ON THE SOLVABILITY OF $x e \equiv(\bmod p)$

J. B. Muskat

1. Let e be an integer greater than 1 . Let p be a prime $\equiv 1$ $(\bmod e)$. What conditions must p satisfy if e is an e th power residue, modulo p ?

Let g be a fixed primitive root, modulo p. If $p \nmid a$, define ind a as the least nonnegative integer t such that $g^{t} \equiv a(\bmod p)$. For fixed $h, k, 0 \leqq h, k \leqq e-1$, define the cyclotomic number (h, k) as the number of solutions of

$$
\text { ind } n \equiv h(\bmod e), \operatorname{ind}(n+1) \equiv k(\bmod e), 1 \leqq n \leqq p-2
$$

Let $f=(p-1) / e$. It is well known that

$$
\begin{align*}
(h, k) & =(e-h, k-h), \tag{1}\\
(h, k) & =(k, h), \tag{2}\\
(h, k) & =(k+e / 2, h+e / 2), \\
\sum_{h=0}^{e-1}(h, k) & = \begin{cases}f-1, & f \text { odd }, \\
f, & 1 \leqq 0,\end{cases} \tag{3}\\
\sum_{k=0}^{e-1}(h, k) & = \begin{cases}f-1, & f \text { even }, h=0 \\
f-1, & f \text { odd, } h=e / 2, \\
f, & \text { otherwise }\end{cases}
\end{align*}
$$

Let ζ_{e} denote a primitive e th root of unity. Define the primitive e th power character $\chi_{p}(a)=\zeta_{e}^{\text {ind } a}$ for $a \not \equiv 0(\bmod p)$.

THEOREM 1. ind $e \equiv(p-1) / 2-\sum_{h=1}^{e-1}(h, 0) h(\bmod e)$.
Proof. Let $z \equiv g^{f}(\bmod p)$. Then

$$
e \equiv \prod_{k=1}^{e-1}\left(1-z^{k}\right)(\bmod p)
$$

For a fixed $v, 0 \leqq v \leqq e-1$, let \sum_{v} and Π_{v} denote the sum and the product, respectively, over all $n, 1 \leqq n \leqq p-1$, such that ind $n \equiv v(\bmod e)$. Define

$$
\Sigma_{v}^{\prime}=\sum_{v}, v \neq 0 ; \sum_{0}^{\prime}=\sum_{n \neq 1}
$$

Then

[^0]$$
x^{f}-z^{v} \equiv \Pi_{v}(x-n)(\bmod p)
$$

Set $x=1$. Then

$$
1-z^{v} \equiv \Pi_{v}(1-n)(\bmod p)
$$

Thus

$$
\begin{aligned}
\text { ind } e & \equiv \sum_{v=1}^{e-1} \sum_{v} \text { ind }(1-n) \\
& \equiv \sum_{v=0}^{e-1} \sum_{v}^{\prime} \operatorname{ind}(1-n)-\sum_{0}^{\prime} \operatorname{ind}(1-n) \\
& \equiv \sum_{u=1}^{p-1} \operatorname{ind} u-\operatorname{ind} 1-\sum_{0}^{\prime}[\operatorname{ind}(-1)+\operatorname{ind}(n-1)] \\
& \equiv f e(e-1) / 2-(f-1) e f / 2-\sum_{0}^{\prime} \operatorname{ind}(n-1) \\
& \equiv e f / 2-\sum_{h=1}^{e-1}(h, 0) h(\bmod e)
\end{aligned}
$$

Corollary 1. If e is odd, ind $e \equiv \sum_{h=1}^{(e-1) / 2} h[(e-h, 0)-(h, 0)]$ $(\bmod e)$.
2. Hereafter, let e be an odd prime.

Define the Jacobi sum
$\pi(j, k)=\sum_{n=2}^{p-1} \chi_{p}^{j}(n) \chi_{p}^{k}(1-n)=\sum_{n=1}^{p-2} \chi_{p}^{k}(n) \chi_{p}^{j}(n+1), j, k, j+k \not \equiv 0(\bmod e)$.
It can be shown easily that

$$
\pi(v k, k)=\sum_{i=0}^{e-1} B(i, v) \zeta_{e}^{k i},
$$

where

$$
B(i, v)=\sum_{h=0}^{e-1}(h, i-v h) .
$$

Also, if v^{\prime} is any solution of $v v^{\prime} \equiv 1(\bmod e)$,

$$
\begin{equation*}
B(i, v)=B(i, e-v-1)=B\left(i v^{\prime}, v^{\prime}\right) \tag{5}
\end{equation*}
$$

It will be demonstrated that for e an odd prime, ind $e(\bmod e)$ can be expressed as a linear combination of $B(i, v)$, the rational integral coefficients of Jacobi sums. N. C. Ankeny gave a similar criterion, expressed in terms of the coefficients of the eth power Gaussian sum

$$
\tau\left(\chi_{p}\right)^{e}=p \prod_{k=1}^{e-2} \pi(1, k)
$$

and a variation of this criterion was found by the author [$2, \mathrm{pp} .103,108]$.

Set

$$
S=\sum_{i=1}^{(e-1) / 2} i \sum_{v=1}^{e-2}[B(e-i, v)-B(i, v)]
$$

Theorem 2. If e is an odd prime, then e ind $e \equiv S\left(\bmod e^{2}\right)$.
Proof. If

$$
\begin{aligned}
1 \leqq & i \leqq e-1, \sum_{v=1}^{e-2} B(i, v)=\sum_{v=1}^{e-2} \sum_{h=0}^{e-1}(h, i-v h) \\
& =\sum_{v=1}^{e-2}(0, i)+\sum_{h=1}^{e-1} \sum_{v=1}^{e-2}(h, i-v h) \\
& =(e-2)(0, i)+\sum_{h=1}^{e-1}\left[-(h, i)-(h, i+h)+\sum_{v=0}^{e-1}(h, i-v h)\right] \\
& =(e-2)(0, i)+\sum_{h=1}^{e-1}[-(h, i)-(e-h, i)+f], \quad \text { by }(1) \text { and }(4), \\
& =(e-2)(0, i)-2[f-(0, i)]+(e-1) f, \quad \text { by }(3), \\
& =(i, 0) e+(e-3) f, \quad \text { by }(2) .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
e[(e-i, 0)-(i, 0)]=\sum_{v=1}^{e-2}[B(e-i, v)-B(i, v)] \tag{6}
\end{equation*}
$$

Substituting (6) into Corollary 1 yields the theorem.
Corollary 2. If e is an odd prime, e is an eth power residue, modulo p, if and only if $S \equiv 0\left(\bmod e^{2}\right)$.
C. E. Bickmore presented without proof criteria (attributed to L. Tanner) for $e=5$ and $e=7$ [1, pp. 29, 36]. These criteria, (7) and (8), follow from Theorem 2:

Hereafter, let $B(i, 1)=d_{i}, B(i, 2)=c_{i}$.
If $e=5, B(i, 3)=B(i, 1), B(i, 2)=B(3 i, 3)=B(3 i, 1)$, by (5).

$$
\begin{aligned}
5 \text { ind } 5 & \equiv\left[2\left(d_{4}-d_{1}\right)+\left(d_{2}-d_{3}\right)\right]+2\left[2\left(d_{3}-d_{2}\right)+\left(d_{4}-d_{1}\right)\right] \\
& \equiv 4\left(d_{4}-d_{1}\right)+3\left(d_{3}-d_{2}\right)(\bmod 25)
\end{aligned}
$$

Multiply the congruence by 6 :

$$
\begin{equation*}
5 \text { ind } 5 \equiv d_{1}-d_{4}+7\left(d_{2}-d_{3}\right)(\bmod 25) \tag{7}
\end{equation*}
$$

(Theorem 1 is a generalization of a proof of (7) which Emma Lehmer communicated to the author.)

If $e=7, B(i, 5)=B(i, 1), B(i, 3)=B(5 i, 5)=B(5 i, 1), B(i, 4)=B(i, 2)$, by (5). Also, $B(1,2)=B(2,2)=B(4,2), B(3,2)=B(5,2)=B(6,2)$, by
(1) and (2).

$$
\begin{aligned}
7 \text { ind } 7 & \equiv\left[2\left(d_{6}-d_{1}\right)+2\left(c_{6}-c_{1}\right)+\left(d_{2}-d_{5}\right)\right] \\
& +2\left[2\left(d_{5}-d_{2}\right)+2\left(c_{5}-c_{2}\right)+\left(d_{4}-d_{3}\right)\right] \\
& +3\left[2\left(d_{4}-d_{3}\right)+2\left(c_{4}-c_{3}\right)+\left(d_{6}-d_{1}\right)\right] \\
& \equiv 5\left(d_{6}-d_{1}\right)+3\left(d_{5}-d_{2}\right)+8\left(d_{4}-d_{3}\right)(\bmod 49) .
\end{aligned}
$$

Multiply the congruence by 39 :
(8) $\quad 28$ ind $7 \equiv d_{1}-d_{6}-19\left(d_{2}-d_{5}\right)-18\left(d_{3}-d_{4}\right)(\bmod 49)$.

The author is grateful to the referee for his helpful suggestions.

Bibliography

1. C. E. Bickmore, On the Numerical Factors of $a^{n}-1$ (Second Notice), The Messenger of Mathematics, 26 (1896), 1-38.
2. J. B. Muskat, On Certain Prime Power Congruences, Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, 26 (1963), 102-110.
3. A. L. Whiteman, The Cyclotomic Numbers of Order Ten, Proceedings of the Symposia in Applied Mathematics, Vol. 10, 95-111, American Mathematical Society, Providence, Rhode Island, 1960.

University of Pittsburgh

[^0]: Received April 17, 1963. This research was supported in part by the National Science Foundation, Research Grant No. G 11309. Reproduction in whole or in part is permitted for any purpose of the United States Government.

