
ON THE COMPACTNESS OF INTEGRAL CLASSES

WILLIAM P ZIBMER

l Introduction* In a previous paper, [8], integral currents were
used to develop a concept for non-oriented domains of integration in
Euclidean %-space. This concept has been designed to be useful in
the calculus of variations and this, therefore, demands that the do-
mains of integration satisfy certain "smoothness" and "compactness"
conditions. It was shown in [8] that these non-oriented domains, which
are called integral classes, do possess the desired smoothness property
and it was also shown that the integral classes possess the following
compactness property: every iNΓ-bounded sequence of ^-dimensional
integral classes has a subsequence which converges to some flat class.
In the case that k = 0,1, n — 1, or n, it was shown that the limiting
flat class is, in fact, a rectifiable class, and therefore, a desirable
compactness property is obtained.

The main purpose of this paper is to extend this compactness
property to integral classes of arbitrary dimension under the assump-
tion that certain "irregular" sets have zero measure (3.1). This is
accomplished with the help of a theorem concerned with the behavior
of the density of a measure associated with a minimizing sequence
(2.8), and by relying heavily on the tangential properties of rectifiable
sets. In the case of the Plateau Problem, two theorems concerning
densities are proved (2.3, 2.4) which are analogous to results obtained
in [6] and [3; 9.13].

Most of this work depends upon the paper [8], and therefore,
the terminology and notation of [8] is readopted here without change.
It will be assumed throughout that 1 < k < n — 1.

2. Densities* In this section, the Plateau Problem is formulated
in terms of integral classes and two theorems are proved which are
analogous to results obtained in [3; 9.13] and [6]. Theorem 2.8 asserts
that a portion of the irregular set, A8, which appears in (3) below,
has zero measure. A similar result, which states that D*(μ, Rn

f x) < oo
μ-almost everywhere and therefore that μ(As) = 0, is still lacking.

2.1. DEFINITION. If μ is a measure over Rn, A c Rn, a(k) the
volume of the unit A -ball, and x e Rn, then

Dk(μ, A, x) = lim a(k)-1r-hμ{A Π {y: | y - x \ < r})
r-*0

is the Λ-dimensional μ density of A at x; the upper and lower densities
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Dί(μ9 A, x) and D+k(μ, A, x)

are defined as the corresponding lim sup and lim inf.

2.2. REMARK. Recall that if {τj is a sequence of integral classes
with the property that sup {Affo): i = 1, 2, •} < oo, then the se-
quence of total variation measures, {|| τi ||}, possess a subsequence that
converges weakly to some non-negative Radon measure μ, [8; (3.2),
(3.3)], [2; Chapter III].

2.3. THEOREM. Suppose σ e Ik..1(Rn,2) is a cycle and let

Ω(σ) = inf {M(τ): τ e Ik(Rn, 2), dτ = σ) .

Let {rj be a sequence of integral classes such that

dZi — σ, lim Af (τ<) = Ω(σ) ,
i—*oo

and {\\Ti\\} converges weakly to a non-negative Radon measure μ.
Then, for all x 0 spt σ,

Dί(μ9 R\ x) £

where rQ — distance (x, spt σ).

Proof. Let et be a sequence of real numbers tending to zero where

Ω(σ) ̂  Af(rj < Ω(σ) + e, .

Let Bo be the set of all 0 < r < r0 with the property

Wτi\\lS(x,r)]-+μlS(x,r)],

spt [d(Ti Π S(x, r)] S {y: distance (y, x) = r } ,

r< Π iS(ίB, r) is integral for i — 1, 2, 3, ,

and notice that 1/̂ (0, r0) - Bo] = 0. For r e £ 0 and i = 1, 2, 3, ,

τ4 = τ4 Π Sf(α?, r) + τ4 Π [Rn - S(αj, r)] .

Letting

ζ. = ajβ[Γ< n S(x, r)] + τ, n [i2w - iS(α, r)] ,

[8; 3.14] implies

ΛΓ[α«(τ4 Π S(α;, r))] ^ rlkMldfa n S(α, r))] .

Therefore,
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which implies

(1) Jtf[r< Π S(x, r)] g Mlxθfa n S(x, r))] + ε,

£ r/fcΛΓ[8(r< n S(x, r))] + ε, ,

for r 6 £ 0 and i = 1, 2, 3, . For 0 < r < r0 and i = 1, 2. 3, • . let

9>4(r) = Λf [r, Π S(», r)] = || r41| [S(», r)] ,

ΨM = ilf [e(r4 Π S(x, r))] ,

and note that Ft(τ) =JV<(*)d* ̂  ^ ( r ) ^ b y t 8 ; 4.1]. Again by [8; 4.1],
Fi(r + h) — Fi(r) ̂  φ^r + h) — φ^r) and therefore F((r) ̂  ^/(r) for
Li-almost all 0 < r < r0. This implies

^•(r) S φ\(r)

which, along with (1), implies

<Pi(r) S rk-ψίir) + 6,

for i = 1, 2, 3, , and for reB1dBQ where L̂ JSo — #i) = 0.

After passing to a subsequence, we may assume by Helly's theo-
rem that φ(r) = limî oo φ^r) exists whenever 0 < r < r0, and therefore
by [3; 9.7], we have

lim inf φ\{r) ̂  φ'(r)
i

for r e JBaCBi where L ^ - β2) = 0. Since

<Pi(r) ^ rh~λφ\{τ) + ε< for r e ΰ 2 ,

it follows that

φ(r) = lim ̂ κ(r) ^ lim inf rfc"V<(̂ ) = τk~

i—*oo i—*oo

for r G J?2. Therefore, for /^-almost all 0 < r < r0,

(2) φ\r)lφ(r) ^ klr .
Letting θ(r) = /^[S(OJ, r)], we have that ^(r) = ̂ (r) for Li-almost all
0 < r < r0 and thus, from (2), it follows that

θ\τ)jθ{r) ^ fc/r for LΓalmost all 0 < r <r0.

Since logo(9 is non-decreasing, one finds by integrating this inequality
that θ(r)r~k is non-decreasing on {r: 0 < r < r0} and therefore, es-
tablishes the theorem.

2.4. THEOREM. With the same hypotheses and notations as in
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2.3, for μ-almost xeRn — sptσ,

D*k(μ, Rn, x)^{k* a{kylk'2k-^c2y
k

where c2 is as in [8; 4.6] with k replaced by k — 1.

Proof. Choose x$spt a so that φ(r) Φ 0 provided r Φ 0. For
each r e B2, and for i = 1, 2, 3, , from [8; 4.7] one obtains σi e Ik

{{y: distance (x, y) ^ r}, 2) such that

dσ< - dlτ, n S(x, r)] ,

(1) [ I W ] M ^ 2 f c - V ί W .

Hence, <pi(r) < -̂ ((Tί) + ε* which implies

(2) [^(rXT1/fc < [M(σ,) + e,]*-1'* < [Jlf (σ,)]*-1'* + ε? ,

where εf —> 0 for appropriate subsequences. From the fact that
ψi(r) g φ'i(r) and from (1) and (2), we have

) + εf

and therefore, from [3; (9.7)]

[φ(r)γ-m = l i m [φ.{r)f-llk ^ 2*-% Km inf φj(r) g

That is, for L^almost all 0 < r < r0,

[φllkY(r) ^ (&2&-1c2)-
1 .

Now, integration of this inequality implies

φ(r)lrk ^ (k2k~1c2y
k

and therefore establishes the theorem since φ(r) = /jί[S(α;, r)] = θ{r)
for Li almost all 0 < r < r0, and since θ is left-continuous.

2.5. LEMMA. If μ is a non-negative Radon measure over Rn,
then for μ-almost all x e Rn,

^ ^ f >0.
μ[S(x, r)]

Proof. For /^-almost all xeRn, we have

\ιmμ{S{x> r)] r~m = co

where m > n. For all such x the lemma must hold for, if not, there
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would exist an r0 > 0 such that for r S rΰt

μ[S(x,r!2)]
μ[S(x,r)]

This would imply

μ[S(x,r2-»)] _ μ[S(x,r2r )] ^ 2~»>ψ[S(x,r)] _ μ[S(x,r)] .

hence, it would follow that

lim inf μ[S(x, r)] r~m < co ,
r—0

a contradiction.

2.6. A COVERING THEOREM. From [l] and [5], we have the follow-
ing theorem:

// EczRn, F is a family of closed spherical balls in Rn such
that each point of E is the center of arbitrarily small members of
F, and μ is a non-negative Radon measure over Rn, then F has a
disjointed subfamily covering μ-almost all of E.

2.7. DEFINITION. If τ e Wk(Rn, 2), then let

L{τ) = inf {lim inf Jlf (r<): τ« e Ik(Rn, 2), dτ, = 0, W(T, - τ) > θ\ .

2.8. THEOREM. Suppose τ4 e Ik(Rn, 2) are cycles for i = l , 2,3, ,
{||ri||} converges weakly to a non-negative Radon measure μ over Rn,
lim^o W(Ti ~τ) = 0 and lim^c Λf (r,) = L(τ) where τ e Wk(Rn). Then,
for μ-almost all x e Rn,

Dk*(μ, R\ x)>0.

Proof. The proof is by contradiction: by 2.5 we may assume
the existence of a set E and a real number a > 0 such that for xe E,

0 ,

Dϊ(μ, R\ x) = 0 ,

μ[S(x, r)]

Therefore, for a given ε > 0 and for a Gί?, there exists a set #,c(0,1)
such that I?* contains at least a denumerable number of elements and
such that, if r e Bx,
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r)] < εa(k)rk,

μ[S(x, r/2)] > aμ[S(x, r)] ,
: distance (a, y) = r}] = 0 ,

«[{y: distance (x, y) = r/2}] = 0 ,

τ{ Π S(x, r) is integral for i — 1, 2, 3, ,

inf {r: reBβ}~ 0.

Hence, by 2.6, there exist points xl9 x2, -",xm and numbers r19 r2, ,
rm such that S(α?if r<) Π S(a?if r, ) = 0 for i ^ i, r< € BH and

From (1), we have the existence of an integer i0 > 0 such that for
i > iQ and 1 g i g m,

. 2 v .11 f* iltSfe, r,/2)] > α || r, IllSί^, r,)] ,

For i ^ i0 and 1 ^ i < m, [8, 4.1] provides a ball SudSix^) with
radius between r̂  /2 and r, and center at x, such that

7* Π SitS is integral,
( MW Π Su)] ^ 2r7ΊI Γi II[S(^, r,)] .

Now by use of [8; 4.6] one can find a constant c and integral classes

ft.i> σij s u c h that,

r* n Su - ft.i = ^<.i»

( 4 ) M(ft,,) ^ cAΓ[d(τ{ n S o ) ] ^ 1

n S< f i)

For ΐ ^ i0 and 1 g i ^ m, (2) and (3) imply

hence, from (4),

( 5 ) M{ρu) ^

Similarly,
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6) M(σu) g c[Λf(r< Π Su)

+ e1 '*-1^*'*-1-^*;)1/*-1^)*-1-1 '*^*;)1 '*!!^!!^^, r,)]

Let a = 2klk-1 a(kylk-1'C, β(ε) = c(l + ε1'*-
Notice that β(6)-+ck+lli+1>a(k)llk as e - - 0 . If we let

m

G = T{ + Σ (ft,y - τt Π Si,,-) ,
i=i

(4) and (6) imply that, for i ^ ίOr

( 7 ) W{Zi-τi)^^β(ε)M{τi).

Since

C< = r< - Σ r< n sify + Σ p<j ,
3=1 3=1

it follows from (5) that, for i ^ i0,

( 8 ) ilf ( O ^ Mir, - Σ Γ, Π S i f i) + β^^αJlf (r,)

Now, with U — U?=i^(%, ry), we have from (1)

( 9 ) ML - Σ τ< Π S ί 5 j ) = II τ< \\(Rn) - Σ II τ< \\(SU)
\ 3=0 / 3=1

- Σ Ik
3 = 1

g II τt \\{Rn) - α|| τ, ||(17) for ΐ ^ ί

There exists an integer ^ ^ *0 such that for i ^ ij,

therefore, from (8) and (9),

M(ζt) + α|| r t

^ M(τt) + eV^-a-Miτt) + aε .

But μ( U) > μ(E) — ε, and therefore we finally obtain, for i § iu

M(ζi) + α^E1) g Afir,) + ε^-' α AfίΓί) + 2aε .
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Hence, from this inequality and (7), it is now clear that we can find
a sequence of integral cycles ψi such that

lim W(fi - r) = 0 ,

lim sup M(fi) + aμ(E) ^ lim Mfa) = L{τ),
ί-»oo ί-»oo

which is a contradiction since /*(.#) > 0 and a > 0.

3, The main theorem. In this section, the main theorem, which
is concerned with the compactness of integral classes, is established.
In the proof, an essential role is played by a decomposition theorem
due to Federer [4], which will now be discussed.

Recall from [8; 5.13], that if A is a compact subset of Rn

9

Zi e Ik{A,2) for i = 1,2, , and sup {Af fa) + M(0Γ,): i = 1,2, •} < oo,
then there exists a subsequence, {τ^}, and a r e Wk(Rn, 2) such that
W(τij — τ) —>0. Of course, it would be desirable to show that τ is,
in fact, a rectifiable class. To this end, assume without loss of gener-
ality that dr = 0 and let fa} be a sequence of integral cycles for
which

lim W(τ{ - τ) = 0 and lim M(r<) = L(τ) .

Hence, by passing to a suitable subsequence if necessary, we have
the existence of a non-negative Radon measure μ such that {||r4||}
converges weakly to μ. Then, from [4; § 9] we know that Rn can be
decomposed into four /^-measurable sets Alf A2, A3, A± such that:

(1) β^Λu^uΛuΛ
( 2 ) A 1 n Λ = A 1Πi4β = i 4 a n 4 ι = 0,
( 3 ) ili is a countably &-rectifiable set and at each point xeA19

there exists a /^-approximate tangent fe-plane to A1 at α?; for this,
(2.8) is needed,

( 4 ) Either μ(A2) = 0 or A2 contains no fc-rectifiable set B for
which μ(B) > 0,

( 5 ) Lk[p(A2)] — 0 for almost all orthogonal projections of Rn

onto Rk,
( 6 ) At = {α;: A(i«, #*, ») = 0 or A*(i«, ^ w , a) = °°}. Observe

that from 2.8, /*[{&: A ( Λ β w» χ) = 0}] = 0,

(7) MΛ)-0.
Now let A = Ax n {̂ : A(£Γfc, Al9 x) = 1} ΓΊ B, where J5 is the set de-
scribed in the proof of [8; 5.14]. We now are in a position to state
the main theorem.

3.1. THEOREM. Suppose that Hk(AJ< oo and that μ(A2) = μ(A3) =
0. ΓΛe^, ίfeere e#is£s α μ-measurable set EcRn such that μ(A — E) =
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0 and

Km W(Ti - A Π E) = 0 .

Since Af] E is a Hausdorff fc-rectifiable set, by [8; § 3], we can iden-
tify A n E with a rectifiable class. Hence, the theorem asserts the
existence of a rectifiable class to which {rj converges.

For the proof of the theorem, we will need the following lemma,

3.2. LEMMA. Suppose that A is a countably k-rectίfiable set
with Hk(A) < co. Then, for any real number 0 < a < 1, and for
any real number b such that b > 1 and bk < α"1,

H H«[S(x, φ) ΠA]

5 ? H>[S(x,r)nA] >a>

for Hk almost all xeA.

Proof. Since Dk(Hk, A, x) = 1 for i P almost all x e A, we have
the following at all such x:

lim b-k Hk[S(x,Φ)nA] £ = &_fc

(r/δ)* Hk[S(x,r)[\A]

Proof of the theorem. It is sufficient to show that the conclusion
holds for a subsequence of the given sequence. Passage to subse-
quences, which often occurs in what follows, will be indicated by
words but not notationally. The proof will be divided into four main
parts.

Choose 0 < 8 < 1 and let y(B) = H\A Π B) where B is any Hk

measurable set. In view of the assumptions and with the aid of
[4; (3.8)] we know that μ is absolutely continuous with respect to
7. Let P(x) be the μ approximate tangent Λ-plane to A at x and
let K(x, r) be the open w-cube with center at x, side length 2r and
one of its Λ-faces parallel to P(x). In this proof, densities will be
computed by using these cubes and 2.6 will be used with cubes instead
of spheres; this does not change anything. Using the methods of
[8; 5.14], for ε > 0 we have the existence of a positive number rx{x, ε)
such that for r ^ rx{xy ε),

( 1) W[P(x) Π K(x, r)) - A n K(x, r)] < ε2/8 /5(fc)r&

where β(k) is volume of a fc-cube with side length 2. Also, if D(x) —
D*{μ, Rn, x), then for each x e A there exists a number ro(x, ε) ̂  rλ(xf ε)
such that for r ^ rQ(x, ε),
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7[K(x, r)] ^ (1 - ε)β(k)rk ,

μ[K(x, r)] < c(x)β(k)(φ)k ,

μ[K(x, r) - S(P(x), e/2-r]< ε22"

7[K(x, r/6)] > α7[iΓ(α?, r)] ,

where e(#) = bkD(x), a > 1 — ε, and where 6 is the number provided
by 3.2. We will consider only those r for which u[K*(x, r)] =
μ[J5Γ*(αΣ,r/δ)] = 0, where K*(x, r) denotes the boundary of the cube.
Since this omits at most a denumerable number of cubes, we have a
Vitali covering of A and therefore, by 2.6, there exists a finite num-
ber of disjoint cubes K(xl9 n), K(x2, r2), , K(xm, rm) such that
Ύ[A - \JU K(xi9 *•<)] < ε and μ[A - \JU K(xi9 n)] < e. Let c =
max [c^O, , c(xn)], d = c/(δ — 1), and assume ε to be chosen so as
to satisfy the following inequalities, where ct and c2 are the constants
in [8; 4.6]:

ε < [c^-^βik)]-1 , [ec24:k-121-kβ(k)]klk-1 + ε2 < §2/8 ,

(3) εc + εLd + 3ε2 < δ2/4 where L is described below,

ε < 1 - a/2, ec/1 -e<δ, ετ(A) + ε - ε2 < 8 .

Part 1. Consider xt and let x = x19 r — r19 and P = Pί^i). Since
j«[JBΓ*(α?, r)] = 0 and 11̂ 11—•/£, there exists an integer io(r) such that
for i ^ ίo(r),

Π K(x, r)] < cβ{k){φf ,

n (ίΓ(a?f r) - S(P, e/2-n))]

each i ^ io(r), [8; 4.1] implies that

[ ( Π ίΓ(»f β)]dβ < Lcβ(k)(φ)k ,
Jr/6

where L is the Lipschitz constant of the function that defines K(x, s).
Therefore, by appealing to Fatou's lemma, there exists a number t
between r/δ and r and a subsequence {τ^} (which will still be denoted
by {τi}) such that

μ[K*(x, t)] = 0

and

Mpfa Π K(x, t))] ύ Lcβ(kyib - Urlby-1

^ Ldβ{k)tk~λ, for all i .

Hence, letting σi = τ< Π -K"(OJ, ί) from (1) and (2), we have the following
for all elements of a subsequence:
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M(σt) ^ cβ(k)t* ,

n (K(x, t) - S(P, e/2 t))] £ ε>2-kβ{k)t" ,

7[K(x,t)]>a7[K(x,r)],

W[Pf] K(x, t)-A[) K(x, t)]

spt σ{ c closure K(x, t), spt dat = K*(x, t) .

Let U, = {x: distance (x, P) > s}. For each σ{ of the above subse-
quence, we have from [8; 4.1] that

M[d(σ{ n Us) - (dσt) Π Us]ds < s?2
εί/2

so that again by appealing to Fatou's lemma, there exists a number
s0 such that eί/2 < s0 < εt and a subsequence {σ{} such that for all
members of this subsequence,

( 5 ) M[d(at Π U8Q) - φσx) Π

Let if = K(x, f), U - C/80, N = closure [iί n (Rn - U)] and note that

(6)

where p: Rn-^ P is the orthogonal projection. If we let
(7) 0, = 8(σ, n iV) - (θ^) Π 2SΓ= 9(σ< Π C/) - (βσ*) Π C/ and χ< = p t ( ^ Π JV),
then in the notation of [8; 4.6] with A = closure (P Π K) and B =
PΠ ίΓ*, we have from (3), (5), and (6),

Π K] £ C.

Hence, by [8; 4.6], there exists λ< e /fc(̂ 4., 2) such that

spt (ΘXt - βλj c B ,

If we let Ψi = Xi — \i9 then we have

spt α/rί c closure P Π K ,

(8)

Hence, we will consider the two following possibilities: ψ< = 0 for all
but finitely many i or ψ{ = P Γl K for all i of a subsequence.

1. Suppose ψt = P Π K for some subsequence. Then from
(4), (8), and (3),
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M[P f]K- P |(σ4)] ^ M[P ΓiK- p^σt Π N)] + M [p%{σ{ Π U)]

ft(^ n 10]
** + e72* /8(fc)t*

^ δ2l8-β(k)tk .

Therefore, (4) implies Wlpfa) - AnK]< δη<ί-β(k)t\
Also from (4), (3)

- σ,] ̂  W[p (σ, Π N) - σ< n N] + W[p9(σ{ n 17) - σ, Π

^ εί ΛΓίσ, n N) + 2M{σi n CO

g εt[c/5(fc)ίfc + Lrf/Sίfc)^-1] + e SP-

Therefore, from (2), (3), and (4),

W[τ{ f]K-AΓ\K]< dη2-β(k)tk ^ 8K(x, t)

for all members of a suitable subsequence. Now repeat the entire
above procedure to the cube K(x2, r2), but using the subsequence that
was finally obtained at the end of case 1.

Case 2. In the event that ψt = 0 for all but finitely many i,
repeat the entire above procedure to the cube K(x2, r2) but using the
subsequence that corresponds to ψ\ = 0.

Part 2. By repeating the procedure in part 1 m times, we obtain
cubes K(xlf tx), , K(xjf tό), K(xj+1, tj+1), , K(xm, tm) and a subse-
quence, {τ{} such that, for all members of this subsequence,

t Π K(xlf y - A Π K(xlf ί,)] < d2l2-β(k)±t>[ ^ dy(A ) ,
1 11=1

and such that case 2 of step 1 applies to the cubes K(xj+ι, tj+ι), ,
K(xm9 tm). Now, using the same notation as above except for the
addition of superscripts to denote that cube which is under consider-
ation, we have that ψ\ = 0 for all i and for q = j + 1, j + 2, , m.
This implies that M\p\(σ\ n Nq)] < δ2l8-β(k)tk

q, where pq: Rn — P(xq)
is the orthogonal projection. Define A8 = Uί=i ^(^z> *i) a n d ft =
ΠΓ^+i^ίαi, *ι) and let α>ϊ = Λf[7 x θ(αf Π ̂ ) ] , Cϊ = ^#[^ x (̂ ? Π iVg)]
where λj is the linear homotopy from the identity to the projection
map pq. If we let

TΪ = Σ *i Π [Λn - K(xq, tq)] + Σ [ω| + p\(σ\ n iV9) + σj n C/9] ,

then 0rf = 0 and from (7), (5), (8), (4), (3), and (2),
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M(τ\) ^ Mfa) - M(τt Π Bs) + et\ Σ 2eβ(k)tk

q~
1 + Ldβ(k)tk

q-Λ

S M(τt) - M(τt Π Bt)

^ j|f(r<) - M(τ{ Π Bδ) + <52/2(l - ε) 7(/3δ)

^ Jlf (r4) - Ar(r4 Π B5) + δτ(A) .

Since 11 τi \ \ —> μ, there exists a subsequence of the one above such that,
for all members of this subsequence,

M(Ti) ^ M(Ti) — μ(B5) + 2<?7(A) .

Also,

m

and therefore, from (3),

^ ec/1 - ε

Observe, with the help of (4), that

u

Thus, in summary of what has been done so far, we have, for every
δ > 0, the existence of sets A5 and B8 which are the finite union of
disjoint open cubes and the existence of a subsequence {rj and a
sequence {z]} such that

7[A - (Aδ U B,)] < δ ,

Wfa ΠA8- Af]A5)< δ7(A) ,

W(τ< - rj) < δ7(A) ,

M(τ\) ^ Jlf(τ4) - μ(Bδ) + 2δ7(A) for all i .

Now by letting δ —> 0 and by using Cantor's diagonal process, we can
infer that lim^o sup μ(Bδ) = 0 since M(τ^ —»• L(r). This implies, along
with the fact that μ is absolutely continuous with respect to 7, that
for every δ > 0, there exists a set A8, which is the union of a finite
number of disjoint open cubes, and a subsequence {rj such that
μ(Rn - Aδ)< δ and W(τ{ pιA8 - A[)Aδ) <δ for all i.



1450 WILLIAM P. ZIEMER

Part 3. Choose 0 < δ < 1 and let {<5J be a sequence of real
numbers tending to zero with ΣΠ=i $% < ^/3. Part 2 supplies a set
Aδi. Now repeat the procedures in parts 1 and 2 to the set A — Aδχ

with the restriction that only those cubes that do not intersect the
closure of Aδl should be considered. Since the μ measure of the
frontier of Aδl is zero, those cubes with centers on the frontier of
Aδi need not be considered. Also, the subsequence that is obtained
for the set Aδl is the one that should be used in the procedure for
A — Aδl. Hence, we will obtain a subsequence of the sequence obtained
for Aδl and a set As2 such that Aδa is the finite union of open
disjoint cubes with Ah c Rn - Ah, μ[Rn - (Ah U Ah)] < δ2, and
W(τ{ Γl Aδa — A n A5) < δ% for all i. Continue this process and let
Hδ — UΓ=iAv Then, μ(A — Hδ) = 0 and by employing Cantor's di-
agonal process, we obtain the following: if S, = C[UxAUi then there
exists an integer j0 such that for j ^ jQ,

and

μ(R- - Sj) = μ(A(}H5-An Sj) < δ/3 .

Hence, M(A Π Hs - A Π Sh) < δ/3. Since || τ< || ~> ̂  and since Sjo

is open, there exists one integer io(jo) such that for i ^ io(io)»
M(T, - τ{ n SJQ) < δ/3. Therefore, for i ^ io(io),

T7(τ, - A n flβ) ^ T7(τ, - τ, Π Sio) + ϊFfo n S .Q _ A n ^

Ω SJ0 -A

We now have, for every δ > 0, an open set Hδ and a subsequence
{rj such that μ(A - Hs) = 0 and TT(r, - A f| ί ί δ ) < δ for all ί.

Part 4. Choose δ > 0 and again let {δj be a sequence of real
numbers tending to zero. After obtaining the set iJδl, repeat parts
1, 2, and 3 to the set A fΊ H8l and to the sequence that was obtained
for A Π Hδl. Since Hδχ is open, we can require that Hh c iϊδ l. Con-
tinue this process and let E = ΠΓ=i ί^ to obtain μ(A - £7) = 0. By
employing Cantor's diagonal process, we obtain a sequence {τj such
that Wfo - A n HSj) < δj for large i. Choose i0 such that δjo < δ/2
and τ(A n Hδ i - AΓ\E)< δ/2. Thus

AΠE)^ W(τt - A n J3",ίβ) + W(A n fliίβ - A n # )

^ δ/2 + v(A Π i? { ) ° - A Π E)< δ for large i

and therefore the conclusion of the theorem follows.
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