SOME REPRODUCING KERNELS FOR THE UNIT DISK

G. S. Innis, Jr.

Introduction. Let $S(t)$ denote the class of functions φ analytic in the unit disk U with center 0 and satisfying

$$
\begin{equation*}
\int_{U} \int|\varphi(z)|\left(1-|z|^{2}\right)^{t} d x d y<\infty \quad(z=x+i y) \tag{1}
\end{equation*}
$$

for t real. In this paper we shall prove that for λ and ν properly restricted, $|\zeta|<1$ and $\varphi \in S(t)$, the following formulas are valid:

$$
\begin{equation*}
\varphi(\zeta)=\frac{(\lambda+1)^{\nu}}{\Gamma(\nu) \pi} \int_{\sigma} \int \frac{\varphi(z)\left(1-|z|^{2}\right)^{\lambda}}{(1-\bar{z} \zeta)^{\lambda+2}} l n^{\nu-1}\left(\frac{1-\bar{z} \zeta}{1-|z|^{2}}\right) d x d y, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi^{(m)}(\zeta)=\frac{\lambda+1}{\pi} \iint \bar{z}^{m} \frac{\varphi(z)\left(1-|z|^{2}\right)^{\lambda}}{(1-\bar{z} \zeta)^{\lambda+2+m}} \sum_{i=0}^{m} a_{i} l^{\nu \nu-1-i}\left(\frac{1-\bar{z} \zeta}{1-|z|^{2}}\right) d x d y, \tag{3}
\end{equation*}
$$

where the a_{i} are suitably chosen constants (with respect to φ and the variables z and ζ). Finally, if

$$
\begin{align*}
F_{n}(\zeta, \nu, \lambda)= & \frac{(-1)^{n+1}}{\pi} \iint \frac{\varphi(z)\left(1-|z|^{2}\right)^{\lambda}}{\bar{z}^{n}(1-\bar{z} \zeta)^{\lambda+2-n}} \\
& \cdot\left[\frac{(\lambda+1)^{\nu-1}}{\Gamma(\nu+n-1)} l n^{\nu+n-2}\left(\frac{1-\bar{z} \zeta}{1-|z|^{2}}\right)\right. \tag{4}\\
& \left.+\frac{1}{\Gamma(n)} \ln ^{n-1}\left(\frac{1-\bar{z} \zeta}{1-|z|^{2}}\right)\right] d x d y,
\end{align*}
$$

then $F_{n}(\zeta, \nu, \lambda)$ has the property that

$$
\begin{equation*}
\frac{d^{n}}{d \zeta^{n}} F_{n}(\zeta, \nu, \lambda)=\varphi(\zeta) . \tag{5}
\end{equation*}
$$

Formula (2) reduces to the well known results of Ahlfors [1] and Bergman [2] for particular choices of the parameters t, λ, and ν. The author is indebted to Professor Ahlfors for suggesting this problem.

Notation. Define

$$
\begin{aligned}
N(z, \lambda) & =\left(1-|z|^{2}\right)^{\lambda} \\
D(z, \zeta, \lambda) & =(1-\bar{z} \zeta)^{\lambda} \\
L(z, \zeta, \nu) & =\ln \nu-1\left(\frac{1-\bar{z} \zeta}{1-|z|^{2}}\right)
\end{aligned}
$$

[^0]where the principal values of the functions on the right are used.
Reproducing Kernels. In this section we shall prove
Theorem 1. If $\varphi \in S(t)$ for some t, then
(a) for $R e \nu \geqq 1$ and $R e \lambda>t$, (2) is satisfied and
(b) for $R \mathrm{e} \nu=1$ and $R e \lambda \geqq t$, (2) is satisfied.

Remarks. If

$$
K_{1}(z, \zeta, \nu, \lambda)=\frac{(\lambda+1)^{\nu}}{\Gamma(\nu) \pi} N(z, \lambda) D(z, \zeta,-\lambda,-2) L(z, \zeta, \nu)
$$

then because $|z|<1,|\zeta|<1$ and principal values were used in defining N, D and L, K_{1} is unambiguously defined. Thus (2) can be written

$$
\varphi(\zeta)=\int_{J} \int_{J} \varphi(z) K_{1}(z, \zeta, \nu, \lambda) d x d y
$$

Also, if $\varphi \in S(t)$ and $\varphi \not \equiv 0$, then $t>-1$ as is easily seen by considering (1) in polar coordinates.

The proof of Theorem 1 will be preceded by the statement and proof of three lemmas.

Lemma 1. For $\varphi \in S(t)$, and for Re $\lambda \geqq t$, (1) implies

$$
\lim _{r \rightarrow 1}\left(1-r^{2}\right)^{R e \lambda+1} \int_{0}^{2 \pi}\left|\varphi\left(r e^{i \theta}\right)\right| d \theta=0
$$

Proof. If $f(r)=\int_{0}^{2 \pi}\left|\varphi\left(r e^{i \theta}\right)\right| d \theta$, then f is a nondecreasing function of r for $0<r<1$ (the trivial case of $\varphi \equiv 0$ is excluded in the sequel). Suppose now that lim $\sup \left(1-r^{2}\right)^{R e \lambda+1} f(r)=a>0$ (a may be infinite). Let $0<b<a$. Then there exists a sequence $\left\{r_{i}\right\}$ of real numbers, $0<r_{i-1}<r_{i}<1$, converging to 1 such that $f(r) \geqq b\left(1-r_{i}^{2}\right)^{-(R e \lambda+1)}$ for $r>r_{i}$ and $1-r_{i}^{2}<\left(1-r_{i-1}^{2}\right) / 2$. Then (1) becomes

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{2 \pi} r\left(1-r^{2}\right)^{R e \lambda}\left|\varphi\left(r e^{i \theta}\right)\right| d r d \theta \geqq \sum_{i=2}^{\infty} f\left(r_{i-1}\right) \int_{r_{i-1}}^{r_{i}} r\left(1-r^{2}\right)^{R e \lambda} d r \\
& \quad=\sum_{i=2}^{\infty} \frac{b}{R e \lambda+1}\left[1-\left(\frac{1-r_{i}^{2}}{1-r_{i-1}^{2}}\right)^{R e \lambda+1}\right] \\
& \quad \geqq \sum_{i=2}^{\infty} \frac{b}{R e \lambda+1} 1^{i}\left[1-\left(\frac{1}{2}\right)^{R e \lambda+1}\right]=\infty .
\end{aligned}
$$

This contradiction implies

$$
\lim _{r \rightarrow 1}\left(1-r^{2}\right)^{R e \lambda+1} \int_{0}^{2 \pi}\left|\varphi\left(r e^{i \theta}\right)\right| d \theta=0
$$

Lemma 2. If $\varphi \in S(t)$ for some $t, R e \lambda>t$ and $R e \nu \geqq 1$, then
(6) $\quad \int_{U} \int_{U} \varphi(z) K_{1}(z, \zeta, \nu, \lambda) d x d y=\int_{\sigma} \int \varphi(z) K_{1}(z, \zeta, \nu+1, \lambda) d x d y$.

Proof. Let $K_{1}(\nu)=K_{1}(z, \zeta, \nu, \lambda)$. Then

$$
K_{1}(\nu)=\left[K_{1}(\nu)-K_{1}(\nu+1)\right]+K_{1}(\nu+1)
$$

and if

$$
f(z, \zeta, \nu, \lambda)=\frac{(\lambda+1)^{\nu}}{\Gamma(\nu+1) \pi} \frac{\varphi(z)}{z-\zeta} N(z, \lambda+1) D(z, \zeta,-\lambda-1) L(z, \zeta, \nu+1)
$$

then

$$
\frac{\partial f}{\partial \bar{z}}=\left(K_{1}(\nu)-K_{1}(\nu+1)\right) \varphi(z)
$$

We are, therefore, in a position to apply Green's formula since the singularity of f at $z=\zeta$ is only apparent $\left(\lim _{z \rightarrow \zeta}(z-\zeta)^{-1} L(z, \zeta, \nu+1)=0\right)$. Thus for $0<r<1$,

$$
\begin{align*}
\int_{|z|<r} \int \varphi(z) K_{1}(\nu) d x d y= & \frac{1}{2 i} \int_{|z|=r} f(z, \zeta, \nu, \lambda) d z \tag{7}\\
& +\int_{|z|<r} \int \varphi(z) K_{1}(\nu+1) d x d y
\end{align*}
$$

and the lemma will be proved if we establish that the line integral in (7) vanishes as $r \rightarrow 1$. To show that this is the case, let $\varepsilon>0$ and $t+\varepsilon<R e \lambda$. Then

$$
\begin{align*}
& I_{r}=\frac{1}{2 i} \int_{|z|=r} f(z, \zeta, \nu, \lambda) d z \\
& =C \int_{0}^{2 \pi} \frac{\varphi\left(r e^{i \theta}\right)}{r e^{i \theta}-\zeta} N(r, \lambda+1) D\left(r e^{i \theta}, \zeta,-\lambda-1\right) L\left(r e^{i \theta}, \zeta, \nu+1\right) r e^{i \theta} d \theta \tag{8}
\end{align*}
$$

and for r near 1 ,

$$
\begin{equation*}
\left|I_{r}\right| \leqq C_{1}\left(1-r^{2}\right)^{R e \lambda+1-\varepsilon / 2} \int_{0}^{2 \pi}\left|\varphi\left(r e^{i \theta}\right)\right| d \theta \tag{9}
\end{equation*}
$$

where the factor $\left(1-r^{2}\right)^{\varepsilon / 2}$ was used to suppress the logarithm near $r=1$. On applying Lemma 1 in (9) we get

$$
\left|I_{r}\right| \leqq C_{2}\left(1-r^{2}\right)^{\varepsilon / 2}
$$

and the result follows.
Lemma 2'. Lemma 2 is valid for $R e \lambda \geqq t$ if $R e \nu=1$.

Proof. The proof of this lemma is similar to that of Lemma 2 except that the factor of $\left(1-r^{2}\right)^{8 / 2}$ is not needed to suppress the logarithm and, therefore, the range of λ can be extended.

Lemma 3. If $R e \nu \geqq k, R e \lambda>-1$ and p is a positive integer, then

$$
\begin{align*}
& \int_{0}^{1} r^{2 p-1} N(r, \lambda) L(r, 0, \nu-k+1) d r \\
& \quad=\sum_{i=0}^{p-1}(-1)^{i}\binom{p-1}{i} \frac{\Gamma(\nu-k+1)}{2(\lambda+i+1)^{\nu-k+1}} . \tag{10}
\end{align*}
$$

Proof. Induction on p will be used. If $p=1$, (10) reads

$$
\int_{0}^{1} r N(r, \lambda) L(r, 0, \nu-k+1) d r=\frac{\Gamma(\nu-k+1)}{2(\lambda+1)^{\nu-k+1}}
$$

Substituting

$$
t=(\lambda+1) L(r, 0,2), \quad d t=(\lambda+1) \frac{2 r}{1-r^{2}} d r
$$

in the left hand side, we get

$$
\int_{0}^{1} r N(r, \lambda) L(r, 0, \nu-k+1) d r=\frac{1}{2(\lambda+1)^{\nu-k+1}} \int_{0}^{\infty} e^{-t} t^{\nu-k} d t
$$

where the path of integration in the right hand member is the half line through the origin inclined at the angle arg $(\lambda+1)$. That integral is $\Gamma(\nu-k+1)$, and the result is established for $p=1$. Suppose that (10) has been proved for $p-1$. The left hand side of (10) can be written in the form

$$
\begin{aligned}
& \int_{0}^{1} r^{2 p-3} N(r, \lambda) L(r, 0, \nu-k+1) d r-\int_{0}^{1} r^{2 p-3} N(r, \lambda+1) L(r, 0, \nu-k+1) d r \\
& \quad=\frac{\Gamma(\nu-k+1)}{2(\lambda+1)^{\nu-k+1}+\sum_{i=1}^{p-2}(-1)^{i}\left[\binom{p-2}{i+1}+\binom{p-2}{i}\right] \frac{\Gamma(\nu-k+1)}{2(\lambda+1+i)^{\nu-k+1}}} \\
& \quad+(-1)^{p-1} \frac{\Gamma(\nu-k+1)}{2(\lambda+p)^{\nu-k+1}}=\sum_{i=0}^{p-1}(-1)^{i}\binom{p-1}{i} \frac{\Gamma(\nu-k+1)}{2(\lambda+i+1)^{\nu-k+1}} .
\end{aligned}
$$

Proof of Theorem 1. This proof will be accomplished by showing that the m th derivative of φ evaluated at 0 is given by the m th derivative of (2) evaluated at 0 . Induction will be used.

It is clear that (1) implies the absolute convergence of (2), and that if $R e \lambda$ is large enough, differentiation with respect to ζ, λ, and ν will commute with integration. Differentiating (2) m times with respect to ζ, one gets

$$
\begin{align*}
\varphi^{(m)}(\zeta)= & \frac{\lambda+1}{\pi} \int_{V} \bar{z}^{m} \varphi(z) N(z, \lambda) D(z, \zeta,-\lambda-2-m) \tag{11}\\
& \sum_{i=0}^{m} a_{i} L(z, \zeta, \nu-i) d x d y
\end{align*}
$$

if $R e \nu \geqq m+1$ and the α_{i} are properly chosen constants.
Let $F(\zeta)=\int_{\sigma} \int \varphi(z) K_{1}(\nu) d x d y$. Then $F(0)=\int_{\sigma} \int^{\rho} \varphi(z) K_{1}(z, 0, \nu, \lambda) d x d y$ which by (1) can be written

$$
\begin{aligned}
F(0) & =\frac{(\lambda+1)^{\nu}}{\Gamma(\nu) \pi} \int_{0}^{1} r N(r, \lambda) L(r, 0, \nu) d r \int_{0}^{2 \pi} \varphi\left(r e^{i \theta}\right) d \theta \\
& =\frac{2(\lambda+1)^{\nu}}{\Gamma(\nu)} \varphi(0) \int_{0}^{1} r N(r, \lambda) L(r, 0, \nu) d r
\end{aligned}
$$

By Lemma 3 this last integral is $\Gamma(\nu) / 2(\lambda+1)^{\nu}$, and the desired result follows.

Suppose now that $R e \nu>1$. Because of a complication in the inductive hypothesis, it will also be necessary to show that $F^{\prime}(0)=$ $\varphi^{\prime}(0)$. Notice, however, that if we differentiate F with respect to ζ two terms arise, and in one of these the exponent of \ln is $\nu-2$. If $R e \nu<2$, this would cause trouble. This difficulty is avoided if we first apply Lemma 2 to F to write it in a form for which $R e \nu \geqq 2$. Then

$$
\begin{aligned}
F^{\prime}(0)= & \frac{(\lambda+1)^{\nu}}{\Gamma(\nu) \pi} \iint \bar{z} \varphi(z) N(z, \lambda) \\
& {[(\lambda+2) L(z, 0, \nu)-(\nu-1) L(z, 0, \nu-1)] d x d y . }
\end{aligned}
$$

By splitting this into two integrals and proceeding just as above, we derive

$$
F^{\prime}(0)=\varphi^{\prime}(0) .
$$

Suppose now that it has been established that $F^{(p-1)}(0)=\varphi^{(p-1)}(0)$. Use Lemma 2 to write F in a form for which $R e \nu \geqq p+1$.

Let the following be taken as the inductive hypothesis:

$$
\begin{gather*}
F^{(p-1)}(0)=\varphi^{(p-1)}(0), \tag{12a}\\
a_{0}+\sum_{i=1}^{p-1} a_{i} \frac{(\lambda+1)^{i}}{(\nu-1)(\nu-2) \cdots(\nu-i)}=(p-1)!, \tag{12b}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{0}+\sum_{i=1}^{p-1} a_{i} \frac{(\lambda+k)^{i}}{(\nu-1)(\nu-2) \cdots(\nu-i)}=0 \tag{12c}
\end{equation*}
$$

for $k=2,3, \cdots, p$. When $p=2$, (12a) was proved above. In this
case $a_{0}=\lambda+2$ and $a_{1}=-(\nu-1)$ so that both (12b) and (12c) are satisfied. Consider now $F^{(p)}(0)$ when $F^{(p-1)}(\zeta)$ is given by the right hand side of (11) with $m=p-1$.
(13)

$$
\begin{gathered}
F^{(p)}(0)=\frac{(\lambda+1)^{\nu}}{\Gamma(\nu) \pi} \int_{\sigma} \bar{z}^{p} \varphi(z) N(z, \lambda) \\
{\left[(\lambda+1+p) \sum_{i=0}^{p-1} a_{i} L(z, 0, \nu-i)-\sum_{i=0}^{p-1} a_{i}(\nu-i) L(z, 0, \nu-i-1)\right] d x d y}
\end{gathered}
$$

After some algebra (13) becomes

$$
\begin{aligned}
F^{(p)}(0)= & \frac{2(\lambda+1)^{\nu}}{p!\Gamma(\nu)} \varphi^{(p)}(0)\left[b_{0} \frac{\Gamma(\nu)}{2(\lambda+1)^{\nu}}-b_{1}\binom{p}{1} \frac{\Gamma(\nu)}{2(\lambda+2)^{\nu}}\right. \\
& \left.+\cdots(-1)^{p} b_{p} \frac{\Gamma(\nu)}{2(\lambda+p+1)^{\nu}}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
b_{0}= & a_{0}(\lambda+1+p)+\frac{\lambda+1}{\nu-1}\left[a_{1}(\lambda+1+p)-a_{0}(\nu-1)\right] \\
& +\frac{(\lambda+1)^{2}}{(\nu-1)(\nu-2)}\left[a_{2}(\lambda+1+p)-a_{1}(\nu-2)\right] \\
& +\cdots-a_{p-1}(\nu-p) \frac{(\lambda+1)^{p}}{(\nu-1)(\nu-2) \cdots(\nu-p)} \\
= & (\lambda+1+p)(p-1)!-(\lambda+1)(p-1)! \\
= & p!\quad \quad \text { by }(12 b)
\end{aligned}
$$

and

$$
\begin{aligned}
b_{k}= & a_{0}(\lambda+1+p)+\frac{\lambda+k+1}{\nu-1}\left[a_{1}(\lambda+1+p)-a_{0}(\nu-1)\right] \\
& +\frac{(\lambda+k+1)^{2}}{(\nu-1)(\nu-2)}\left[a_{2}(\lambda+1+p)-a_{1}(\nu-2)\right] \\
& +\cdots-a_{p-1}(\nu-p) \frac{(\lambda+k+1)^{p}}{(\nu-1)(\nu-2) \cdots(\nu-p)} \\
= & (\lambda+1+p) 0+(\lambda+k+1) 0=0 \text { by }(12 \mathrm{c}) \text { for }
\end{aligned}
$$

$k=2,3, \cdots, p$. It follows immediately that

$$
F^{(p)}(0)=\varphi^{(p)}(0)
$$

as was to be shown.
The case $R e \nu=1, R e \lambda \geqq t$ is treated as above except that Lemma 2^{\prime} is used in place of Lemma 2. The proof is omitted.

Remarks. Notice that in proving Theorem 1 we have also"established
that (11) is a correct formula for the m th derivative of φ.
As mentioned above we are also at liberty to differentiate (2) with respect to ν and λ. It is readily verified that differentiating (2) with respect to λ and using the results of Theorem 1 yields

$$
\varphi(\zeta)=\int_{\sigma} \int \varphi(z) K_{1}(\nu+1) d x d y
$$

which is nothing new. However, differentiating (2) with respect to ν and using Theorem 1 we derive the new formula,

$$
\begin{gather*}
\varphi(\zeta)=\frac{(\lambda+1)^{\nu}}{\Gamma^{\prime}(\nu) \pi-\ln (\lambda+1) \Gamma(\nu) \pi} \int_{\sigma} \rho \varphi(z) N(z, \lambda) D(z, \zeta,-\lambda-2) \tag{14}\\
L(z, \zeta, \nu) \ln (L(z, \zeta, 2)) d x d y
\end{gather*}
$$

The integral in (14) is absolutely convergent in spite of the apparent difficulties with $\ln (L)$. Further derivations with respect to ζ, ν, and λ are, of course, possible.

An interesting formula results from (11) for the case in which λ is an integer and $\nu=1$. Here, $a_{0}=\Gamma(n+m+1) / \Gamma(n+1)$ and the rest of the a 's are zero. The θ integral is

$$
\int_{0}^{2 \pi}\left(r e^{-i \theta}\right)^{m} \frac{\varphi\left(r e^{i \theta}\right)}{\left(1-r e^{-i \theta} \zeta\right)^{m+n+2}} d \theta=2 \pi \frac{r^{2 m}}{(m+n+1)!}\left[z^{n+2} \varphi(z)\right]_{z=r 2 \zeta}^{(m+n+1)},
$$

and (11) becomes

$$
\varphi^{(m)}(\zeta)=\frac{2}{n!} \int_{0}^{1} r^{2 m+1}\left(1-r^{2}\right)^{n}\left[z^{n+2} \varphi(z)\right]_{z=r 2 \zeta}^{(m+n+1)} d r
$$

This expression is readily checked for $\varphi(z)=z^{k}$ and, thereby, for any $\varphi \in S(n)$.

Primative Kernels. In this section we shall prove
Theorem 2. If $\varphi \in S(t)$ and

$$
\begin{aligned}
K_{2}^{n}(z, \zeta, \nu, \lambda) & =\frac{(-1)^{n+1}}{\bar{z}^{n} \pi} N(z, \lambda) D(z, \zeta,-\lambda-2+n) \\
& {\left[\frac{(\lambda+1)^{\nu-1}}{\Gamma(\nu+n-1)} L(z, \zeta, \nu+n-1)+\frac{1}{\Gamma(n)} L(z, \zeta, n)\right] }
\end{aligned}
$$

then for $R e \nu=2$ and $R e \lambda \geqq t$ or $R e \nu \geqq 2$ and $R e \lambda>t$,

$$
\begin{equation*}
F_{n}(\zeta, \nu, \lambda)=\int_{\sigma} \int_{0} \varphi(z) K_{2}^{n}(z, \zeta, \nu, \lambda) d x d y \tag{15}
\end{equation*}
$$

has the property that $F_{n}^{(n)}(\zeta, \nu, \lambda)=\varphi(\zeta)$ (differentiation is with respect to ζ). If $R e \lambda \geqq t$ and $\nu=1$, then

$$
\begin{equation*}
H_{n}(\zeta, \lambda)=\iint \rho(z) K_{2}^{n}(z, \zeta, 1, \lambda) d x d y \tag{16}
\end{equation*}
$$

has the property that $H_{n}^{(n)}(\zeta, \lambda)=2 \varphi(\zeta)$.
Proof. The proof will be by induction. Consider $F_{1}(\zeta)$. To differentiate under the integral sign in (15) it is sufficient to show that the given and resulting integrals are absolutely convergent. However,

$$
\int_{\sigma} \int\left|\varphi(z) K_{2}^{1}(z, \zeta, \nu, \lambda)\right| d x d y=\int_{|z| \leq r} \int+\int_{r<|z|<1} \int .
$$

The integral over the annulus offers no difficulty and for small r,

$$
\left|\varphi(z) K_{2}^{1}(z, \zeta, \nu, \lambda)\right| \leqq C \frac{1}{r}
$$

where C is constant. Thus

$$
\int_{|z| \leq r}\left|\varphi(z) K_{2}^{1}(z, \zeta, \nu, \lambda)\right| d x d y \leqq 2 \pi r C .
$$

Because $R e \nu \geqq 2$, all of the integrals occurring after differentiation are absolutely convergent and, hence,

$$
\begin{aligned}
F_{1}^{\prime}(\zeta, \nu, \lambda) & =\int_{\sigma} \int_{\sigma} \varphi(z) \frac{\partial}{\partial \zeta} K_{2}^{1}(z, \zeta, \nu, \lambda) d x d y \\
& =\int_{\sigma} \int_{\varphi} \varphi(z)\left[K_{1}(\nu)+K_{1}(1)-K_{1}(\nu-1)\right] d x d y \\
& =\varphi(\zeta) .
\end{aligned}
$$

Similarly $H_{1}^{\prime}(\zeta, \lambda)=2 \varphi(\zeta)$ and thus

$$
H_{1}(\zeta, \lambda)=2 F_{1}(\zeta, \nu, \lambda)+C .
$$

Suppose now that it has been established that for some $n \geqq 2$,
(a) $F_{n-1}(\zeta, \nu, \lambda)$ is an $(n-1)$ st primative and
(b) $H_{n-1}(\zeta, \lambda)=2 F_{n-1}(\zeta, \nu, \lambda)+P(\zeta, \nu, \lambda)$ where
P is a polynomial of degree $n-2$ in ζ. The absolute convergence of the needed integrals can be established as above. Therefore, from (15) we get

$$
\begin{align*}
F_{n}^{\prime}(\zeta, \nu, \lambda)= & \frac{(-1)^{n+1}}{\pi} \int_{\sigma} \int \frac{\varphi(z)}{\bar{z}^{n-1}} N(z, \lambda) D(z, \zeta,-\lambda-1+n) \\
& {\left[(\lambda+2-n) \frac{(\lambda+1)^{\nu-1}}{\Gamma(\nu+n-1)} L(z, \zeta, \nu+n-1)\right.} \\
& +(\lambda+2-n) \frac{1}{\Gamma(n)} L(z, \zeta, n) \tag{17}\\
& -\frac{(\lambda+1)^{\nu-1}}{\Gamma(\nu+n-2)} L(z, \zeta, \nu+n-2) \\
& \left.-\frac{1}{\Gamma(n-1)} L(z, \zeta, n-1)\right] d x d y
\end{align*}
$$

The last two terms in this square bracket yield $F_{n-1}(\zeta, \nu, \lambda)$. Now let us add and subtract $2(\lambda+2-n) L(z, \zeta, n-1) /[(\lambda+1) \Gamma(n-1)]$ to the first two terms to write them as

$$
\begin{aligned}
& \frac{\lambda+2-n}{\lambda+1}\left[\frac{(\lambda+1)^{\nu-1}}{\Gamma(\nu+n-2)} L(z, \zeta, \nu+n-2)+\frac{1}{\Gamma(n-1)} L(z, \zeta, n-1)\right. \\
& \quad+\frac{(\lambda+1)^{\nu-1}}{\Gamma(\nu+n-2)} L(z, \zeta, \nu+n-2)+\frac{1}{\Gamma(n-1)} L(z, \zeta, n-1) \\
& \left.\quad-\frac{2}{\Gamma(n-1)} L(z, \zeta, n-1)\right]
\end{aligned}
$$

where the first term comes from the first term of (17) with ν replaced by $\nu+1$ and the third term comes from the second term of (17) with $\nu=2$. Thus (17) yields

$$
\begin{aligned}
F_{n}^{\prime}(\zeta, \nu, \lambda)= & F_{n-1}(\zeta, \nu, \lambda)-\frac{\lambda+2-n}{\lambda+1}\left[F_{n-1}(\zeta, \nu+1, \lambda)\right. \\
& \left.+F_{n-1}(\zeta, 2, \lambda)-H_{n-1}(\zeta, \lambda)\right] \\
= & F_{n-1}(\zeta, \nu, \lambda)+Q(\zeta, \nu, \lambda)
\end{aligned}
$$

where Q is a polynomial of degree $(n-2)$ in ζ.
To complete the inductive argument, it is necessary to show that $H_{n}^{\prime}(\zeta, \lambda)=2 F_{n-1}(\zeta, \nu, \lambda)+P(\zeta, \nu, \lambda)$.

$$
\begin{align*}
H_{n}^{\prime}(\zeta, \lambda) & =2(-1)^{n+1} \int_{U} \int \frac{\varphi(z)}{\bar{z}^{n-1}} N(z, \lambda) D(z, \zeta,-\lambda-1+n) \\
& {\left[\frac{\lambda+2-n}{\Gamma(n)} L(z, \zeta, n)-\frac{1}{\Gamma(n-1)} L(z, \zeta, n-1)\right] d x d y } \tag{18}
\end{align*}
$$

Using the same techniques as above, the square brackets can be written

$$
\begin{aligned}
& \frac{\lambda+2-n}{\lambda+1}\left[\frac{(\lambda+1)^{\nu-1}}{\Gamma(\nu+n-2)} L(z, \zeta, \nu+n-2)+\frac{1}{\Gamma(n-1)} L(z, \zeta, n-1)\right] \\
& \quad-\left(\frac{\lambda+2-n}{\lambda+1}+1\right) \frac{1}{\Gamma(n-1)} L(z, \zeta, n-1)
\end{aligned}
$$

where $\nu=2$ in the first term. On placing this expression in (18), we get

$$
H_{n}^{\prime}(\zeta, \lambda)=-2\left(\frac{\lambda+2-n}{\lambda+1}\right) F_{n-1}(\zeta, 2, \lambda)+\left(\frac{\lambda+2-n}{\lambda+1}+1\right) H_{n-1}(\zeta, \lambda)
$$

By the inductive hypothesis, $H_{n-1}(\zeta, \lambda)=2 F_{n-1}(\zeta, \nu, \lambda)+R(\zeta, \nu, \lambda)$ where R is of degree $(n-2)$ in ζ. We have then that

$$
H_{n}^{\prime}(\zeta, \lambda)=2 F_{n-1}(\zeta, \nu, \lambda)+P(\zeta, \nu, \lambda)
$$

where P is of degree $(n-2)$ in ζ. This proves Theorem 2.

It is interesting to note that F_{n} and H_{n} depend analytically on ν and λ and are not necessarily constants (with respect to these two variables).

It is easy to prove
Theorem 3. If (a) $\varphi \in S(R e \lambda)$ and has a zero of order at least n at 0, (b) either λ is not an integer or λ is an integer greater than $n-2$, (c)

$$
K_{3}^{n}=\frac{\lambda+1}{\pi} \frac{\Gamma(\lambda+3-n)}{\Gamma(\lambda+3)} \bar{z}^{-n} N(z, \lambda) D(z, \zeta,-\lambda-2+n)
$$

and (d)

$$
\begin{equation*}
G_{n}(\zeta)=\int_{U} \int \varphi(z) K_{3}^{n}(z, \zeta, \lambda) d x d y \tag{19}
\end{equation*}
$$

then

$$
G_{n}^{(n)}(\zeta)=\varphi(\zeta) .
$$

The conditions imposed on λ are sufficient to guarantee that the integral (19) converges absolutely. The proof of the theorem is just a matter of differentiating and is omitted. If, however, $\varphi \in S(R e \lambda)$, then for each positive integer $n, z^{n} \varphi(z)$ is also in $S(R e \lambda)$, and, therefore, if we define

$$
\begin{equation*}
E_{n}(\zeta)=\int_{U} \int z^{n} \varphi(z) K_{3}^{n}(z, \zeta, \lambda) d x d y \tag{20}
\end{equation*}
$$

$E_{n}(\zeta)$ is well defined, absolutely convergent and has the property that

$$
E_{n}^{(n)}(\zeta)=\zeta^{n} \varphi(\zeta)
$$

The simplicity of (20) may make it more useful then either (15) or (16) in some cases.

Bibliography

1. L. V. Ahlfors, Some remarks on Teichmüller's space of Riemann surfaces, Ann. of Math., 74 (1961), 176.
2. Z. Nehari, Conformal Mapping, McGraw-Hill, 1952, p. 252.

Harvard University

[^0]: Received May 15, 1963. This work was done while the author was a NAS-NRC Postdoctoral Fellow.

