A NOTE ON UNCOUNTABLY MANY DISKS

Joseph Martin

R. H. Bing has shown [2] that E^{3} (Euclidean three dimensional space) does not contain uncountably many mutually disjoint wild 2spheres. J. R. Stallings has given an example [6] to show that E^{3} does contain uncountably many mutually disjoint wild disks. It is the goal of this note to show that E^{3} does not contain uncountably many mutually disjoint disks each of which fails to lie on a 2 -sphere in E^{3}. (A disk which fails to lie on a 2 -sphere is necessarily wild.) For definitions the reader is referred to [1].

Theorem 1. If V is an uncountable collection of mutually disjoint disks in E^{3} then there exists a disk D of the collection V such that D lies on a 2-sphere in E^{3}.

The proof of Theorem 1 follows immediately from the following three lemmas.

Lemma 1. If V is an uncountable collection of mutually disjoint disks in E^{3} then there exists an uncountable subcollection V^{*} of V such that if D belongs to V^{*}, x is an interior point of D, ax is an arc intersecting D only in the point x, and ε is a positive number then there exists an uncountable subcollection V_{1} of V^{*} such that if D_{1} is an element of V_{1} then (i) $D_{1} \cap a x \neq \phi$ and (ii) there is a homeomorphism of D_{1} onto D which moves no point more than ε.

Proof. Let V be an uncountable collection of mutually disjoint disks in E^{3}. Let V^{\prime} denote the subcollection of V defined as follows: D is an element of V^{\prime} if and only if there exist a point x of Int D, an arc $a x$ intersecting D only in x, and a positive number ε such that there is no uncountable subcollection V_{1} of V such that if D_{1} belongs to V_{1} then (i) $D_{1} \cap a x \neq \phi$ and (ii) there is a homeomorphism of D_{1} onto D which moves no point more than ε.

It is clear that in order to establish Lemma 1 it is sufficient to show that the collection V^{\prime} is countable. Suppose that V^{\prime} is uncountable.

For each element D_{α} of V^{\prime} let an arc a_{∞} and a positive number ε_{α} be chosen such that (i) the common part of D_{α} and a_{a} is an endpoint of a_{α} which is on the interior of D_{α}, and (ii) a_{∞} intersects only a countable number of elements D of V such that there is a homeomorphism of D onto D_{α} which moves no point by more than ε_{α}.

[^0]Let ε be a positive number and $V^{\prime \prime}$ be an uncountable subcollection of V^{\prime} such that if D_{α} is an element of $V^{\prime \prime}$ then $\varepsilon<\varepsilon_{\alpha}$.

Let E be a disk and v be an arc such that the common part of E and v is an endpoint of v which is on the interior of E. For each element D_{α} of $V^{\prime \prime}$ let h_{α} be a homeomorphism of $E \cup v$ onto $D_{\alpha} \cup a_{\alpha}$. Now $\left\{h_{\alpha} ; D_{\alpha} \in V^{\prime \prime}\right\}$ with the distance function

$$
D\left(h_{\alpha}, h_{\beta}\right)=\max _{t \in E \cup v} \rho\left(h_{\alpha}(t), h_{\beta}(t)\right)
$$

is a metric space. In [3] (Theorem 2) Borsuk shows that this metric space is separable. It follows that there exists an element $D_{\alpha_{0}}$ of $V^{\prime \prime}$ such that if δ is a positive number then $\left\{h_{\beta} ; D\left(h_{\beta}, h_{\alpha}\right)<\delta\right\}$ is uncountable. Let $h_{\alpha_{0}}$ be denoted by $h_{0}, h_{0}(E)$ be denoted by D_{0}, and $h_{0}(v)$ be denoted by a_{0}.

Let the endpoints of a_{0} be denoted by x and y and assume that the notation is chosen so that $y \in \operatorname{Int} D_{0}$. Let $z y x$ be an arc such that $a_{0} \subset z y x$ and $z y x$ pierces D_{0} at y. Let $z w x$ be an arc in $E^{3}-D_{0}$ such that $z w x \cap z y x=\{z, x\}$, and let J denote the simple closed curve $z y x \cup z w x$. Since $J \cup D_{0}=\{y\}$ it follows that $B d D_{0}$ links J.

Now let ε_{1} be a positive number such that $2 \varepsilon_{1}$ is less than the minimum of ε, dist $\left(J, B d D_{0}\right)$, and dist $\left(z w x, D_{0}\right)$.

Let H be $\left\{h_{\beta} ; D\left(h_{\beta}, h_{0}\right)<\varepsilon_{1} / 2\right\}$, and let $V^{\prime \prime \prime}$ be the set of all elements of $V^{\prime \prime}$ such that $D \in V^{\prime \prime \prime}$ if and only if there exists an element h of H such that $h(E)=D$. Now if D_{1} and D_{2} are two elements of $V^{\prime \prime \prime}$ then there exists a homeomorphism of D_{1} onto D_{2} that moves no point more than ε_{1}.

Suppose that D is an element of $V^{\prime \prime \prime}$. Then since $2 \varepsilon_{1}<\operatorname{dist}\left(J, B d D_{0}\right)$, $B d D_{0}$ links J, and there is a homeomorphism of D_{0} onto D which moves no point more than $\varepsilon_{1} / 2$ it follows that $B d D$ links J, and hence that $J \cap D \neq \phi$. Since $2 \varepsilon_{1}<\operatorname{dist}\left(z w x, D_{0}\right), D \cap z y x \neq \phi$.

Now for each element D_{α} of $V^{\prime \prime \prime}$ let P_{α} be the greatest point of $D_{\alpha} \cap z y x$ in the order from z to x on $z y x$. Now there exists an element D_{γ} of $V^{\prime \prime \prime}$ such that for uncountably many elements D_{a} of $V^{\prime \prime \prime}$, P_{α} is greater than P_{γ}. But since $2 \varepsilon_{1}<\operatorname{dist}\left(x, D_{0}\right), 2 \varepsilon_{1}<\operatorname{dist}\left(J, B d D_{0}\right)$, and for each element D_{a} of $V^{\prime \prime \prime}$ there is a homeomorphism of $D_{0} \cup a_{0}$ onto $D_{\alpha} \cup a_{\infty}$ which moves no point more than $\varepsilon_{1} / 2$, it follows that a_{γ} intersects every element D_{a} of $V^{\prime \prime \prime}$ such that P_{α} is greater than P_{γ}. This is because a_{γ} may be completed to a simple closed curve J^{\prime} which links $B d D_{\alpha}$ and which intersects D_{a} only in a_{γ}. Hence a_{γ} intersects uncountably many elements of the collection $V^{\prime \prime \prime}$. This is contradictory to the way in which a_{γ} was chosen and it follows that the collection V^{\prime} is countable. This establishes Lemma 1.

Lemma 2. Suppose that V is an uncountable collection of mutu-
ally disjoint disks in E^{3}. Then there exists a disk D of the collection V such that D is locally tame at each point of Int D.

Proof. Let V be an uncountable collection of mutually disjoint disks in E^{3}. Let V^{*} be an uncountable subcollection of V satisfying the conclusion of Lemma 1. Let D be an element of the collection V^{*} and let p be an interior point of D. By Theorem 5 of [1] there exists a subdisk D^{\prime} of D and a 2 -sphere S in E^{3} such that $p \in \operatorname{Int} D^{\prime}$ and $D^{\prime} \subset S$. Without loss of generality it may be assumed that $a p \subset \operatorname{Int} S$ and $p b \subset \operatorname{Ext} S$. Now there exist sequences $D_{1} D_{2} \cdots$ and $C_{1} C_{2} \cdots$ of disks of the collection V^{*} such that for each i, (1) $D_{i} \cap a p \neq$ ϕ, (2) $C_{i} \cap p b \neq \phi$, and (3) there exist homeomorphisms f_{i} and g_{i} of D_{i} and C_{i}, respectively, onto D which move no point more than $1 / i$.

Let $D^{\prime \prime}$ be a subdisk of D^{\prime} such that $p \in \operatorname{Int} D^{\prime \prime}$ and $D^{\prime \prime} \subset \operatorname{Int} D^{\prime}$. Now without loss of generality it may be assumed that each of $f_{1}^{-1}\left(D^{\prime \prime}\right)$, $f_{2}^{-1}\left(D^{\prime \prime}\right) \cdots$ lies in Int S and that each of $g_{1}^{-1}\left(D^{\prime \prime}\right), g_{2}^{-1}\left(D^{\prime \prime}\right) \cdots$ lies in Ext S. It follows from Theorem 9 of [1] that S is locally tame at p and hence that D is locally tame at p. This establishes Lemma 2.

Lemma 3. If D is a disk in E^{3} and D is locally tame at each point of Int D then D lies on a 2-sphere in E^{3}.

Proof. Let D be a disk in E^{3} which is locally tame at each point of Int D. It follows from [5] that there exists a homeomorphism h of E^{3} onto itself such that $h(D)$ is locally polyhedral except on $h(B d D)$. It follows from the proof of Lemma 5.1 of [4] that there exists a 2sphere S in E^{3} such that $h(D) \subset S$. Then $h^{-1}(S)$ is a 2 -sphere in E^{3} such that $D \subset h^{-1}(S)$. This establishes Lemma 3.

References

1. R. H. Bing, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc., 101 (1961), 294-305.
2. -, Conditions under which a surface in E^{3} is tame, Fund. Math., 47 (1959), 105-139.
3. K. Borsuk, Sur les rétracts, Fund. Math., 17. (1931), 152-170.
4. O. G. Harrold, H. C. Griffeth and E. E. Posey, A characterization of tame curves in three space, Trans. Amer. Math. Soc., 79 (1955), 12-34.
5. E. E. Moise, Affine structures in 3-manifolds, IV. Piecewise linear approximations of homeomorphisms, Ann. of Math., 55 (1952), 215-222.
6. J. R. Stallings, Uncountably many wild disks, Ann. of Math., 71 (1960), 185-186.

The Institute for Advanced Study

[^0]: Received January 15, 1963. This paper was witten while the author was a postdoctoral fellow of The National Science Foundation.

