v(B) = HY(A N B) where B is any H*
measurable set. In view of the assumptions and with the aid of
[4; (3.8)] we know that ¢ is absolutely continuous with respect to
v. Let P(x) be the ¢ approximate tangent k-plane to 4 at z and
let K(x, r) be the open m-cube with center at x, side length 2r and
one of its k-faces parallel to P(x). In this proof, densities will be
computed by using these cubes and 2.6 will be used with cubes instead
of spheres; this does not change anything. Using the methods of
[8; 5.14], for ¢ > 0 we have the existence of a positive number 7,(x, €)
such that for » < r(z, ¢),

(1) WP(x) N K(w, 7)) — AN K(@, )] < €'[8-Bkyr*

where B(k) is volume of a k-cube with side length 2. Also, if D(x) =
ke, R*, ), then for each 2 € A there exists a number 7z, ¢) = r.(z, €)
such that for r < r/(z, ¢),
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MK (x, )] = 1 — oBk)r*,
LK (2, 7)] < c(@)B(k)(r[b)*
UK (x, 1) — S(P(%), ¢/2-r]< €27 B(k)r* ,
K (@, r[b)] > av[K(z, )],

(2)

where c¢(x) = b*D(x), @ >1 — ¢, and where b is the number provided
by 3.2. We will consider only those » for which u[K*(x, r)] =
U K*(xz,r[b)] = 0, where K*(x, r) denotes the boundary of the cube.
Since this omits at most a denumerable number of cubes, we have a
Vitali covering of A and therefore, by 2.6, there exists a finite num-
ber of disjoint cubes K(x, r,), K(x, 1), +++, K(%,, r,) such that
MA — UL K@, )] <e and ¢4 — UL, K@, r)] <e. Let ¢ =
max [¢(#,), + -+, ¢(®,)], & =c/(b —1), and assume ¢ to be chosen so as
to satisfy the following inequalities, where ¢, and ¢, are the constants
in [8; 4.6]:

5 < [0122—210‘8(’0)]—1 , [5024k—121_k3(k)]klk-1 + 62 < 32/8 ,
(3) ec+ eLd + 3¢* < 6*/4 where L is described below,
e<1—29/2 e/l —e<d, ev(A) +e—e*<d.

Part 1. Consider x, and let © = ¢, » = r,, and P = P(x,). Since
MEK*(, r)] =0 and || 7;|] — ¢, there exists an integer ¢,(r) such that
for @ = 7\(r),

Mlz; N K(z, )] < cBE)(r[b)*,
Mz, 0 (K&, 7) — S(P, ¢/2-n))] < &2-46(k)r* .

For each ¢ = 7(r), [8; 4.1] implies that
[ Mo 0 K(w, 9ds < Log(k)r/b)
»/b

where L is the Lipschitz constant of the function that defines K(x, s).
Therefore, by appealing to Fatou’s lemma, there exists a number ¢
between 7/b and r and a subsequence {z; J} (which will still be denoted
by {z;}) such that ’

HE*(x, 9] =0
and
MJa(z; N K(x, t))] < LeB(k)'[b — 1(r[b)s?
< LdB(k)t**, for all ©.

Hence, letting 0; = 7; N K(», t) from (1) and (2), we have the following
for all elements of a subsequence:
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M(o;) = cB(k)t*

M(90;) = LdB(k)t*,

Mlo; N (K(x,t) — S(P, ¢/2-1))] < e27*B(k)t* ,
K (2, 1)] > av[K(z, )],

WI[PN K(x,t) — AN K(x, t)] < €8-B(k)t*,
spt o, C closure K(z, t), spt oo, = K*(x, t) .

(4)

Let U, = {x: distance (x, P) > s}. For each o; of the above subse-
quence, we have from [8; 4.1] that

S"I M3, U, — (60,) 0 U.Jds < e2-*8(k)¢* ,

so that again by appealing to Fatou’s lemma, there exists a number
s, such that et/2 < s, < et and a subsequence {o;} such that for all
members of this subsequence,

(5) M[o(o; N U,) — (00,) N U,,| = 2Bkt .
Let K= K(x,t), U= U,, N = closure[K N (R" — U)] and note that
(6) spt p4[(@0;) U N]c PN K*

where p: R®— P is the orthogonal projection. If we let

(7) 6,=08(0;NN)—(@0c)NN=08(c;NU)—(95;)N U and y; = p;(d;: N N),
then in the notation of [8;4.6] with A = closure (PN K) and B =
PN K*, we have from (3), (5), and (6),

M@y N K) = e.M[py(6:) N K] = e.M[py(0))]
= 627" eB(k)t* T = (¢/2)F .

Hence, by [8; 4.6], there exists A, € I,(4, 2) such that
spt 0y, — \,)C B,
M) < ec a2 % B (k) .
If we let +; = x; — \;, then we have
spt ¥, C closure PN K,

(8) sptoy;, c PN K*,
M(’I)l,"b — Xz) é sk/k—1[024k—121—kﬁ(k)]k/k—ltlc .

Hence, we will consider the two following possibilities: +; = 0 for all
but finitely many 4 or «; = PN K for all ¢ of a subsequence.

Case 1. Suppose ¢; = PN K for some subsequence. Then from
(4), (8), and (3),
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M[PN K — py0,))] £ M[PN K — pa; N N)| + M[pgo; N U)]
= M@ — x:) + Mpy(o; 0N U)]
§ eklk—l[cz4k-—121—k18(k)]k/k—ltk + 62/2k.6(k)tk
< 6%8-B(k)t* .

Therefore, (4) implies W{p(o,) — AN K] < 8*/4-B(k)t*.
Also from (4), (3)

Wlpdo)) — 0] = Wip (o, N N) —o; N N] + Wip(o; N U) — 0,0 U]
et N(o; N N) + 2M (o, N U)
et[cB(k)t* + LdB(k)E] + 2 *B(k)t*

3|4~ B(k)tE.

fIA A A DA

Therefore, from (2), (8), and (4),
Wlt;Nn K — AN K] < 8/2-B(k)t* < 6K (x, t)

for all members of a suitable subsequence. Now repeat the entire
above procedure to the cube K(x,, r,), but using the subsequence that
was finally obtained at the end of case 1.

Case 2. In the event that 4, = 0 for all but finitely many <,
repeat the entire above procedure to the cube K(x,, r,) but using the
subsequence that corresponds to +; = 0.

Part 2. By repeating the procedure in part 1 m times, we obtain
cubes K(xly tl); STy K(xj’ tj): K(xj+1’ tj+1); Tty K(xm, tm) and a subse-
quence, {r;} such that, for all members of this subsequence,

éW[T,- N K(x,t)— AN K(x, t,)] < 6*2-B(k) gtf <ovA),

and such that case 2 of step 1 applies to the cubes K(%;i, tiv), =,
K(®.,,t,). Now, using the same notation as above except for the
addition of superscripts to denote that cube which is under consider-
ation, we have that v?= 0 forall¢and forg=75+1, 5+ 2, -+, m.
This implies that M[p{(c? N N9)] < 6*/8-B(k)tt, where p": R" — P(x,)
is the orthogonal projection. Define A; = Ui, K(x,, t;) and B; =
NrinK(x, t) and let ! = hiI x 8(c? N N9], ¢ = hi[I x (61N NY)]
where h! is the linear homotopy from the identity to the projection
map % If we let

o= 3 o N[R" — K@, t)] + 3 [0f + pio? 0 NY) + o0 U],

g=j+1 g=J+1

then 378 = 0 and from (7), (5), (8), (4), (8), and (2),
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M) £ M) — M@0 B + el 5 28000 + Ldwts~

g=7j+1

+od 3 B+ & 3 AL

< M(z) — M0 B) + 52 3 B0t

< M(z;) — M(z; N Bs) + 8*/2(1 — €)-7(Bs)
= M(z;) — M(z; N Bs) + 07v(A) .

Since || 7; || — £, there exists a subsequence of the one above such that,
for all members of this subsequence,

M(z}) = M(z;) — M(Bs) + 207(A) .
Also,
T —Ti= ﬁ ol!

g=j+1
and therefore, from (38),

m

W - S ME)<e 3 oBlyts

g=Jj+1 =i+

< ec/]l — e-¥(B;) < 0v(A) .
Observe, with the help of (4), that

4s U B) 2 1| U K@, 1) | 2 alr(a) - ¢
=1 —¢)[v(A) —el =) —0d.

Thus, in summary of what has been done so far, we have, for every
0 > 0, the existence of sets A; and B; which are the finite union of
disjoint open cubes and the existence of a subsequence {z;} and a
sequence {7}} such that

YA - (AU By <0,

W, N As — AN A4 < v(4),

Wz, — ) < 0v(4),

M) = M(z) — (By) + 204(4)  for all i .

Now by letting 6 — 0 and by using Cantor’s diagonal process, we can
infer that lim;_,sup ¢(B;) = 0 since M(z;) — L(r). This implies, along
with the fact that /¢ is absolutely continuous with respect to v, that
for every 6 > 0, there exists a set A;, which is the union of a finite
number of disjoint open cubes, and a subsequence {z;} such that
MR — As) <0 and W(r;NAs — AN A;) <6 for all 4.
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Part 3. Choose 0 <d <1 and let {J;} be a sequence of real
numbers tending to zero with 32,0, < 6/3. Part 2 supplies a set
A; . Now repeat the procedures in parts 1 and 2 to the set A — A4,
with the restriction that only those cubes that do not intersect the
closure of A, should be considered. Since the (¢ measure of the
frontier of A; is zero, those cubes with centers on the frontier of
A;, need not be considered. Also, the subsequence that is obtained
for the set A; is the one that should be used in the procedure for
A — A,,. Hence, we will obtain a subsequence of the sequence obtained
for A, and a set A, such that A;, is the finite union of open
disjoint cubes with A, C R* — A4;, p¢[R" — (45, U 4;)] < 6,, and
W, N A4, — AN A;s) <0, for all 4. Continue this process and let
H; = U.4,,. Then, (A — H;) =0 and by employing Cantor’s di-
agonal process, we obtain the following: if S; = Mi..4s;, then there
exists an integer j, such that for j = j,,

NANH;—ANS;) <93
and
MR — S;)=mANH, —ANS;) <d/3.

Hence, M(ANH, —ANS,) < d/38. Since ||z;||— ¢ and since S;
is open, there exists one integer 14(j,) such that for 7 = 7(J,),
M(z; — ;N S;) < 6/8. Therefore, for i = ,(j,),

W, —ANH) < W, — .0 8;) + WENS;, —ANS;)
+W(ANS;, — AN Hy)

<53+ 36 +o/3<0.
i=1

We now have, for every 6 > 0, an open set H; and a subsequence
{z;} such that ¢(A — H;) =0 and W(z; — AN H;) < ¢ for all s.

Part 4. Choose 0 > 0 and again let {0,} be a sequence of real
numbers tending to zero. After obtaining the set H;, repeat parts
1, 2, and 3 to the set AN H, and to the sequence that was obtained
for AN H,,. Since H,, is open, we can require that H;, C H,;. Con-
tinue this process and let E = M, H;, to obtain (A — E)=0. By
employing Cantor’s diagonal process, we obtain a sequence {r;} such
that W(z; — AN H;)) < 9; for large 7. Choose j, such that d; < d/2
and 7(AN Hsfo — AN E)<d/2. Thus

W, — ANE) < W(r.— AN Hy,) + WANH, —ANE)
§3/2+"/(ADH310—ADE)<5 for large 7,

and therefore the conclusion of the theorem follows.
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