ON SOME MAPPINGS RELATED TO GRAPHS

Paul Kelly

Let N denote a set of n distinct elements $a_{1}, a_{2}, \cdots, a_{n}$ and let $\mathscr{S}(h)=\left\{S_{1}, S_{2}, \cdots, S_{m}\right\}, m=\binom{n}{h}$ be the collection of all sets formed by selecting h elements at a time from N. If $S_{i}=\left\{a_{i_{1}}, a_{i_{2}}, \cdots, a_{i_{h}}\right\}$ is any set in $\mathscr{S}(h)$ and if Γ is any mapping of N onto itself, then Γ induces a mapping Ψ of $\mathscr{S}(h)$ onto itself defined by $S_{i} \Psi=$ $\left\{a_{i_{1}} \Gamma, a_{i_{2}} \Gamma, \cdots, a_{i_{h}} \Gamma\right\}$. We seek conditions under which, conversely, a mapping of $\mathscr{S}(h)$ onto itself must be of this induced type.

If Ψ is a mapping of $\mathscr{S}(h)$ onto itself, it will be said to "preserve maximal intersections" if each two of its sets which intersect on $h-1$ elements are mapped to two sets which also have $h-1$ elements in common. It will be shown that if $n \neq 2 h$ this is sufficient to imply that Ψ is induced by a mapping of N onto itself.

We observe first that to each set S_{i} in $\mathscr{S}(h)$ there corresponds a set S_{1}^{*} in $\mathscr{S}(n-h)$ and which consists of those elements of N not in S_{i}. And to any mapping Ψ of $\mathscr{S}(h)$ onto itself there corresponds a mapping Ψ^{*} of $\mathscr{S}(n-h)$ onto itself defined by $S_{i}^{*} \Psi^{*}=\left(S_{i} \Psi\right)^{*}, i=$ $1,2, \cdots, m$. Clearly, if Ψ preserves maximal intersections so does Ψ^{*} and both Ψ and Ψ^{*} are induced mappings or neither is. Thus it suffices always to consider the case $h \leqq n-h$, that is, $h \leqq n / 2$.

Theorem 1. If $n \neq 2 h$ and if Ψ is a mapping of $\mathscr{S}(h)$ onto itself which preserves maximal intersections, then Ψ is induced by a mapping of N onto itself.

Proof. The theorem is trivially correct for $h=1$. For a proof by induction, we suppose the theorem true up to some value $h-1$ and consider Ψ to be a mapping of $\mathscr{S}(h)$ onto itself, where $1<h<n / 2$.

Each set in $\mathscr{S}(h-1)$ belongs to exactly $n-h+1$ sets in $\mathscr{S}(h)$ and we wish to show that these sets in $\mathscr{S}(h)$ must map under Ψ to $n-h+1$ sets which also have a set of $h-1$ elements in common. Suppose that this is not the case. Then there exists a set in $\mathscr{S}(h-1)$, which we may take to be $T=\left\{a_{1}, a_{2}, \cdots, a_{h-1}\right\}$, such that the sets in $\mathscr{S}(h)$ which contain T do not map under Ψ to a collection of sets with a common intersection of $h-1$ elements. Let

$$
\begin{equation*}
S_{i}=\left\{a_{1}, a_{2}, \cdots, a_{h-1}, a_{h+i}\right\}, \quad i=0,1, \cdots, h, \cdots, n-h \tag{1}
\end{equation*}
$$

denote the sets of $\mathscr{S}(h)$ which contain T. There is no loss of gener-
Received March 20, 1963. This work was supported by Contract NSF-G23718.
ality in supposing that it is the intersection of $S_{0} \Psi$ and $S_{1} \Psi$ which is not contained in $S_{2} \Psi$. Since Ψ preserves maximal intersections, we can denote

$$
\begin{equation*}
S_{0} \Psi=\left\{b_{1}, b_{2}, \cdots, b_{h-1}, b_{h}\right\}, \quad S_{1} \Psi=\left\{b_{1}, b_{2}, \cdots, b_{h-1}, b_{h+1}\right\} \tag{2}
\end{equation*}
$$

where each b_{i} is an element from N and $i \neq j$ implies $b_{i} \neq b_{j}, i, j=$ $1,2, \cdots, h+1$. Because $S_{2} \Psi$ does not contain $\left\{b_{1}, b_{2}, \cdots, b_{h-1}\right\}$, but must intersect $S_{0} \Psi$ and $S_{1} \Psi$ on $h-1$ elements, $S_{2} \Psi$ must contain both b_{h} and b_{h+1} and fail to possess just one elements from $b_{1}, b_{2}, \cdots, b_{h-1}$. Since there is nothing to distinguish the possibilities, we may suppose that $S_{2} \Psi$ does not possess b_{1}, and hence that

$$
\begin{equation*}
S_{2} \Psi=\left\{b_{2}, \cdots, b_{h-1}, b_{h}, b_{h+1}\right\} \tag{3}
\end{equation*}
$$

Because $n>2 h$, there are at least $h+2$ sets S_{i} defined by (1) and so at least $h-1$ sets S_{i}, where $2<i \leqq n-h$. And the Ψ images of all these sets must possess b_{1}, b_{h}, and b_{h+1}. For suppose $b_{1} \notin S_{i} \Psi$. Since $S_{i} \Psi$ intersects $S_{0} \Psi$ on $h-1$ elements and not on b_{1} then $\left\{b_{2}, b_{3}, \cdots, b_{h}\right\} \subset S_{i} \Psi$. And since $S_{i} \Psi$ intersects $S_{1} \Psi$ on $h-1$ elements and not on b_{1}, then $\left\{b_{2}, \cdots, b_{h}, b_{h+1}\right\} \subset S_{i} \Psi$. But then $S_{i} \Psi=$ $\left\{b_{2}, \cdots, b_{h}, b_{h+1}\right\}=S_{2} \Psi$, which is impossible for $i \neq 2$. In the same way, $b_{h} \notin S_{i} \Psi$ implies $S_{i} \Psi=S_{1} \Psi$ and $b_{h+1} \notin S_{i} \Psi$ implies $S_{i} \Psi=S_{0} \Psi$, neither of which is possible for $2<i \leqq n-h$.

From the last argument it follows that for $i>2, S_{i} \Psi$ must be of the form

$$
\begin{equation*}
S_{i} \Psi=\left\{b_{1}, b_{h}, b_{h+1}, x_{1}, \cdots, x_{h-3}\right\} \tag{4}
\end{equation*}
$$

where $\left\{x_{1}, x_{2}, \cdots, x_{h-3}\right\}$ is a subset of $\left\{b_{2}, b_{3} \cdots, b_{h-1}\right\}$, which is clearly impossible if $h=2$. But in any case, there are at least $h-1$ different sets $S_{i} \Psi$, where $i>2$, and each of these is determined by the $h-3$ order subset of $\left\{b_{2}, \cdots, b_{h-1}\right\}$ which it contains. And since there are only $h-2$ mutually different such subsets, the sets $S_{i} \Psi, i>2$, cannot all be distinct, which contradicts the fact that Ψ is a one-to-one mapping.

It is now established that for each set T in $\mathscr{S}(h-1)$ there exists a set T^{\prime} in $\mathscr{S}(h-1)$ such that all the sets in $\mathscr{S}(h)$ which contain T are mapped under Ψ to all the sets in $\mathscr{S}(h)$ which contain T^{\prime}. But then the correspondence $T \rightarrow T^{\prime}$ is clearly a mapping of $\mathscr{S}(h-1)$ onto itself, say the mapping Φ.

For $h=2, \Phi$ is a mapping of N onto itself. If $\left\{a_{i}, a_{j}\right\}$ is any set in $\mathscr{S}(2)$, then $a_{i} \Phi$ belongs to the Ψ images of all sets which possess a_{i}, so $a_{i} \Phi$ belongs to $\left\{a_{i}, a_{j}\right\} \Psi$. By the same argument, $a_{j} \Phi$
belongs to $\left\{a_{i}, a_{j}\right\} \Psi$. Since $a_{i} \Phi \neq a_{j} \Phi$, it follows that $\left\{a_{i}, a_{j}\right\} \Psi=\left\{a_{i} \Phi, a_{j} \Phi\right\}$ and hence that Ψ is induced by Φ.

If $h>2$, consider any two sets in $\mathscr{P}(h-1)$, whose intersection is maximal, say

$$
\begin{equation*}
T_{1}=\left\{a_{1}, a_{2}, \cdots, a_{h-2}, a_{h-1}\right\}, \quad T_{2}=\left\{a_{1}, a_{2}, \cdots, a_{h-2}, a_{h}\right\} \tag{5}
\end{equation*}
$$

The set $S=\left\{a_{1}, a_{2}, \cdots, a_{h}\right\}$ in $\mathscr{S}(h)$ maps to a set $S \Psi=\left\{b_{1}, b_{2}, \cdots, b_{h}\right\}$. Since T_{1} and T_{2} are contained in $S, T_{1} \Phi$ and $T_{2} \Phi$ are $h-1$ order subsets of $S \Psi$. Since $T_{1} \neq T_{2}$, and Φ is a one-to-one mapping, $T_{1} \Phi \neq T_{2} \Phi$, so the order of $T_{1} \Phi \cap T_{2} \Phi$ is $h-2$. Thus Φ preserves maximal intersections and so, by the inductive hypothesis, Φ is induced by some mapping Γ of N onto itself.

Now $S=\left\{a_{1}, a_{2}, \cdots, a_{h}\right\}$ contains T_{1} and T_{2} defined in (5) so $S \Psi$ contains $T_{1} \Phi$ and $T_{2} \Phi$. But $T_{1} \Phi=\left\{a_{1} \Gamma, a_{2} \Gamma, \cdots, a_{h-1} \Gamma\right\}$, and $T_{2} \Phi=$ $\left\{a_{1} \Gamma, \cdots, a_{h-1} \Gamma, a_{h} \Gamma\right\}$. Since $a_{i} \Gamma \neq a_{j} \Gamma$ if $i \neq j$, it follows that $S \Psi=$ $\left\{a_{1} \Gamma, a_{2} \Gamma, \cdots, a_{h} \Gamma\right\}$, and hence that Ψ is induced by Γ.

The theorem is not true for $n=2 h$, since then the correspondence of S_{i} and S_{i}^{*} is a non-induced mapping of $\mathscr{S}(h)$ onto itself which preserves all orders of intersection. ${ }^{1}$

Consider next an ordinary, finite graph G, that is, one with n vertices $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ where each two vertices have at most one join and none is joined to itself. Let $c\left(p_{i}, p_{j}, p_{k}\right)$ denote the subgraph of G induced by G on the set of vertices which does not include p_{i}, p_{j}, p_{k}, and let $m(G)$ be the notation for the join-measure of G, that is the number of joins in G.

TheORem 2. If G and H are ordinary nth order graphs and if there is a mapping of the vertices of G onto those of H such that for some integer $h, 1<h<n-1$, all corresponding subgraphs of order h have the same join measure, then the mapping is an isomorphism of G and H.

Proof. For $h=2$ the condition becomes the definition of an isomorphism, so assume that $2<h<n-1$. Let $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ be the vertices of G and let the vertices $\left\{q_{1}, q_{2}, \cdots, q_{n}\right\}$ of H be labeled so that q_{i} is the image of p_{i} under the given mapping $\psi, i=1,2, \cdots, n$.

Let $\left\{p_{i_{1}}, p_{i_{2}}, \cdots, p_{i_{h+1}}\right\}$ be the vertices of any subgraph G_{i} of order $h+1$ in G, and let $c\left(p_{i_{k}} ; G_{i}\right)$ denote the subgraph of G_{i} defined on all the vertices of G_{i} except $p_{i_{k}}$. Since any join in G_{i} belongs to all the h-order subgraphs of G_{i} except two, we have,

$$
\begin{equation*}
m\left(G_{i}\right)=\frac{1}{h-1} \sum_{k=1}^{k=h+1} m\left[c\left(p_{i_{k}} ; G_{i}\right)\right] . \tag{1}
\end{equation*}
$$

This general exception was pointed out to the writer by P. Erdös.

By the same reasoning,

$$
\begin{equation*}
m\left(G_{i} \Psi\right)=\frac{1}{h-1} \sum_{k=1}^{k=h+1} m\left[c\left(q_{i_{k}} ; G_{i} \Psi\right)\right] \tag{2}
\end{equation*}
$$

Since, by assumption,

$$
\begin{equation*}
m\left[c\left(p_{i_{k}} ; G_{i}\right)\right]=m\left[c\left(q_{i_{k}} ; G_{i} \Psi\right)\right], \quad \text { for all } p_{i_{k}} \text { and } q_{i_{k}} \tag{3}
\end{equation*}
$$

it follows that $m\left(G_{i}\right)=m\left(G_{i} \Psi\right)$.
Thus if Ψ preserves the join measure on h-order subgraphs it does so on $h+1$ order subgraphs, and, by the same reasoning, preserves the join measure on all subgraphs of order equal to or greater than h. In particular, $m(G)=m(H)$. Then if $\rho\left(p_{i}\right)$ denotes the degree of p_{i}, it follows from

$$
\begin{equation*}
\rho\left(p_{i}\right)=m(G)-m\left[c\left(p_{i}\right)\right], \quad i=1,2, \cdots, n \tag{4}
\end{equation*}
$$

and

$$
\rho\left(q_{i}\right)=m(H)-m\left[c\left(q_{i}\right)\right], \quad i=1,2, \cdots, n
$$

that

$$
\begin{equation*}
\rho\left(p_{i}\right)=\rho\left(q_{i}\right), \quad i=1,2, \cdots, n \tag{6}
\end{equation*}
$$ since $m\left[c\left(p_{i}\right)\right]=m\left[c\left(q_{i}\right)\right]$.

Now, corresponding to p_{i} and p_{j} in G, let $\varepsilon_{i j}$ be 1 or 0 according as p_{i} and p_{j} are or are not joined. Let $\varepsilon_{i j}^{\prime}$ be defined in a similar way with respect to q_{i} and q_{j}. Then, by simple counting,

$$
\begin{equation*}
m(G)=m\left[c\left(p_{i}, p_{j}\right)\right]+\rho\left(p_{i}\right)+\rho\left(p_{j}\right)-\varepsilon_{i j}, \quad i \neq j, \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
m(H)=m\left[c\left(q_{i}, q_{j}\right)\right]+\rho\left(q_{i}\right)+\rho\left(q_{j}\right)-\varepsilon_{i j}^{\prime}, \quad i \neq j \tag{8}
\end{equation*}
$$

Comparing the terms in (7) and (8) it follows that $\varepsilon_{i j}=\varepsilon_{i j}^{\prime}$ for all i, j, $i \neq j$, and hence that Ψ is an isomorphism of G and H.

As a corollary of these theorems it follows that two nth order graphs are isomorphic if and only if there is a one-to-one correspondence of their subgraphs of some order $h, 1<h<n-1$, in which corresponding subgraphs have equal join measure and the correspondence preserves maximal intersections.

