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OPERATOR
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l Introduction* In what follows we shall be concerned with the
problem of perturbation of continuous spectra by an operator of finite
rank. Namely, we consider two self-adjoint operators HQ and Hi in
a Hubert space φ which are related to each other as follows:

[H1 = H0+ V,
{1.1) \

[ Vx = Σ ck(x, φk)φk, x e ξ> ,

where (φi9 φs) = δiS and ck is a nonzero real number. For this problem
the existence of the so-called wave operator W± and the scattering
operator1 S was proved by Kato [3] together with the unitary equivalence
of the absolutely continuous (abbr. a.c.) parts of Ho and Hx. As the
first step of his proof, he considered the case of r — 1 in detail and
proved a sort of explicit formulas for W± and S (or, in other words,
representations of them in certain spectral representation spaces
associated with HΓ0 and Hi8).

One of the main purposes of the present paper is to give a similar
kind of formulas for W± and S in the case of an arbitrary finite value
of r. For this purpose we use two kinds of spectral representation
spaces. The first is the classical one due to Hellinger and Hahn (see
[7, Chapt. VII]) and the second is one of its versions suitable for our
problem.

For a self-ad joint operator i ϊ in ξ> and a finite subset {uk; k=l, , n}
of ξ>, we denote by &(ulf " ,un;H) the smallest closed subspace of
φ containing {uk} and reducing H. Then, it is known [3, § 2] that
§ 0 ΞΞ 2(φlf , φr; Ho) = %(<Pit ' * > ΨA -Hi) ^nd that Ho — Hx in the
orthogonal complement £>J of φ0. As easy consequences, this yields
that W± and S are reduced by φί and that, on £>$, they are simply
the orthogonal projection on the a.c. subspaces of £>J with respect to
Ho. Hence, in the study of a representation of W± and Sf we can
assume without essential loss of generality that
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1 For the exact definition of W± and S, see (2.1) below.
2 Certain similar representations were given in the scattering problems associated

with partial differential operators of Schroedinger type. See, e.g. [2].
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For the sake of brevity of the exposition, we assume this in the
sequel. All of our theorems can be applied to the general case of
φ Φ £>0 with slight changes of words. This assumption being in effect,
the multiplicies of the spectra (see [7, Chapt. VII]) of Ho and Hλ are
finite. Since W± furnishes the unitary equivalence under consideration,
it should be represented by a matrix-valued function of the spectral
parameter λ which maps the spectral representation space of Ho into
that of J2i. In Theorem 2 we shall show that, in the representation
of the second kind, this matrix function can be obtained as the boundary
values W±(X) on reals of a matrix function W(z) of a complex variable.
The function W(z), which is given in terms of V and the resolvent
of Ho, is regular in the resolvent set of HQ. The determinant of W(z),
usually called the Weinstein determinant, has been shown to have a
close relation to the change of eigenvalues by the perturbation V
given in (1.1) (see, e.g., [4]). It might therefore be of interest to
point out that the boundary values of the same matrix has certain
connections with the perturbation of continuous spectra.

The representation of S is readily obtained from that of W± and
has the form of a matrix function S(λ) operating in the representation
space of Ho (Theorem 2). Moreover, in a suitably chosen representation
spaces of the first kind, this matrix function has a diagonal form for
all values of λ. In Theorem 3, we shall give a rule of getting all of
these eigenvalues of S(λ) from that of the matrix (W+1 WJ) (λ). Here,
we note that a relation between the determinant of S(λ) and the
Weinstein determinant has recently been obtained by Birman and
Krein [1] under a milder condition on V.

The method in the present paper may be characterized as a "time-
independent" method, in which one wants to minimize the use of the
theory of wave operators. Nevertheless, in 5 and 6 we shall make
free use of the already established facts on the wave operators for
the sake of brevity. In compensation, a comment will be made to
indicate how to pursue a "time-independent" method.

As a by-product, we shall give in 4 a seemingly new "time-
independent" proof of the unitary equivalence of the a.c. parts of ifα

and Hx. When r = 1, this proof is the same as Kato's [3].

2 Notation* We denote by Cn the unitary space of all w-tuples
of complex numbers and by CΓ the subspace of Cn consisting of all
the tuples whose last n — m components are zero. The inner product
in Cn is denoted by ( , )n, while that in ξ> simply by ( , ). The
letter λ denotes always a real number or a real variable and ' attached
to a function of λ indicates the differentiation with respect to λ. By
M(m, n) we denote the set of all matrices of complex numbers having
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m rows and n columns. We write M(n, n) = M{n). The identity in
M{n) is specified by the notation In. A matrix A e M(m, n) is sometimes
regarded to be an operator from Cn into Cm. Then 3ΐ(A) and 5R(A)
denote the range and the null space of the operator A. The same
notations will be used for operators in Hubert spaces. r(A) = dim ?ϋ(A)
is the rank of A. The symbol * indicates Hermitian adjoint matrix
or adjoint operator.

For a function σ(X), — CΌ < x < oo, of bounded variation, the
.symbol dσ is provisionally used to denote the Lebesgue-Stieltjes
measure determined by σ. The ZΛspace over the measure dσ is denoted
by L\σ).

Whenever the function aiό(X), 1 ^ i ^ m91 ^ j ^ n, are given, the
matrix (ai3{X)) e M(m, n) whose (i, j) element is α o (λ) will be denoted
by the corresponding capital letter as A(X). This convention may be
used in the reverse way.

For a self-ad joint operator H in ξ> and a function /(λ), — CΌ < x < c*>,
the operator f{H) is defined according to the usual rule of the operational
•calculus.

The letter p used as sub-(or super-) script always ranges over 0
and 1. When p and q are used in a certain formula, q always denotes
one of 0 and 1 which is different from p.

Finally, for the convenience of the later reference, we shall recall
the definition of W± and S:

f W±(Hq, Hv) = s-lim exp (ίtHq) exp (-UH9) PP ,
<2.1)

I S - W+(H0, Hλ) W-(H19 Ho) = W+(HU Ho)* W.{H19 Ho) ,

where Pp is the orthogonal projection on the a.c. subspace of φ with
respect to Hv.

3. Preliminary on spectral representations„ Since the argument

of this section will be applicable to both Ho and Hlf we omit the

subscript 0 and 1 in this section. Let 2JΪ be the a.c. subspace of φ

with respect to H= YλdE(X) and P the orthogonal projection on 3ft.

For later use, we first define

ίfti(λ) = (E(X)φjf φi), l£i,jl£r,
( ' } 17tf(λ) = (E(X)Pφjf PΨi) , l ^ i J ^ T .

The corresponding ikί(r)-valued functions are denoted by B(X) and
Γ(X) according to our convention. Incidentally, we note the relation

(3.2) JB'(λ) = Γ'(λ), a.e. ,

ivhich follows immediately from the definition.
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In what follows we shall construct two representations of 2JΪ by-
certain "function spaces" in such a way that HP has a "diagonal"
form. The assumption (1.2) implies that 3JΪ = &(Pφ19 , Pφr\ H).
Hence, according to the theory of self-adjoint operators in a Hubert
space (see [7, Chapt. VII]), there exist a nonnegative integer n ^ r
and ψk G 2Ji, 1 <£ k ^ n, such that:

( i ) 11**11 = 1;
(ii) if i Φ j , (E(X)ψif ψj) = 0 for every λ;
(iii) if ί > j , the measure d(E(X)ψi9 ψ{) is absolutely continuous-

with respect to the measure d(E(X)ψjf ψj); and
(iv) 9Ji = Σί=i Θ £(ΨV> ff). The number n is uniquely determined

by the properties (i)-(iv), while the set {ψk} is not. For brevity we
write σk(X) = (E(X)ψk, ψk) and denote by Σ(X) e M(w) the diagonal
matrix whose diagonal elements are σk(X).

As the representation space of the first kind, we take the Hubert
space g = Σϊ=i Θ L\σk). A generic element of g is written as / =
(/i, •••,/.), where /fceL2(σfc). The norm of / is given by | |/ | | 2 =
Σ ||/fc II2. Occasionally, it is convenient to use a representative functioa
f(x) of fe g. Precisely, a Cn-valued function /(λ) = (Λ(λ), . ,Λ(λ)),
— o o < λ < c o , is a representative function of / = (f19 ••• , /»)€§, if
each Λ(λ) is a representative function of fk e L\σk).

By virtue of the properties (i) and (iv) of {ψk} mentioned above,
we now see that there exists a unitary map F from 2Ji onto % which,
satisfies the following relationship:

(3.3) x = Σ {Fx)k{H)ψk , for each x e m,
k=l

where Fx = ((Fa?)lf , (^) n ) is the image of x by F. Furthermore,.
the mapping F is uniquely determined by the requirement (3.3). In
terms of the representative functions the inner product of x, y e 5ϋl is.
written as

(3.4) (x, y) = ^_β\\){Fx){X)y (Fy)(X))ndX , x,yeWl.

Furthermore, H is diagonal in the sense that (FHx) (λ) = X(Fx) (λ) for
each xeWl which is in the domain of H. (Precisely speaking, this-
relation means that for each representative function (Fx)(X) of Fx9

the right-hand side gives a representative function of FHx.)
One of the important properties of the matrix Σ'(X) introduced

above is that its rank is equal to the multiplicity ([7, Chapt. VII]}
m(λ) of λ with respect to the a.c. part HP of H. More precisely,,
we have the following lemma whose proof is obvious.

LEMMA 3.1. Let m(λ) be as above. Then, for almost all X we-
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have the following fact. The derivative σk(X) exists for all k and
σ'k(X) = 0 for all k > m(X) while none of the other σ[(X) is zero.
Therefore, Σ'(X) maps C™a) onto itself and its orthogonal complement
into {0}.

The representation introduced above has the advantage that the
base {ψk} is chosen to be "orthogonal". In handling the representation
of W±9 however, it is helpful to have another representation of 3Jί
which stems from φk more directly than the first one. As is easily
seen from the relation 3JΪ = &(Pφlf Pψr\ H), the space 501 is the
closure of all elements xeWl which are expressible as

(3.5) x = Σ xk(H)Pφk , xk e L\ykk) .

Roughly speaking, the new representation of x will be the r-tuple
formed by xk. In general, however, these xk are not uniquely deter-
mined. For this reason, we have to consider the equivalence classes of
r-tuples, regarding those two tuples that give the same x by (3.5) to be
equivalent. The precise argument will be carried out by considering-
the relation between two expressions (3.3) and (3.5) for x.

For brevity we write tki = (FPφ{)k e L\σk). Then, (3.3) yields that

(3.6) PΨi = ± tki(H)ψk , i = l, , r .
k=l

An M(n, r)-valued function Γ(λ), — co < λ < co, is called a representative
function of (ίfc4), if the (k, i) element tki(X) of T(X) is a representative
function of tki e L\σk). In the sequel T(X) serves as a transformation
matrix between our representations of 9Ji. Incidentally, we note that
there exists a representative function T(λ) which satisfies

(3.7) tki(X) = 0 whenever σ'k(X) = 0 .

LEMMA 3.2. (i) Let T(X) be a representative function of (tki)+
Then, we have

(3.8) Γ'(λ) - (T*Σ'T) (λ) , a.e. ,

(3.9) 3ϊ(Γ(λ))3αm ( λ ) , a.e.

If T(X) satisfies (3.7), then the equality holds in (3.9) instead of the
inclusion.

(ii) The multiplicity m(λ) of X with respect to the a.e. part of
H is given by

(3.10) m(λ) = r(Γ\X)) = r{B'(X)) , a.e.

Proof. The formula (3.8) is a straightforward consequence of



1310 S. T. KURODA

(3.6), For the proof of (3.9) we note that the set of all x e 2Ji which
are expressible as (3.5) with some xk e L2(ykk) is dense in 2Ji. Then,
(3.9) follows from Lemma 3.1 without much difficulty. The details
may be omitted. The remaining part of (i) follows from (3.9) at once.
Since Γ* is one-to-one on ^(T7), we see by (3.8), (3.9), and Lemma 3.1
that r(Γ'(X)) = r(2"(λ)) = m(λ), which proves (3.10).

We need one more matrix in the sequel. Let Q(X) e M(n) be the
orthogonal projection in Cn onto Cf(λ). Then, the relation (3.9) tells
us that there exists a measurable M(r, w)-valued function Z7(λ) satisfying
the relation

(3.11) T(X)U(X) = Q(X) , a . e .

If, furthermore, T(X) satisfies (3.7), then we have

(3.12)

We shall now construct the second representation of 2JΪ. Let ®
be the set of all Cr-valued measurable functions g(X) e Cr, — co < λ < co,
such that (Γ'(X)g(X), g(X))r is integrable with respect to the Lebesgue
measure. Since the matrix Γ'(X) is Hermitian symmetric and semi-
positive definite, the sesqui-linear form

(3.13) <</, Λ> = \~_JΓ'g, h)rόX , g, h e 5)

defined in 3) is semi-positive definite. Let © be the set of all residue
classes in © modulo the subspace consisting of all # e 3) such that
Kfff βy — 0. Then, © is a pre-Hilbert space in which the inner product
of g G © and ΐ) e © is defined by (3.13) with g and h being representatives
of the residue classes g and Ij, respectively. The space © will be our
second representation space. A representative of g e © will generally
be denoted by g(X).

LEMMA 3.3. Let T(X) be a representative function of (tki) defined
by (3.6). Then, the mapping τ which assigns T(X)g(X) to each g e ©
is well-defined as a mapping from © to § and τ is independent of
the choice of representative function T(X). Furthermore, τ is an
isometry with 5R(τ) = g, so that © is a (complete) Hilbert space. The
inverse of τ is given by (τ~y)(X) = U(X)f(X),fe%f where U(X) is an
arbitrary measurable matrix-valued function satisfying (3,11).

Proof. The fact that τ is a well-defined isometry from © to %
is readily seen from (3.8) and the definition of the inner product in
© (see (3.13)). The relation (3.8) is still true, if one of two T's on
the right-hand side is replaced by another representative function of
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(tki). The independence of τ on the choice of T(X) follows from this
at once. Let fe% be arbitrary and /(λ) a representative function of
/ . Since (3.8), (3.11), and Lemma 3.1 imply U*ΓU = QΣ'Q = 2", a.e.,
we see that g(X) = U(X)f(X) belongs to © and hence #(λ) determines
a residue class g e @. On the other hand, it follows from (3.11) and
Lemma 3.1 that Σ'(Tg —/)(λ) = 0, a.e. Hence, rg = / and the proof
of the lemma is complete.

Using the mapping τ given in Lemma 3.3, we now define the
mapping G from 2JΪ to © by putting

(3.14) Gx = τ - 1 ^ , for each x e 2Ji.

Then, by Lemma 3.3 G is a unitary mapping from 501 onto ©. The
inner product of x and y in 2Jί is given by

(3.15) (a, /̂) - Γ (Γ'(λ)(G^)(λ), (G?/)(λ))r dλ .
J-oo

For brevity we say that /(λ) = g(X) in © (or g), if f(X) and #(λ) are
representative functions of the same element of © (or g) Then, it
is clear that (GHx) (λ) = λ(Ga?) (λ) in @ for each a? 6 2JΪ in the domain
of H. Thus, we get our second representation of 501.

Lemma 3.3 gives the relation between two representations. Namely,
we have

UGx)(κ) = U(X)(Fx)(X) in © ,

l = T(\)(Gx)(\) in g .

Finally, we note that, if x e 301 admits the representation of the type
(3.5) and if the r-tuple formed by #i(λ), •••, xr(\) is denoted by x(X)9

then the relation

<3.17) (Gx)(X) = α?(λ) in ©

holds true. Indeed, (3.5) and (3.6) imply (Fx)(X) = T(X)x(X), so that
(Gx)(X) - (UT)(X)x(X) by (3.16). However, (3.8), (3.11), and Lemma 3.1
imply that Γ'(UT - Ir) = T*Σ'TUT - Γ = 0. Hence, (C7T)(λ)α>(λ) =
«(λ) in © and (3.17) is proved.

4* Unitary equivalence of the absolutely continuous spectra* We
shall next introduce the main tool for getting the representation of
W±9 that is, the matrix function W(z). As an easy consequence of
its basic properties, the "time-independent" proof of the unitary
equivalence under consideration will be given at the end of the section.

Throughout this and the following sections, we agree that Hϋ, V,
and Hi are as given in 1 and that all of the notations such as βi3

introduced in 3 are used with subscript p or superscript (p), p = 1, 2,
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when they refer to Hp instead of H in the previous section. In
particular, ίΰlp is the a.c. subspace of ξ> with respect to Hp and %p

and (8>p are its representation spaces.
For each complex number z belonging to the resolvent set of Hp,

the complex-valued function w[f(z), 1 ̂  i, j ^ r, is defined as

(4.1) w$(z) = δi3 + (-iy(V(Hp - z)^φh φt) .

By a simple computation using (1.1) we see that the matrix Wp e M(r)
formed by w\f{z) is written as

(4.2) W9(z) = Ir + (-iyC Γ (μ - z^dB^μ) ,
J-oo

where CeM(r) is given by C = {cAi} with ĉ  given in (1.1). As is
well-known (see, e.g. [6, Chapt. 7]), the boundary values on reals of

WP±(X) = lim WP(X ± is) ,
ε j o

exist for almost every λ. Our arguments will essentially be based
upon the following formulas involving W:

(4.3) WP+(X) - WP-(X) = 2πi(-iyCB'p(X) , a.e.

(4.4) Wτ(z) = W0(z)-' W^X)-1 - W^X)'1 , a.e.

(4.5) Wp(z)C = CTΓP(2)* TΓp±(λ)C = CWPT(X)* , a.e.

(4.6) CΓP(X) = (TΓp±CΓί WPT)(λ) ,

where q is the one of 0 and 1 which is different from p.

Proof of (4.3)-(4.6). The (i, j) component of the left-hand side
of (4.3) is equal to

i-iyci lim Γ ((/£ - (λ + ίε))-1 ~(μ-(χ- ίε))-1) dβ\f(μ)
ε l o J—oo

- 2πi{-iγcβψ{\) , a.e.

(for the last equality, see, e.g., [6, Chapt. VII];. This proves (4.3).
The first of (4.4) follows easily from the fact that

I + V(H0 - 2)-1 = (H, - z) (Ho - z)-1 = (/ - V(HX - z)- 1)- 1.

By multiplying both sides of (4.2) by C from the right, we obtain

Wp(z)C = C(l + (-1)" \~_Jjt - z)-'dBv(μ) 6)
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where we used the fact that C and Bp(μ) are Hermitian symmetric.
Thus, we get the first of (4.5). The second formulas of (4.4) and
(4.5) are obtained from the respective first by taking the limit. By
the repeated use of (4.3) and (4.4), we get 2πi(-l)pCB; = W^1 - W'J: =
W£(Wq-- Wq+)Wqlμ

1 = 2πi(-iy+1Wp±CBq'Wp+. Hence, (4.6) follows
from (3.2).

THEOREM 1. ([2, Theorem 1]) The absolutely continuous parts of
Ho and Hλ are unitarily equivalent.3

Proof. Since all the matrices in (4.6) except Γf are regular, we
see that r(Γ[{X)) = r(Γί(λ)), a.e. Consequently, it follows from (3.10)
that the multiplicity of λ with respect to the a.c. parts of Ho and Hx

coincide with each other a.e. As for the a.c. spectra, the last statement
is equivalent to the unitary equivalence ([7, Chapt. VII]).

5. Representation of wave and scattering operators* A represen-
tation of W± is now obtained, roughly speaking, as the multiplication
of W0±(λ), which maps ©0 onto ©i. We shall begin with the following
lemma.

LEMMA 5.1. The mapping which assigns h±(X) = Wp±(X)g(X) to
each Q e ®p is well-defined as an isometry from ®p to ®q.

Proof. By virtue of (4.4), (4.5), and (4.6) we get

W*±Γ'q Wp± = C-1 WPTCΓ[ WP± = C-1 Wpτ( Wq*CΓ'p Wq±) Wp± = Γ'p , a.e .

Hence,

Γ (Γ'ph±, h±)rd\ = Γ (Γpg, g)rdX
J—oo J-oo

for each g. The lemma follows from this at once.
With the aid of this lemma our representation of W± and S can

now be formulated as follows.

THEOREM 2. Let Gp be the isometry from 2JΪP onto ©p defined by
(3.14). Furthermore, let Wp± be the isometry from (&p to ®q determined
in Lemma 5.1. Then, the wave operator defined by (2.1) is expressible
as

(5.1) W±{Hqj Hp) = Gq

xWp±GPPp .

In particular, Wp± maps ©p onto ®q and hence has the inverse. The
3 That the theorem remains true without the assumption (1.2) is easily seen from the

facts we have remarked just before (1.2).
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scattering operator is expressed as

(5.2) S = G^SGoPo , S = W£Wo- .

If we want to use %p and %q as representation spaces, then we
have the following version of Theorem 2, which follows readily from
Theorem 2 and (3.14).

THEOREM 2' Let Fp be as in 3 and let τp be defined as in Lemma
3.3. Then, we have

<5.1)' W±(Hq, Hp) = F-\τqWp±τ-')FpPp ,

(5.2)' S = Fo-^τoSτ^FoPo .

REMARK 1. Using representative functions, (5.1) and (5.2) can be
written as

UGq W±x)(X) = Wp±(X)(GPx)(X) in ®ff, x e 2K, ,

j (G0Sx)(X) = K(X)(Gox)(X) in ©0, α; G 2K0 ,

where we put

<5.4) K(X) = WΌ+ίλ)-1 W0_(λ) G ikf(r) .

In the similar formulas corresponding to (5.1)' and (5.2)', the matrices
Wp± and Km (5.3) should be replaced by (TqWp±Up)(X) and (T0KU0)(X)r

respectively, where Tq and Up are as in 3 (in particular, see (3.11)).

REMARK 2. The wave operator W+(Hq, Hp) maps Tlp isometrically
onto 9Kg and furnishes the unitary equivalence considered in 4 (see [3]).
Hence, by (5.1) the operator W±(Hq, Hp) = Gq~

xWv±GpPp has the same
properties. (In particular, therefore, Wp± maps ®p onto ®q.) These
properties themselves, however, can also be proved directly without
referring to (5.1). In fact, we easily see W±(Hq, Hp)* = W±(HP, Hq),
which implies ϊR(W±(Hq, Hp)) = Tlλ. Furthermore, the definition of
W± gives the unitary equivalence at once.

REMARK 3. In the coming proof of Theorem 2 we shall make use
•of the already established fact that the limit in (2.1) exists. However,
the proof of this fact usually requires a step by step consideration
with respect to the rank of V based on the "transitivity" (see, e.g.,
[5, (1.6)]) of the wave operators. It might therefore be of interest
to remark that the existence of that limit, together with the formula
(5.1), can be proved directly without referring to the transitivity, so
that we have a method of fully time-independent character to treat
the whole problem. This can be done for instance, by literally gener-
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alizing the arguments used by Kato [3] for the proof of the case r = l

Proof of Theorem 2. The formula (5.1) implies all the other
statements in the theorem (see the first part of Remark 2 and the
formula (2.1)). We shall prove (5.1) for W+ = W+(H19 Ho). The other
cases can be handled similarly.

For simplicity we put

(5.5) W+ = G?W0+GQP0.

Since W+ and W+ are partially isometric operators with the initial set
9JΪ0 and the final set contained in ̂ flu it suffices to prove that (W+x, y) =
(W+x, y) for each x e 3Jϊ0 and y e SD̂ . Moreover, since the linear hull
of Ui=i9Kp,*> 2ftp,fc = 2(Ppφk; Hv) is dense in %Jlp, it is sufficient to show
the above relation for each x e 3JlQ)i and y e 3Ji1(y, 1 ^ i, j ^ r. Now,
such a? and y are expressible as x = f(H0)P0<Pi and 2/ = u{H^P^h where
/eL2(7|?}) and #eL2(7#). Therefore, we have

(5.6) (W r

+ a? f »)=
J

where we put jθ(λ) = (̂ .(λJW+α?, P^y). With the aid of certain
properties of W± (see, e.g., [5, § 1]) the function p(X) can be computed
as follows:

(5.7) p(X) = (T7+^0(λ)^, Px^ ) - (W+E0(X)x,

9>y) + i Km ((β« ( j r i + < β ) Fe-^^EΌW^, φj) dt
810 JO

The integral on the right side is equal to

(5.8) Σ ck (V ί ί I Γ o^o(λ)αj, 9>*)(β"(jrι+iB>9>*, 9>i) dt
k=l JO

= Σ ck \"dt Γ e-^f(μ)yf)'(μ)dμ Γ eiHv+is)dβfl(v)
k=l JO J—co J—oo

= - i ( λ ke(μ)dμ,
J—co

where we put

As ε tends to zero from above, ks(μ) tends a.e. to

k(β)=Λμ)Σίr\

It is easily seen, however, that the set of all feL\y{^) such that fc?

tend to k in the sense of L^—oo, co) forms a dense set of L2(τίi})
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Consequently, the set & of all those x e 3JΪ0;> which are expressible as
x = f(HQ)P<ff>i with such / as specified above, forms a dense set of ^i*

Let now xeB and substitute the integral in (5.7) by the right
side of (5.8). Then, the limit e | 0 can be taken under the integral
sign with respect to μ, and the limit of the integrand belongs to
L\— co, co). Hence, by differentiation we get

(5.9) p\X) = f(X)j^(X) + k(X) .

By the definition of k(X) the right-hand side of (5.9) is equal to /(λ)
times the (j, ί) element of the matrix Wy+Γ'o = Γ[ WQ+ (the last equality
is implied by (4.5) and (4.6)). Thus, we get from (5.6) that

= l J-oo

By (5.5), (3.15), and (3.17) we finally obtain (W+x, y) = (W+x, y) for
each x e 5£ and y e SEJΪiy. Since ® is dense in ςMoίf the proof of the
theorem is complete.

6, Diagonalization of scattering operator. Since S is a unitary
operator in 9K0 which commutes with Ho, it takes a diagonal form in
a certain representation space of the type g determined by a special
choice of the set {ψk}. Namely, there exists a set {ψk; k — 1, , n}c3DΪ0,
2fto = Σ ϊ = i θ % f c i HQ), such that, besides the properties (i)-(iv) specified
near the beginning of 3, it has the following additional property: S
maps S(ψk; Ho) onto itself and is represented there by a multiplicative
operator. Precisely speaking, for each k,l ^ k ^n, there exists
ξk e L\σk), σk(X) = (E0(X)ψk, ψk), such that | ζk(X) \ = 1 a.e. with respect
to the measure dσk and x = f(H0)ψk implies Sx — ξkf(H0)ψk. The
function ξk(X) may be called the eigenvales of S in the spectral repre-
sentation space. In what follows we shall show that ξk(X) are given
as eigenvalues of the matrix K(X) defined by (5.4).

THEOREM 3. For almost every X the following statement holds
true. Let m — m(λ). Then, among r eigenvalues of K(X), there exist
r — m eigenvalues 1, and the remaining m eigenvalues are equal to
ίiM> , ζJS) in a certain order. (Some of ξk(X) may be equal to 1.)

Proof. Let us first note the following properties of Wp± and K.
Put mp(X) = 8ϊ(Γ;(λ)). Then, (4.6) implies that

(6.1) W,±(Xβtp(K) =. S^(λ), a.e .

Since W1+(λ>) = W1-.(X) o n X ( λ ) by (4.3) and (3.2), it follows from (4.4)
and (6.1) with p = 0 that
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(6.2) K(X) = Ir on %(X) .

Let now {ψk} be one of those "bases" of 9Ji0 with respect to which
S has the diagonal form as prescribed above. In reference to {γk}
thus fixed, let Γ0(λ) and U0(X) be defined as in 3. Furthermore, we
can and shall require that T0(λ) satisfies (3.7). Then, the following
arguments hold true for almost all λ.

Let λ be fixed and let m — m(λ). Hereafter, we simply write To

etc. instead of T0(λ) etc. By the assumption (3.7), the matrices
To e M{n, r) and Uo e M(r, n) have the form

A e M(m, r)

Uo = (B, C) , BeM(r, m) , Ce(r,n-m) .

Here, n — m column vectors of C belong to 3̂ 0 and AB = Im because
of (3.11). (Note that the assumption (3.7) implies 3l(Γ0) = 5ft0 because
of (3.8).) It therefore follows from (6.2) that the matrix J= T0KU0 e M{n)
has the form

AKBeM(m).

We note that J is the matrix introduced in Remark 1 after Theorem
2'. Hence, in view of that remark and the special choice of {ψk}
made above, we thus obtain

(AKB is the diagonal matrix with the

(diagonal elements & , ξm .

Since the only restriction imposed on Uo is (3.11), we have much freedom
in choosing it. In particular, since (3.7) and (3.9) implies 9ϊ( TQ) = Cf,
we can make UQC% equal to the orthogonal complement % of %• In
such a choice of UOf all the m column vectors of B span %. Let
now D e M(r, r — m) be a matrix such that r — m column vectors of
D form a complete orthonormal set of 9^. Then, the matrix Z —
(B, D) e M(r) is a regular matrix with the inverse Z~~x = n* (note
that AB — Im). Using (6.2) and the special feature of B and D, we
finally obtain

which proves the theorem in virtue of (6.3).

REMARK. If ξk(X) Φ 1, a.e., with respect to dσk, we can easily
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show that a representative function of Foψk e %0 is the eigenvector of
K(X) with the eigenvalue £Λ(λ). However, we do not know if ξk(\) Φ 1
a.e. with respect to dσk or not. For this reason another proof of
Theorem 3 along this line, which is actually possible, may not be
trivially simple.

In this connection we observe that Sx = x, x e 9JΪ0, means
CΓiWo-F&eyiiΓΌ) (see (4.3)). If r = 1, it is impossible (under the
assumption of (1.2)). A stronger requirement that S = I on 3Ji0 makes
ίR(CΓ[ Wo-) c 3l(Γf

0) necessary and the latter is possible only when
r ^ 2n. However, we cannot say anything more about this uniqueness
problem of S at present.

Added in proof. Using the ideas developed by L. de Branges (L.
de Branges, Perturbation of self-adjoint transformations, Amer. J.
Math., 84 (1962), 543-560), some results in the present paper will be
shown to have their analogues for a wider class of perturbations.
This will be discussed elsewhere.

REFERENCES

1. M. S. Birman and M. G. Krein, On the theory of wave operators and scattering
operators, Dokl. Akad. Nauk, S.S.S.R., 144 (1962), 475-478.
2. T. Ikebe, Eig en function expansions associated with the Schroedinger operators and
their applications to scattering theory, Arch. Rat. Mech. Anal., 5 (1960), 1-34.
3. T. Kato, On finite-dimensional perturbations of self-adjoint operators, J. Math. Soc.
Japan, 9 (1957), 239-249.
4. S. T. Kuroda, On a generalization of WeinsteinΆronszajn formula and the infinite
determinant, Sci. Papers of College of General Education, Univ. of Tokyo, 11 (1961), 1-12.
5. , Perturbation of continuous spectra by unbounded operators, I, J. Math. Soc.
Japan, 11 (1959), 247-262.
6. R. H. Nevanlinna, Eindeutige analytische Funktionen, Berlin, (1936).
7. M. H. Stone, Linear transformations in Hilbert space and their applications to analysis,
Amer. Math. Soc. Coll. Publ., 15, New York (1932).

UNIVERSITY OF CALIFORNIA, BERKELEY

AND

UNIVERSITY OF TOKYO




