AN EFFECTLESS CUTTING OF A VIBRATING MEMBRANE

H. F. Weinberger

Let G be a multiply connected domain bounded by an outer boundary Γ_{0}, inner boundaries $\Gamma_{1}, \Gamma_{2}, \cdots$, and possibly some other inner boundaries $\gamma_{1}, \gamma_{2}, \cdots$. Let u be the eigenfunction corresponding to the lowest eigenvalue λ_{1} of the membrane problem

$$
\begin{equation*}
\Delta u+\lambda_{1} u=0 \quad \text { in } G \tag{1}
\end{equation*}
$$

with

$$
\begin{align*}
u=0 & \text { on } \Gamma_{0}, \Gamma_{1}, \cdots \\
\frac{\partial u}{\partial n}=0 & \text { on } \gamma_{1}, \gamma_{2}, \cdots
\end{align*}
$$

We shall show that there exists a cut $\tilde{\gamma}$ consisting of a finite set of analytic arcs along which $(\partial u / \partial n)=0$ which separates any given one of the fixed holes, say Γ_{1}, from the outer boundary Γ_{0} and the other holes $\Gamma_{2}, \Gamma_{3}, \cdots$. This means that the membrane G may be cut in two along $\tilde{\gamma}$ without lowering its lowest eigenvalue. This fact is used in the preceding paper of J. Hersch to'establish an upper bound for λ_{1}.

We assume that $\Gamma_{0}, \Gamma_{1}, \cdots$ have continuous normals and that $\gamma_{1}, \gamma_{2}, \cdots$ are analytic. Then it is well-known that u has the following properties:
(a) $u>0$ in G, and $\frac{\partial u}{\partial n}<0$ on $\Gamma_{0}, \Gamma_{1}, \cdots$.
(b) u is analytic in $G+\gamma_{1}+\gamma_{2}+\cdots$.
(c) $u_{x x}$ and $u_{y y}$ do not vanish simultaneously.
(The last property follows from (3a) and (1)).
We define G_{1} to be the set of points of G from which the fall lines, i.e. the trajectories of

$$
\begin{align*}
& \frac{d x}{d t}=-u_{x} \tag{4}\\
& \frac{d y}{d t}=-u_{y}
\end{align*}
$$

reach Γ_{1}. By property (3a) G_{1} contains a neighborhood in G of Γ_{1}, and its exterior contains neighborhoods in G of $\Gamma_{0}, \Gamma_{2}, \cdots$. Since u_{x}

[^0]and u_{y} are continuous, G_{1} is open.
Let $\tilde{\gamma}$ be the part of the boundary of G_{1} that lies in G. Let P be a point of $\tilde{\gamma}$ where the gradient of u does not vanish. Then there is a trajectory γ satisfying (4) through P. Let Q be any other point on γ. Since P is not in G_{1}, it follows from the definition that Q is not in G_{1}. On the other hand, if a whole neighborhood of Q were not in G_{1}, it would follow from the continuity of the trajectories with respect to their initial points that a whole neighborhood of P would be outside G_{1}. This would contradict the fact that P is a boundary point of G_{1}.

Thus we have shown that the whole trajectory γ lies in $\tilde{\gamma}$. It cannot go to Γ_{1}. Since the set of points from which trajectories go to $\Gamma_{0}, \Gamma_{2}, \cdots$ is also open, γ cannot go to these boundary components.

We note that u is monotone on γ, and

$$
\begin{equation*}
\left|\frac{d u}{d s}\right|=|\operatorname{grad} u| \tag{5}
\end{equation*}
$$

Thus γ is either of finite length, or it must contain a sequence of points Q_{1}, Q_{2}, \cdots on which grad u approaches zero. These will have a limit point Q at which $\operatorname{grad} u=0$. (It may be that Q lies on one of the γ_{i}. In this case we think of u extended across γ_{i} as an analytic function by reflection).

There is a neighborhood of Q in which the trajectories can be determined by examining the first few terms of the power series for u. Using property (3c), we find that γ is of finite length. This is, of course, true in both the t and $-t$ directions.

The free boundary curves γ_{i} are composed of trajectories of (4) and critical points, i.e., points where grad $u=0$. Hence it follows from the uniqueness of the initial value problem for (4) that if γ ends on γ_{i}, the end point must again be a critical point. Thus, each trajectory γ in $\tilde{\gamma}$ connects two critical points.

It follows from properties (3b) and (3c) and the implicit function theorem that a critical point Q is either an isolated critical point or lies on an analytic arc of critical points. These arcs are again isolated.

Thus we have shown that $\tilde{\gamma}$ is composed of a finite number of analytic arcs of finite length along which $(\partial u / \partial n)=0$, and a finite number of critical points. We delete any isolated points of $\tilde{\gamma}$.

The fact that $\tilde{\gamma}$ separates Γ_{1} from $\Gamma_{0}, \Gamma_{2}, \cdots$ is clear from the definition of G_{1}.

The above considerations apply to any function with properties (3).
The author wishes to thank J. Hersch and D. Ludwig for helpful discussions of this problem.

[^0]: Received August 23, 1962. Prepared under Contract Nonr 710 (16) between the Office of Naval Research and the University of Minnesota.

