DEGENERATE ELLIPTIC EQUATIONS

R. M. Redheffer and E. G. Straus

Let B denote a region of Euclidean n space, with points $x=$ $\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in B$, and let $u=u(x)$ be such that each partial derivative, u_{i}, is a differentiable function of x. If

$$
\sum a_{i j}(x) u_{i j}+g(|\operatorname{grad} u|) \geqq 0 \text { and }\left(a_{i j}\right) \geqq 0
$$

then appropriate conditions on $\left(\alpha_{i j}\right)$ and on the function g ensure that u satisfies the maximum principle. That is, the inequality $u \leqq m$ on ∂S implies $u \leqq m$ in S for every constant m and every compact set $S \subset B$.

For example: Let $g(s)$ be positive, continuous and increasing for $s>0$, and let

$$
\int_{0}^{1} \frac{d s}{g(s)}=\infty
$$

Suppose there exists a function $c(x) \in C^{(2)}$ such that, for $x \in S$,

$$
\inf \sum a_{i j}(x) c_{i}(x) c_{j}(x)>0, \quad \inf \sum a_{i j}(x) c_{i j}(x)>-\infty
$$

Then the maximum principle holds [1].
If $g(s)=o(s)$ the weaker condition [2]

$$
\inf \sum a_{i j}(x) c_{i j}(x)>0
$$

suffices; for example, let ($a_{i j}$) be continuous and nonvanishing. Even when $g(s)=o(s)$, the maximum principle fails if $\left(a_{i j}\right)$ vanishes at one point. But if $g(s)=0$, a great many zeros can be allowed, and that is the reason for this note.

We shall establish:
Theorem 1. Let u be a $C^{(2)}$ solution of $\sum a_{i j}(x) u_{i j} \geqq 0$, where $\left(a_{i j}\right) \geqq 0$. Suppose that the set of points $x \in B$ where $\left(a_{i j}\right)=(0)$ has no interior points. Then u satisfies the maximum principle.

The proof depends on the following lemma.
Lemma 1. Let $u \in C^{(2)}$ in a bounded region B, and let $u \in C^{(0)}$ be in the closure, \bar{B}, of B. Let \widetilde{B} be a dense subset of B. If $\sup _{x \in B} u>\sup _{x \in \partial B} u$ then there exists a quadratic polynomial $\theta(x)$ with arbitrarily small coefficients so that $\left(\theta_{i j}\right)>0$ and $u+\theta$ attains
its maximum in \widetilde{B}.
Proof. Choose $h>0$ so small that $\sup _{\partial_{B}}\left(u+h|x|^{2}\right)<\sup _{B}\left(u+h|x|^{2}\right)$. Then the function $v=u+h|x|^{2}$ attains its maximum at a point $x_{0} \in B$. The function $w=v-(h / 2)\left|x-x_{0}\right|^{2}$ has x_{0} as a unique maximum point and satisfies $\left(w_{i j}\left(x_{0}\right)\right)=\left(v_{i j}\left(x_{0}\right)\right)-h I \leqq-h I<0$ and therefore $\left(w_{i j}(x)\right)<0$ in a neighborhood $N:\left|x-x_{0}\right|<\delta$. The surface $S: z=$ $w(x)$ is strictly concave for $x \in N$, while for $x \notin N$ we have $w(x) \leqq$ $w\left(x_{0}\right)-h \delta^{2} / 2$. Since the tangent plane of S at x_{0} is horizontal and its direction varies continuously in N, there is a neighborhood $N_{1} \subset N$ of x_{0} so that tangent plane of S at any point $x_{1} \in N_{1}$ lies entirely above S, except at the point x_{1} itself.

Choose $x_{1} \in N_{1} \cap \widetilde{B}$. Then function $w(x)-w\left(x_{1}\right)-\sum_{i} w_{i}\left(x_{1}\right)\left(x^{i}-x_{1}^{i}\right)$ is negative everywhere in the closure of B except at x_{1}. Thus, the function

$$
\theta(x)=h|x|^{2}-\frac{1}{2} h\left|x-x_{0}\right|^{2}-\sum_{i} w_{i}\left(x_{1}\right)\left(x^{i}-x_{1}^{i}\right)
$$

has the desired properties, since $\left(\theta_{i j}\right)=h I>0$ and we can choose h and $w_{i}\left(x_{1}\right)$ arbitrarily small.

Proof of Theorem 1. Let \widetilde{B} be the set for which $\left(a_{i j}\right) \neq 0$. If for some compact subset S of B we would have u attain its maximum in the interior of S, then according to Lemma 1 we could choose θ so that $u+\theta$ attained its maximum at a point of $\widetilde{B} \cap S$. This leads to a contradiction since $\left(u_{i j}\right) \leqq-\left(\theta_{i j}\right)<0$ at this point.

The foregoing proof makes essential use of the condition $u \in C^{(2)}$. We now assume only that u is differentiable.

A singularity is a point where one or more of the following undesirable things happen:
(1) Some derivative u_{i} fails to be differentiable.
(2) The differential inequality $\sum a_{i j}(x) u_{i j} \geqq 0$ fails.
(3) The matrix $\left(a_{i j}\right)=(0)$.
(4) The condition $\left(\alpha_{i j}\right) \geqq 0$ fails.

A "smooth surface" is a surface of form $\phi(x)=0$, where $\phi \in C^{(2)}$ and grad $\phi \neq 0$. We can now state:

Theorem 2. Let u be differentiable for $x \in B$, and let the singularities be contained in the union of countably many smooth surfaces. Then u satisfies the maximum principle.

The proof again depends on a small modification of u which moves the maximum outside the surfaces of singularities.

Lemma 2. Let u be differentiable in the bounded region B and continuous in the closure of B. Let $\phi^{(k)}(x)$ be twice differentiable with bounded $\phi_{i j}^{(k)}$ and $\operatorname{grad} \phi^{(k)}(x) \neq 0$ in $B ; k=1,2, \cdots$.

If $\sup _{B} u>\sup _{\partial B} u$ then there exists a function $\theta(x)$ twice differentiable in B so that $\theta, \theta_{i}, \theta_{i j}$ are arbitrarily small in B; $\left(\theta_{i j}\right)>0$ and $u+\theta$ attains its maximum at a point of B which does not lie on any surface $\phi^{(k)}(x)=0$.

Proof. We write $\theta=h|x|^{2}+\sum c_{k} \phi^{(k)}(x)$ where $h>0$ is chosen so small that $\sup _{B}\left(u+h|x|^{2}\right)>\sup _{\partial B}\left(u+h|x|^{2}\right)+h$ and the c_{k} are determined successively as follows. Set $\theta^{(0)}=h|x|^{2}$ and $\theta^{(n)}=$ $h|x|^{2}+\sum_{k=1}^{n} c_{k} \phi^{(k)}(x)$. If $u+\theta^{(n)}$ does not attain its maximum on $\phi^{(n+1)}(x)=0$ then we set $c_{n+1}=0$. If $u+\theta^{n}$ does attain its maximum on $\phi^{(n+1)}(x)=0$ then we choose $c_{n+1}>0$ but so small that

$$
\begin{align*}
& c_{n+1}\left(\phi_{i j}^{(n+1)}(x)\right)<\frac{h}{2^{n+1}} I, \tag{1}\\
& c_{n+1}\left|\phi^{(n+1)}(x)\right|<\frac{1}{2^{n+1}}\left(\max _{B}\left(u+\theta^{(k)}\right)-\max _{\phi^{(k)}=0}\left(u+\theta^{(k)}\right),\right. \tag{2}\\
& \quad k=1,2, \cdots, n
\end{align*}
$$

$$
\begin{equation*}
c_{n+1}\left|\phi^{(n+1)}(x)\right|<\frac{h}{2^{n+1}}, \quad c_{n+1}\left|\phi_{i}^{(n+1)}(x)\right|<\frac{h}{2^{n+1}} \tag{3}
\end{equation*}
$$

for all $x \in B$.
Since $\operatorname{grad} \phi^{(n+1)} \neq 0$ it follows that $u+\theta^{(n+1)}$ does not attain its maximum on $\phi^{(n+1)}(x)=0$ while condition (2) guarantees that it also does not attain its maximum on $\phi^{(k)}(x)=0, k=1, \cdots, n$. Conditions (1) and (3) guarantee the convergence of θ to a twice differentiable function which together with its first and second derivatives is small for small choices of h. By condition (2) $u+\theta$ does not attain its maximum on any surface $\phi^{(k)}(x)=0$, but since $|\theta|<h|x|^{2}+h$ it attains its maximum in B. Finally, condition (1) makes

$$
\left(\theta_{i j}\right)>2 h I-\sum c_{k}\left(\left|\phi_{i j}^{(k)}\right|\right)>2 h I-\sum \frac{h}{2^{k}} I=h I
$$

The proof of Theorem 2 now proceeds exactly as the proof of Theorem 1.

Combining the ideas of Theorems 1 and 2 we obtain the following generalization of Theorem 1.

Theorem 3. Let u be differentiable in B, and have continuous second derivatives except on the union of countably many smooth surfaces. If the conditions

$$
\sum a_{i j}(x) u_{i j} \geqq 0, \quad\left(a_{i j}\right) \geqq 0, \quad\left(a_{i j}\right) \neq(0)
$$

[hold on a dense subset of B, then u satisfies the maximum principle. Proof. According to Lemma 2 we can find a function, θ so that $\left(\theta_{i j}\right)>0$ and $u+\theta$ attains its maximum at a point of continuity of $\left(u_{i j}\right)$. The construction in the proof of Lemma 1 therefore yields a function $\tilde{\theta}$ so that $u+\theta+\tilde{\theta}$ attains its maximum at a point of the set of points in B at which $\left(a_{i j}\right) \neq 0$, and $\left(\theta_{i j}\right)+\left(\widetilde{\theta}_{i j}\right)>0$.

It is fairly obvious that these theorems are in many ways best possible. Certainly if the set at which $\left(a_{i j}\right)=0$ has interior points the maximum principle fails.

The integral of a singular (Cantor) function satisfies $u_{11}=0$ except at points of the Cantor set, but it need not satisfy the maximum principle. Thus the restriction to a denumerable number of surfaces of singularities in Theorems 2 and 3 cannot be substantially relaxed.

References

1. R. M. Redheffer, An extension of certain maximum principles, Monatsh. f. Math., 62 (1962), 56-75.
2. ——, Bemerkungen über Monotonie und Fehlerabschätzung bei nichtlinearen partiellen Differentialgleichungen, Arch. Rat. Mech. and Anal., 10 (1962), 427-457.

University of California, Los Angeles

