ON SOME MAPPINGS RELATED TO GRAPHS

PAUL KELLY

Let N denote a set of n distinct elements a_1, a_2, \dots, a_n and let $\mathscr{S}(h) = \{S_1, S_2, \dots, S_m\}, \ m = \binom{n}{h}$ be the collection of all sets formed by selecting h elements at a time from N. If $S_i = \{a_{i_1}, a_{i_2}, \dots, a_{i_h}\}$ is any set in $\mathscr{S}(h)$ and if Γ is any mapping of N onto itself, then Γ induces a mapping Ψ of $\mathscr{S}(h)$ onto itself defined by $S_i \Psi = \{a_{i_1}\Gamma, a_{i_2}\Gamma, \dots, a_{i_h}\Gamma\}$. We seek conditions under which, conversely, a mapping of $\mathscr{S}(h)$ onto itself must be of this induced type.

If Ψ is a mapping of $\mathcal{S}(h)$ onto itself, it will be said to "preserve maximal intersections" if each two of its sets which intersect on h-1 elements are mapped to two sets which also have h-1 elements in common. It will be shown that if $n \neq 2h$ this is sufficient to imply that Ψ is induced by a mapping of N onto itself.

We observe first that to each set S_i in $\mathscr{S}(h)$ there corresponds a set S_i^* in $\mathscr{S}(n-h)$ and which consists of those elements of N not in S_i . And to any mapping Ψ of $\mathscr{S}(h)$ onto itself there corresponds a mapping Ψ^* of $\mathscr{S}(n-h)$ onto itself defined by $S_i^*\Psi^* = (S_i\Psi)^*, i =$ $1, 2, \dots, m$. Clearly, if Ψ preserves maximal intersections so does Ψ^* and both Ψ and Ψ^* are induced mappings or neither is. Thus it suffices always to consider the case $h \leq n-h$, that is, $h \leq n/2$.

THEOREM 1. If $n \neq 2h$ and if Ψ is a mapping of $\mathcal{S}(h)$ onto itself which preserves maximal intersections, then Ψ is induced by a mapping of N onto itself.

Proof. The theorem is trivially correct for h = 1. For a proof by induction, we suppose the theorem true up to some value h - 1 and consider Ψ to be a mapping of $\mathscr{S}(h)$ onto itself, where 1 < h < n/2.

Each set in $\mathscr{S}(h-1)$ belongs to exactly n-h+1 sets in $\mathscr{S}(h)$ and we wish to show that these sets in $\mathscr{S}(h)$ must map under Ψ to n-h+1 sets which also have a set of h-1 elements in common. Suppose that this is not the case. Then there exists a set in $\mathscr{S}(h-1)$, which we may take to be $T = \{a_1, a_2, \dots, a_{h-1}\}$, such that the sets in $\mathscr{S}(h)$ which contain T do not map under Ψ to a collection of sets with a common intersection of h-1 elements. Let

$$(1)$$
 $S_i = \{a_1, a_2, \cdots, a_{h-1}, a_{h+i}\}, \quad i = 0, 1, \cdots, h, \cdots, n-h$

denote the sets of $\mathcal{S}(h)$ which contain T. There is no loss of gener-

Received March 20, 1963. This work was supported by Contract NSF-G23718.

PAUL KELLY

ality in supposing that it is the intersection of $S_0 \Psi$ and $S_1 \Psi$ which is not contained in $S_2 \Psi$. Since Ψ preserves maximal intersections, we can denote

$$(2) S_0 \Psi = \{b_1, b_2, \cdots, b_{h-1}, b_h\}, S_1 \Psi = \{b_1, b_2, \cdots, b_{h-1}, b_{h+1}\},$$

where each b_i is an element from N and $i \neq j$ implies $b_i \neq b_j$, $i, j = 1, 2, \dots, h + 1$. Because $S_2 \Psi$ does not contain $\{b_1, b_2, \dots, b_{h-1}\}$, but must intersect $S_0 \Psi$ and $S_1 \Psi$ on h - 1 elements, $S_2 \Psi$ must contain both b_h and b_{h+1} and fail to possess just one elements from b_1, b_2, \dots, b_{h-1} . Since there is nothing to distinguish the possibilities, we may suppose that $S_2 \Psi$ does not possess b_1 , and hence that

(3)
$$S_2 \Psi = \{b_2, \dots, b_{h-1}, b_h, b_{h+1}\}$$
.

Because n > 2h, there are at least h + 2 sets S_i defined by (1) and so at least h - 1 sets S_i , where $2 < i \leq n - h$. And the Ψ images of all these sets must possess b_1, b_h , and b_{h+1} . For suppose $b_1 \notin S_i \Psi$. Since $S_i \Psi$ intersects $S_0 \Psi$ on h - 1 elements and not on b_1 then $\{b_2, b_3, \dots, b_h\} \subset S_i \Psi$. And since $S_i \Psi$ intersects $S_1 \Psi$ on h - 1 elements and not on b_1 , then $\{b_2, \dots, b_h, b_{h+1}\} \subset S_i \Psi$. But then $S_i \Psi =$ $\{b_2, \dots, b_h, b_{h+1}\} = S_2 \Psi$, which is impossible for $i \neq 2$. In the same way, $b_h \notin S_i \Psi$ implies $S_i \Psi = S_1 \Psi$ and $b_{h+1} \notin S_i \Psi$ implies $S_i \Psi = S_0 \Psi$, neither of which is possible for $2 < i \leq n - h$.

From the last argument it follows that for i > 2, $S_i \Psi$ must be of the form

(4)
$$S_i \Psi = \{b_1, b_h, b_{h+1}, x_1, \cdots, x_{h-3}\},$$

where $\{x_1, x_2, \dots, x_{h-3}\}$ is a subset of $\{b_2, b_3, \dots, b_{h-1}\}$, which is clearly impossible if h = 2. But in any case, there are at least h - 1 different sets $S_i \Psi$, where i > 2, and each of these is determined by the h - 3order subset of $\{b_2, \dots, b_{h-1}\}$ which it contains. And since there are only h - 2 mutually different such subsets, the sets $S_i \Psi$, i > 2, cannot all be distinct, which contradicts the fact that Ψ is a one-to-one mapping.

It is now established that for each set T in $\mathscr{S}(h-1)$ there exists a set T' in $\mathscr{S}(h-1)$ such that all the sets in $\mathscr{S}(h)$ which contain T are mapped under Ψ to all the sets in $\mathscr{S}(h)$ which contain T'. But then the correspondence $T \to T'$ is clearly a mapping of $\mathscr{S}(h-1)$ onto itself, say the mapping Φ .

For h = 2, Φ is a mapping of N onto itself. If $\{a_i, a_j\}$ is any set in $\mathscr{S}(2)$, then $a_i \Phi$ belongs to the Ψ images of all sets which possess a_i , so $a_i \Phi$ belongs to $\{a_i, a_j\}\Psi$. By the same argument, $a_j \Phi$ belongs to $\{a_i, a_j\}\Psi$. Since $a_i \Phi \neq a_j \Phi$, it follows that $\{a_i, a_j\}\Psi = \{a_i \Phi, a_j \Phi\}$ and hence that Ψ is induced by Φ .

If h > 2, consider any two sets in $\mathcal{S}(h-1)$, whose intersection is maximal, say

$$(5) T_1 = \{a_1, a_2, \cdots, a_{h-2}, a_{h-1}\}, T_2 = \{a_1, a_2, \cdots, a_{h-2}, a_h\}.$$

The set $S = \{a_1, a_2, \dots, a_h\}$ in $\mathcal{S}(h)$ maps to a set $S\Psi = \{b_1, b_2, \dots, b_h\}$. Since T_1 and T_2 are contained in S, $T_1 \mathcal{P}$ and $T_2 \mathcal{P}$ are h-1 order subsets of $S\Psi$. Since $T_1 \neq T_2$, and \mathcal{P} is a one-to-one mapping, $T_1 \mathcal{P} \neq T_2 \mathcal{P}$, so the order of $T_1 \mathcal{P} \cap T_2 \mathcal{P}$ is h-2. Thus \mathcal{P} preserves maximal intersections and so, by the inductive hypothesis, \mathcal{P} is induced by some mapping Γ of N onto itself.

Now $S = \{a_1, a_2, \dots, a_k\}$ contains T_1 and T_2 defined in (5) so $S\Psi$ contains $T_1 \varphi$ and $T_2 \varphi$. But $T_1 \varphi = \{a_1 \Gamma, a_2 \Gamma, \dots, a_{k-1} \Gamma\}$, and $T_2 \varphi = \{a_1 \Gamma, \dots, a_{k-1} \Gamma, a_k \Gamma\}$. Since $a_i \Gamma \neq a_j \Gamma$ if $i \neq j$, it follows that $S\Psi = \{a_1 \Gamma, a_2 \Gamma, \dots, a_k \Gamma\}$, and hence that Ψ is induced by Γ .

The theorem is not true for n = 2h, since then the correspondence of S_i and S_i^* is a non-induced mapping of $\mathscr{S}(h)$ onto itself which preserves all orders of intersection.¹

Consider next an ordinary, finite graph G, that is, one with n vertices $\{p_1, p_2, \dots, p_n\}$ where each two vertices have at most one join and none is joined to itself. Let $c(p_i, p_j, p_k)$ denote the subgraph of G induced by G on the set of vertices which does not include p_i, p_j, p_k , and let m(G) be the notation for the join-measure of G, that is the number of joins in G.

THEOREM 2. If G and H are ordinary nth order graphs and if there is a mapping of the vertices of G onto those of H such that for some integer h, 1 < h < n - 1, all corresponding subgraphs of order h have the same join measure, then the mapping is an isomorphism of G and H.

Proof. For h = 2 the condition becomes the definition of an isomorphism, so assume that 2 < h < n - 1. Let $\{p_1, p_2, \dots, p_n\}$ be the vertices of G and let the vertices $\{q_1, q_2, \dots, q_n\}$ of H be labeled so that q_i is the image of p_i under the given mapping ψ , $i = 1, 2, \dots, n$.

Let $\{p_{i_1}, p_{i_2}, \dots, p_{i_{h+1}}\}$ be the vertices of any subgraph G_i of order h+1 in G, and let $c(p_{i_k}; G_i)$ denote the subgraph of G_i defined on all the vertices of G_i except p_{i_k} . Since any join in G_i belongs to all the *h*-order subgraphs of G_i except two, we have,

(1)
$$m(G_i) = \frac{1}{h-1} \sum_{k=1}^{k=h+1} m[c(p_{i_k}; G_i)].$$

This general exception was pointed out to the writer by P. Erdös.

By the same reasoning,

(2)
$$m(G_i \Psi) = \frac{1}{h-1} \sum_{k=1}^{k=h+1} m[c(q_{i_k}; G_i \Psi)].$$

Since, by assumption,

(3)
$$m[c(p_{i_k}; G_i)] = m[c(q_{i_k}; G_i \mathcal{F})]$$
, for all p_{i_k} and q_{i_k} ,

it follows that $m(G_i) = m(G_i \Psi)$.

Thus if Ψ preserves the join measure on *h*-order subgraphs it does so on h + 1 order subgraphs, and, by the same reasoning, preserves the join measure on all subgraphs of order equal to or greater than *h*. In particular, m(G) = m(H). Then if $\rho(p_i)$ denotes the degree of p_i , it follows from

(4)
$$\rho(p_i) = m(G) - m[c(p_i)], \quad i = 1, 2, \dots, n$$

and

(5)
$$\rho(q_i) = m(H) - m[c(q_i)], \quad i = 1, 2, \dots, n$$

that

(6)
$$\rho(p_i) = \rho(q_i)$$
, $i = 1, 2, \dots, n$,

since $m[c(p_i)] = m[c(q_i)]$.

Now, corresponding to p_i and p_j in G, let ε_{ij} be 1 or 0 according as p_i and p_j are or are not joined. Let ε'_{ij} be defined in a similar way with respect to q_i and q_j . Then, by simple counting,

(7)
$$m(G) = m[c(p_i, p_j)] + \rho(p_i) + \rho(p_j) - \varepsilon_{ij}, \qquad i \neq j,$$

and

(8)
$$m(H) = m[c(q_i, q_j)] + \rho(q_i) + \rho(q_j) - \varepsilon'_{ij}, \qquad i \neq j.$$

Comparing the terms in (7) and (8) it follows that $\varepsilon_{ij} = \varepsilon'_{ij}$ for all i, j, $i \neq j$, and hence that Ψ is an isomorphism of G and H.

As a corollary of these theorems it follows that two *n*th order graphs are isomorphic if and only if there is a one-to-one correspondence of their subgraphs of some order h, 1 < h < n - 1, in which corresponding subgraphs have equal join measure and the correspondence preserves maximal intersections.

UNIVERSITY OF CALIFORNIA, SANTA BARBARA