CONCERNING HOMOGENEITY IN TOTALLY ORDERED, CONNECTED TOPOLOGICAL SPACE

L. B. Treybig

Throughout this paper suppose that L denotes a connected, totally ordered topological space in which there is no first or last point, and whose topology is that induced by the order.

A topological space S is said to be homogeneous provided it is true that if $(x, y) \in S \times S$, there is a homeomorphism from S onto S such that $f(x)=y$. Let H denote the set of all homeomorphisms from L onto L, and let I denote the set of all homeomorphisms which map a closed interval of L onto a closed interval of L. Let $H_{0}\left(I_{0}\right)$ denote the set of all elements of $H(I)$ which preserve order.

Theorem 1. If L is homogeneous, then L satisfies the first axiom of countability.

Proof. It suffices to show that for some point z of L there exists an increasing sequence x_{1}, x_{2}, \cdots and a decreasing sequence y_{1}, y_{2}, \cdots such that each of these sequences converges to z. Suppose there is no such point. Let P_{1}, P_{2}, \cdots denote an increasing sequence which converges to a point P and Q_{1}, Q_{2}, \cdots a decreasing sequence which converges to a point Q. There is an element g in H such that $g(P)=Q$. In view of the preceding supposition, g is order reversing. There is a point R such that $g(R)=R$, and R is the limit of a sequence R_{1}, R_{2}, \cdots which is either increasing or decreasing. Suppose the sequence is decreasing. The sequence $g\left(R_{1}\right), g\left(R_{2}\right), \cdots$ is increasing and converges to R. This yields a contradiction. The case where R_{1}, R_{2}, \cdots is increasing is similar.

Theorem 2. The space L is homogeneous if and only if each pair of closed subintervals of L are topologicaly equivalent.

Proof. Part 1. Suppose each pair of closed subintervals of L are topologically equivalent and $(x, y) \in L \times L$. There exist elements z and w of L such that $z<x<w$ and $z<y<w$, and an element g of I from $[z, x]$ onto $[z, y]$. If g is order reversing there is an element g^{\prime} of I_{0} from $[z, x]$ onto $[z, y]$ which may be constructed as follows: Let t denote the point of $[z, x]$ such that $g(t)=t . \quad g^{\prime}$ is defined by

[^0]$\mathrm{g}^{\prime}(u)=\left\{\begin{array}{cc}u, & z \leqq u \leqq t \\ g g(u), & t<u \leqq x\end{array}\right\}$. In any event, let g^{\prime} and h^{\prime} denote elements of I_{0} which map $[z, x]$ and $[x, w]$, respectively, onto $[z, y]$ and [y, w], respectively. The function f defined by

$$
f(u)=\left\{\begin{array}{cc}
u, & u<z \text { or } u>w \\
\mathrm{~g}^{\prime}(u), & z \leqq u \leqq x \\
h^{\prime}(u), & x<u \leqq w
\end{array}\right\}
$$

is an element of H_{0} such that $f(x)=y$.
Part 2. Suppose L is homogeneous.
Lemma 1. If $(x, y) \in L \times L$, there is an element f of H_{0} such that $f(x)=y$. Furthermore, if $f \in I$ there is an element g of I_{0} having the same domain and range, respectively, as f.

Proof. Suppose $g \in H$ and $g(x)=y$, but g is not in H_{0}. There is a point b such that $b=g(b)$ and an element h of H such that $h(x)=b$. The function $f=g h^{-1} g^{-1} h$ is in H_{0} and $f(x)=y$. The proof of the second part of Lemma 1 follows easily from the first part and the proof of Part 1 of Theorem 2.

Lemma 2. Suppose $[a, b]$ is a closed interval and f and g are elements of I_{0} defined on $[a, b]$ such that $f(a)=g(a)(f(b)=g(b))$, but that $f(x)<g(x)$ for $a<x \leqq b \quad(a \leqq x<b)$. If $f(a)<x_{0}<f(b)$ $\left(g(a)<x_{0}<g(b)\right)$ and x_{1}, x_{2}, \cdots is a sequence such that $x_{n}=f g^{-1}\left(x_{n-1}\right)$ ($x_{n}=g f^{-1}\left(x_{n-1}\right)$) for $n \geqq 1$, then $x_{0}, x_{1}, x_{2}, \cdots$ is a decreasing (increasing) sequence which converges to $f(a)(f(b))$.

Proof of first part. The inequality $a<g^{-1}\left(x_{0}\right)<f^{-1}\left(x_{0}\right)<b$ implies that $f(a)<x_{1}=f g^{-1}\left(x_{0}\right)<x_{0}<f(b)$. Suppose it has been established that $f(a)<x_{n}<x_{n-1}<f(b)$. The preceding implies that $a<g^{-1}\left(x_{n}\right)<f^{-1}\left(x_{n}\right)<b$, which implies that $f(a)<x_{n+1}=f g^{-1}\left(x_{n}\right)<$ $x_{n}<f(b)$. Therefore, $x_{0}, x_{1}, x_{2}, \cdots$ is a decreasing sequence bounded below by $f(a)$, and thus converges to a point $x \geqq f(a)$. Suppose $x>f(\alpha)$. Since $g f^{-1}(x)>x$, there is a positive integer n such that $g f^{-1}(x)>x_{n}>x$, which implies that $x>f g^{-1}\left(x_{n}\right)=x_{n+1}$. This yields a contradiction, so $x=f(a)$.

Lemma 3. If $c \in L$ there exist an interval $[a, b]$ and elements f and g of I_{0} with domain $[a, b]$ such that $f(a)=g(a)=c$ and $f(x)<g(x)$, for $a<x \leqq b$; or if $c \in L$ there exists an interval $[a, b]$ and elements f and g of I_{0} with domain $[a, b]$ such that $f(b)=g(b)=c$ and $f(x)<g(x)$, for $a \leqq x<b$.

Proof. Suppose that for each element (x, y) of $L \times L$ there is a unique element f of H_{0} such that $f(x)=y$. Let u_{1}, u_{2}, \cdots denote an increasing sequence converging to a point u, and for each n, let f_{n} denote the element of H_{0} such that $f_{n}(u)=u_{n}$. If x is an element of L and n a positive integer, then $f_{n}(x)<f_{n+1}(x)<x$; for if this is not the case, the graph of f_{n} intersects the graph of f_{n+1}, or the graph of f_{n+1} intersects the graph of the identity homeomorphism, and in either event there is a contradiction to the unique homeomorphism hypothesis. If for some x, the sequence $f_{1}(x), f_{2}(x), \cdots$ converges to a point $y<x$, the element g of H_{0} such that $g(x)=y$ has the property that its graph either intersects the graph of the identity function or the graph of f_{n}, for some n. Therefore, for any x in L, the sequence $f_{1}(x), f_{2}(x), \cdots$ is increasing and converges to x.

For each positive integer j, let $a_{j 1}, a_{j 2}, \cdots$ and $b_{j_{1}}, b_{j_{2}}, \cdots$ denote sequences such that (1) $a_{j 1}=f_{j}^{-1}(u)$ and $b_{j 1}=f_{j}(u)$, and (2) $a_{j n}=$ $f_{j}^{-1}\left(a_{j, n-1}\right)$ and $b_{j n}=f_{j}\left(b_{j, n-1}\right)$, for $n>1$. Suppose $u<x$ and (r, s) is an open interval containing x. Let n denote an integer such that $r<f_{n}(x)$ and $x<f_{n}(s)$. Since $u<x<f_{n}(s)$, it follows that $a_{n 1}=$ $f_{n}^{-1}(u)<s$. If $a_{n 1}$ is not in (r, s), let K denote the set of all $a_{n j}$ such that $a_{n j}<x$ and let $z=1 . u . b . K$. If $z \leqq r$, there is an element $a_{n j}$ of K such that $f_{n}(z)<a_{n j} \leqq z<f_{n}(x)$, which implies that $z<f_{n}^{-1}\left(a_{n j}\right)=$ $a_{n, j+1}<x$, which is a contradiction. In any event, some $a_{n j}$ is an element of (r, s). The preceding argument clearly indicates that $\sum\left(a_{i j}+b_{i j}\right)$ is a countable set dense in L, so L is a real line and the unique homeomorphism hypothesis is contradicted.

There exist elements h and k of H_{0} and points s and t of L such that $h(s)=k(s)$, but $h(t)<k(t)$. Suppose $s<t$. Let a denote the largest element x of L such that $h(x)=k(x)$ and $x<t$. There is an element p of I_{0} with domain $[k(\alpha), k(t)]$ such that $p(k(\alpha))=c$. The functions $f=p(h)$ and $g=p(k)$ and the interval $[a, t]$ satisfy the first conclusion of the lemma. The case $t<s$ yields the second conclusion.

Lemma 4. Suppose $[a, b]$ is a closed interval and c is a point. If $x>c$, there is a point y in (c, x) and an element f of I_{0} mapping $[a, b]$ onto $[c, y]$.

Proof. Let U denote the set of all $x>c$ such that there is a homeomorphism from $[a, b]$ onto $[c, x]$, and let V denote the set of all $x<c$ such that there is a homeomorphism from $[a, b]$ onto $[x, c]$. The sets U and V exist because of the existence of elements h_{1} and h_{2} of H_{0} such that $h_{1}(a)=c$ and $h_{2}(b)=c$. Let $u=$ g.1.b. $U, v=$ 1.u.b. V and suppose that $c<u$.

Case 1. Suppose the first conclusion of Lemma 3 holds There exists a point u_{1}, an interval $[p, q]$, and elements f and g of I_{0} having domain $[p, q]$, and such that (1) $c<u_{1}<u$, (2) $f(p)=g(p)=u_{1}$, and (3) $f(x)<g(x)$, for $p<x \leqq q$. There is a point r such that $p<r<q$, $g(r)<u$, and $g(r)<f(q)$, and an element k of I_{0} having domain $[p, q]$ such that (1) $k(r)=u$, and (2) $k(x) \geqq g(x)$ for $x \in[p, q]$. The function h defined on $[p, q]$ by $h(x)=k g^{-1} f(x)$ is an element of I_{0} such that (1) $h(q)>u$, (2) $h(p)=k(p)$, and (3) $h(x)<k(x)$, for $p<x \leqq q$. There is a point x_{0} such that $u \leqq x_{0}<h(q)$ and an element f_{0} of I_{0} mapping $[a, b]$ onto $\left[c, x_{0}\right]$. Let x_{1}, x_{2}, \cdots denote a sequence such that $x_{n}=h k^{-1}\left(x_{n-1}\right)$ for $n \geqq 1$, and let f_{1}, f_{2}, \cdots denote a sequence of functions defined on $[a, b]$ such that for $n \geqq 1$ (1) $f_{n}(x)=f_{0}(x)$, for $a \leqq$ $x \leqq f_{0}^{-1}\left(u_{1}\right)$, and (2) $f_{n}(x)=h k^{-1} f_{n-1}(x)$, for $f_{0}^{-1}\left(u_{1}\right)<x \leqq b$. For each n, f_{n} is a homeomorphism from $[a, b]$ onto $\left[c, x_{n}\right]$, but, according to Lemma 2, $x_{n}<u$ for some n. This yields a contradiction, so $u=c$.

Case 2. If the second conclusion of Lemma 3 holds, then it follows, by an argument similar to the one in Case 1, that $v=c$. Let u_{1} denote a point between c and u, and g an element of H_{0} such that $g(c)=u_{1}$. There is a point u_{2} such that $c<u_{2}<u_{1}$ and an element h of I_{0} mapping $[a, b]$ onto $\left[g^{-1}\left(u_{2}\right), c\right]$. The function $g(h)$ is an element of I_{0} mapping $[a, b]$ onto $\left[u_{2}, u_{1}\right]$. Let k denote an element of H_{0} such that $k(a)=c$. Since $k(b) \geqq u$, there is a point t such that $k(t)=g h(t)$. The function f defined by

$$
f(x)=\left\{\begin{array}{l}
k(x), \quad a \leqq x \leqq t \\
g h(x), \quad t<x \leqq b
\end{array}\right\}
$$

is an element of I_{0} which maps $[a, b]$ onto $\left[c, u_{1}\right]$, so in this case also, the assumption $c<u$ leads to a contradiction.

The proof of the main result now follows easily. Suppose $[a, b]$ and $[c, d]$ are closed intervals and g an element of H_{0} such that $g(b)=d$.

Case 1. $g(a) \leqq c$. There is a point e such that $c<e<d$ and an element h of I_{0} mapping $[a, b]$ onto $[c, e]$. As in case 2 of Lemma 4, a homeomorphism from $[a, b]$ onto $[c, d]$ may be constructed from g and h.

Case 2. $g(a)>c$. There is a point e such that $a<e<b$ and an element h of I_{0} mapping $[c, d]$ onto $[a, e]$. However, h^{-1} is an element of I_{0} mapping $[a, e]$ onto $[c, d]$, and a homeomorphism from $[a, b]$ onto $[c, d]$ may be easily constructed from g and h^{-1}.

In order to establish the next theorem it is helpful to use a result
of Richard Arens'. A linear homogeneous continuum (LHC) has been defined by G. D. Birkhoff as any set of elements which 1. is simply ordered 2. provides a limit for any monotonely increasing (or decreasing) sequence 3 . is isomorphic to every nondegenerate closed subinterval of itself. In [1] Arens shows, among other results, the following (reworded by the author).

Theorem A. If I is an LHC and for each positive integer p, I_{p} denotes I, then the space $I^{\prime}=I_{1} \times I_{2} \times \cdots$ with the lexicographic order is also an LHC.

Theorem 3. If L is homogeneous, $[a, b]$ is a closed interval, and for each positive integer p, I_{p} denotes $[a, b]$, then the space $x=$ $L \times I_{1} \times I_{2} \times \cdots$ with the topology induced by the lexicographic order is also homogeneous.

Proof. Let $\left[u_{1}, u_{2}, \cdots ; v_{1}, v_{2}, \cdots\right]$ and $\left[x_{1}, x_{2}, \cdots ; y_{1}, y_{2}, \cdots \mid\right.$ denote closed subintervals of X. Let u and v denote elements of L such that $u<\min \left\{u_{i}, x_{i}\right\}$ and $v>\max \left\{v_{i}, y_{i}\right\}$ for $i=1,2,3, \cdots$, and let g denote an element of I_{0} which maps $[u, v]$ onto $[a, b]$. The function F defined by $F\left(t_{0}, t_{1}, t_{2}, \cdots\right)=\left[g\left(t_{0}\right), t_{1}, t_{2}, \cdots\right]$ is an order preserving homeomorphism from $[u, v] \times I_{1} \times I_{2} \times \cdots$ onto $[a, b] \times I_{1} \times I_{2} \times \cdots$. Theorem A shows that any two subintervals of the latter are homeomorphic, so it follows that $\left[x_{1}, x_{2}, \cdots ; y_{1}, y_{2}, \cdots\right]$ and $\left[u_{1}, u_{2}, \cdots ; v_{1}, v_{2}, \cdots\right]$ are homeomorphic. Therefore, by theorem 2, X is homogeneous.

Suppose $L_{1}, L_{2}, L_{3}, \cdots$ denotes a sequence of spaces such that (1) L_{1} is the real line, and (2) for each n, L_{n+1} is constructed from L_{n} by a Theorem 3 type construction. The main theorem of Arens' paper [2] yields the result that if $i \neq j$, then L_{i} is not homeomorphic to L_{j}. Is it true that if a homogeneous space L^{\prime} satisfies the axioms stated on the first page and also has the property that it can be covered by a countable collection of closed intervals, then L^{\prime} is one of the spaces $L_{1}, L_{2}, L_{3}, \cdots$?

In part 2 of Theorem 2 the construction indicated gives an order preserving homeomorphism from $[a, b]$ onto $[c, d]$. This leads naturally to the following question: If L^{\prime} satisfies the axioms of L, is homogeneous, and $[a, b]$ is a closed subinterval of L^{\prime}, then is there an order reversing homeomorphism from $[a, b]$ onto $[a, b]$?

References

1. R. Arens, On the construction of linear homogeneous continua, Boletin de la Sociedad Matematica Mexicana, 2 (1945), 33-36,
2. -, Ordered sequence spaces, Portugaliae Mathematica, volio (1951), 25-28.

[^0]: Received September 5, 1962, and in revised form June 20, 1963. Abstract 62 T-102, Notices, V. 9, June 1962. The author wishes to express his appreciation to the National Science Foundation for financial support.

