
SOME REPRODUCING KERNELS FOR THE UNIT DISK

G. S. INNIS, JR.

Introduction. Let S(t) denote the class of functions φ analytic
in the unit disk U with center 0 and satisfying

I φ(z) \(l-\z \J dxdy < co (z = x + iy)

for t real. In this paper we shall prove that for λ and v properly
restricted, | ζ | < 1 and φ e S(t), the following formulas are valid:

Γ(v)π JcrJ (1 — zζ)λ+2 \ 1 — \z\

a n d

where the α{ are suitably chosen constants (with respect to φ and the
variables z and ζ). Finally, if

, v, X) _ ) j _m(1 _ _ζ)λ+2_B

Γ
L

f(υ + n - l ) V1 - Iz

then i^ίζ, y, λ) has the property that

(5) *F.(ζ,v,\)

Formula (2) reduces to the well known results of Ahlfors [1] and
Bergman [2] for particular choices of the parameters t, λ, and v. The
author is indebted to Professor Ahlfors for suggesting this problem.

Notation. Define

i\Γ(z,λ) = ( l - | z | 2 ) \

D(z, ζ, λ) = (1 - zζ)λ ,
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where the principal values of the functions on the right are used.

Reproducing Kernels. In this section we shall prove

THEOREM 1. If φe S(t) for some t, then

(a) for Rev ^ 1 and ReX > t, (2) is satisfied and

(b) for Rev — 1 and ReX^t, (2) is satisfied.

REMARKS. If

Ki(*, C v, λ) - ( ^ + ^ ) V N{z, X) D{z, ζ, -λ, -2) L(z, ζ, v) ,

then because | z | < 1, | ζ | < 1 and principal values were used in defining
N, D and L, Kx is unambiguously defined. Thus (2) can be written

(2')

Also, if φ e S(t) and φ & 0, then ί > —1 as is easily seen by considering
(1) in polar coordinates.

The proof of Theorem 1 will be preceded by the statement and
proof of three lemmas.

LEMMA 1. For φ e S(t), and for ReX ^ t, (1) implies

l iπw (1 - r 2)Λ e λ + 1 Π φ(reiθ) \ dθ = 0 .
Jo

S 2τr

I ^(rβίθ) I d^, then / is a nondecreasing function
0

of r for 0 < r < 1 (the trivial case of φ = 0 is excluded in the sequel).
Suppose now that lim sup (1 — r2)Reλ+1f(r) = α > 0 (a may be infinite).
Let 0 < b < α. Then there exists a sequence {r*} of real numbers,
0 < r,-! < n < 1, converging to 1 such that f(r) ^ 6(1 - r!)- ( Λ e λ + 1 ) for
r > r< and 1 - rj < (1 - rU)/2. Then (1) becomes

Π2V(1 - r2)Λβλ I <P(reiθ) \ drdθ ^ Σ/fo-,) (" r ( ! ~
0 i=2 Jί ί-1

v
ί=i ϋίeλ + ^

This contradiction implies

(1 - r 2 ) Λ e λ + 1 ί l φ(reiθ) \ dθ = 0 .
Jo
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LEMMA 2. If φe S(t) for some t, ReX > t and Rev ^ 1, then

< 6 ) j j φWKAz, ζ, v, X)dx dy - \\fp(z)Kx(z, ζ,v + l, X)dx dy .

Proof. Let K±{v) = Kλ(zt ζ, v, λ). Then

JBΓ )̂ - [Kx{v) - K& + 1)] +

and if

J\Zf C,, V, Aî  ly\Z9 X -f- ±.)U\Z) L,y — ^ — *-) LJ\6i Ss>

then

Ίϊί"

We are, therefore, in a position to apply Green's formula since the
singularity of / at z = ζ is only apparent (limz_ (̂2 — ζ)"1 L(2, ζ, i; + 1) = 0).
Thus for 0 < r < 1,

( 7) f (^(^^(v )^ dy - -1- ί /(«, ζ, v, λ)d^
JUKrJ 2 ^ J\z\=r

+ ( (^(^^(^ + l)dx dy ,
JlzKrJ

and the lemma will be proved if we establish that the line integral in
(7) vanishes as r - » l . To show that this is the case, let ε > 0 and
t + ε < ReX. Then

= c Γ φ{χ/Θ) N(r, X + l)D(reiΘ, ζ, - λ - l )L(re ί θ , ζ, x; + l)rβiθdθ ,
Jo re t θ — ζ

and for r near 1,

( 9 ) \Ir\S Cχ(l - ry β λ + 1 - ε / 2 (''I φ(re ίθ) | d^
Jo

where the factor (1 — r2)ε/2 was used to suppress the logarithm near
r = 1. On applying Lemma 1 in (9) we get

and the result follows.

LEMMA 2'. Lemma 2 is valid for ReX ̂ t if Rev = 1.
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Proof. The proof of this lemma is similar to that of Lemma 2
except that the factor of (1 — r2) ε / 2 is not needed to suppress the
logarithm and, therefore, the range of λ can be extended.

LEMMA 3. // Rev Ξ> k, ReX > — 1 and p is a positive integer, then

2*-1 N(r, X) L(r, 0,v-k + l)dr

( 1 0 ) 1 ίP-1) Γ{v-k + 1)
i + iy~k+ί '

Proof. Induction on p will be used. If p — 1, (10) reads

\ W(r, X) L(r, 0,»-k + l)dr = ™ ~ *?£ .

Substituting

t = (λ + l)L(r, 0, 2) , dt - (λ + 1) ^ 2 r

 9 rir

1 — r2

in the left hand side, we get

\W , 0, * - * + l)dr =

where the path of integration in the right hand member is the half
line through the origin inclined at the angle arg (λ + 1). That integral
is Γ(v — k + 1), and the result is established for p = 1. Suppose that
(10) has been proved for p — 1. The left hand side of (10) can be
written in the form

(V2ί)-W(r, X)L(r, 0, v - k + l)dr - (V2p-W(r, λ + l)L(r, 0, v - k +
Jo Jo

= Γ{v - k + 1) ^ ' / 1 V | 7 P - 2\ , /p - 2\1 Γ(v - k + 1)
2(χ + i)v-*+i ^ fiί v ' LVί + 1/ V * /J 2(λ + 1 + iy~k

(_1)9^ Γ(v-k + l) = *f\ 1 V /P - 1\ Γ(v - k + 1)
v ; 2(λ + py-k+i άi

o

y } \ i J

Proof of Theorem 1. This proof will be accomplished by showing
that the mth derivative of φ evaluated at 0 is given by the mth derivative
of (2) evaluated at 0. Induction will be used.

It is clear that (1) implies the absolute convergence of (2), and
that if Re λ is large enough, differentiation with respect to ζ, λ, and
v will commute with integration. Differentiating (2) m times with
respect to ζ, one gets
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(11) φ™(Q = A ± l ( \z^φ(z)N(z, \)D(z, ζ, -λ - 2 - m)
7Γ Jσ J

Σ ^L(zf ζ,v — i)dx dy
ΐ0

if Re v ^ m + 1 and the α̂  are properly chosen constants.

Let F(ζ) = ^φφKMdx dy. Then F(0) = ( [φφKάz, 0, v, X)dx dy

which by (1) can be written

, X)L(r, 0, v)dr
1 (V)7Z

^ , 1 ) 9>(0) (ViV(r, λ)L(r, 0, v)dr .
i (V) Jo

By Lemma 3 this last integral is Γ(v)/2(λ + l)v, and the desired result
follows.

Suppose now that Re v > 1. Because of a complication in the
inductive hypothesis, it will also be necessary to show that F'{Q) =
φ'(0). Notice, however, that if we differentiate F with respect to ζ
two terms arise, and in one of these the exponent of In is v — 2. If
Re v < 2, this would cause trouble. This difficulty is avoided if we
first apply Lemma 2 to F to write it in a form for which Rev ^2.
Then

[(λ + 2) L(z, 0, v) - (v - 1) L(z, 0,v - l)]dx dy .

By splitting this into two integrals and proceeding just as above, we
derive

F'(0) = 9>'(0) .

Suppose now that it has been established that F{p~1](0) = ^"^(O).
Use Lemma 2 to write F i n a form for which Re v ^ p + 1.

Let the following be taken as the inductive hypothesis:

(12a) 2^-«(0) = ^'-"(O) ,

(12b) α0 + Σ a, i w

( λ + 1 } ' , r- = (P ~ 1)! ,
<=i (v — 1) (v — 2) (v — ̂ )

and

(12c) a0 + Σ α4 1 w

( λ +

Q ^ , = 0
i=i (y — 1) (v — 2) (v — ̂ )

for fe = 2, 3, •••, p. When p = 2, (12a) was proved above. In this
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case a0 = λ + 2 and αx = -(v - 1) so that both (12b) and (12c) are
satisfied. Consider now F{p)(0) when F{p~1]{Q is given by the right
hand side of (11) with m = p — 1.

φ{z) N(Z, λ)

+ 1 + pJgαίL^, 0, v - i) - Σ ^ - i)L(z, 0, y - i -

After some algebra (13) becomes

where

= αo(λ + 1 + p) + λ + ^ [αx(λ + 1 + p) - αo(υ - 1)]

(v Λ H V - 2)

and

-'-"- -' ( v - l ) ( y - 2 ) . . ( υ - p )

= (λ + 1 + p) (p - 1)1 - (λ + 1) (p - 1) !

= p ! by (12b)

= αo(λ + l + p) + λ + fc + 1 [αt(λ + 1 + p) - αo(y - 1)]
y — 1

+ + ++ ( y - l H y - 2

(v — l)(v.— 2) ••• (y — p)

= (λ + 1 + p)0 + (λ + k + 1)0 = 0 by (12c) for

k = 2, 3, , p. It follows immediately that

F{p)(0) = φ{p)(0)

as was to be shown.
The case Re v — 1, Re λ Ξ> £ is treated as above except that Lemma

2' is used in place of Lemma 2. The proof is omitted.

REMARKS. Notice that in proving Theorem 1 we have also'established
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that (11) is a correct formula for the mth derivative of φ.
As mentioned above we are also at liberty to differentiate (2) with

respect to v and λ. It is readily verified that differentiating (2) with
respect to λ and using the results of Theorem 1 yields

which is nothing new. However, differentiating (2) with respect to v
and using Theorem 1 we derive the new formula,

, ζ, ~λ - 2 )
(14) Γ'(v)π — ln(X + l)Γ{v)π

L(z, ζ, v) ln(L(z, ζ, 2))dx dy .

The integral in (14) is absolutely convergent in spite of the apparent
difficulties with ln(L). Further derivations with respect to ζ, v, and
X are, of course, possible.

An interesting formula results from (11) for the case in which X
is an integer and v = 1. Here, α0 = Γ(n + m + 1)1 Γ(n + 1) and the
rest of the α's are zero. The θ integral is

dθ = 2 π r [ « " + V ( 2 ) ] ί Ξ + Γ 1 }dθ 2π
(1 - r β - ί β ζ ) w + w + 1 (m + n+ 1)1

and (11) becomes

JL (V2 w + 1 (1 ry [zn+2φ(z)]ί™ϊ}+1) dr .φ(ζ) (V (1 ry [z
nl Jo

This expression is readily checked for φ{z) — zk and, thereby, for any
φ € S(n).

Primative Kernels. In this section we shall prove

THEOREM 2. If φe S(t) and

Kϊ(z, ζ, v, λ) - (" 1 >* + 1 N(z, X)D(z, ζ,-X-2 + n)
znπ

\ ^ + iy~\L(z, ζ,v + n-l) + -f-- Hz, ζ, n)] ,
L Γ{v + n -1) Γ(n) J

then for Rev — 2 and ReX ^ t or Rev ^ 2 αwd ReX > t,

(15) ir%(ζ, v, λ) - y ^ ί * ) ^ ( ^ , ζ, v,

has the property that F^n) (ζ, v, X) = φ(Q (differentiation is with respect
to ζ). If Re X ^ t and v = 1, then
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(16) Hn(ζ, λ) = j \φ(z) K;(z, ζ, 1, X)dx dy

has the property that H™ (ζ, λ) - 2φ(ζ).

Proof. The proof will be by induction. Consider Fλ(ζ). To
differentiate under the integral sign in (15) it is sufficient to show
that the given and resulting integrals are absolutely convergent.
However,

( \\φ(z)Ki(z,C,v,X)\dxdy= \ \ + \ \.
JUJ Jlzl^rJ Jr<|z|<lJ

The integral over the annulus offers no difficulty and for small r,

\φ{z)K}{z,ζ,V,X)\^C±-
T

where C is constant. Thus

( ((φ{z) K}(z, ζ, v, X) \dxdyS 2πrC .

Because Rev ̂ 2, all of the integrals occurring after differentiation
are absolutely convergent and, hence,

Y(C, », λ) = y φ(z) -iL K}(z, ζ, v, λ) dx dy

- 1)] dx dy

= <P{Q .

Similarly H{(ζ, λ) = 2φ{ζ) and thus

fii(C, λ) = 2F1(ζf v,X) + C.

Suppose now that it has been established that for some n ^ 2,
(a) i^_i(ζ, v, λ) is an (n — l)st primative and
(b) fl-^ίζ, λ) - 2 * ; ^ , v, λ) + P(ζ, v, λ) where

P is a polynomial of degree n — 2 in ζ. The absolute convergence of
the needed integrals can be established as above. Therefore, from
(15) we get

TO, », λ) - ( ~ i r + 1 \ \^LN{Z, X)D(Z, ζ , - χ - l + n)

(17) + (λ + 2 - n) _ i - L(«f ζ, Λ)

Γ(»)

— — L(z, ζ, n — 1) \dx dy .
Γ(n - 1)
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The last two terms in this square bracket yield i^_i(ζ, v, λ). Now
let us add and subtract 2(λ + 2 - n)L{z, ζ,n- l)/[(λ + ΐ)Γ(n - 1)] to
the first two terms to write them as

λ + 1 L Γ(v + n — 2)

2
Γ(n - 1)

where the first term comes from the first term of (17) with v replaced
by v + 1 and the third term comes from the second term of (17) with
v = 2. Thus (17) yields

Fϊ(ζ, v, λ) = Fn^(ζ9 v, λ) - λ + 2 ~ n [Fn-X{ζ, v + 1, λ)

+ ί U ί ζ , 2, λ) - Hn^(ζf λ)]

= fU(ζ, v, λ) + Q(ζ, v, λ)

where Q is a polynomial of degree (n — 2) in ζ.
To complete the inductive argument, it is necessary to show that

i^(ζ, λ) - 2 Fn-X(ζ, v, λ) + P(ζ, v, λ).

HΛζ, λ) = 2(-l) + ι ( ί ^ iV(2, λ) Z)(«, ζ, - λ - 1 + n)

(18)

Γ λ + J 7 n X «, ζ, n -J 7 ife C n)
Γ(n) Γ(n — 1)

Using the same techniques as above, the square brackets can be written

λ + 1 / Γfa - 1) λ ' "

where v = 2 in the first term. On placing this expression in (18), we
get

^(ζ, 2, X) + ( λ + 2 ~ ^ + l ) Hn^(ζ, X) .

By the inductive hypothesis, jBΓn_i(ζ, λ) = 2 Fn^(ζ9 v, λ) + R(ζ, v, λ) where
R is of degree (n — 2) in ζ. We have then that

HXζ, λ) = 2 F^ίC, v, λ) + P(ζ, v, λ)

where P is of degree (n — 2) in ζ. This proves Theorem 2.
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It is interesting to note that Fn and Hn depend analytically on
v and λ and are not necessarily constants (with respect to these two
variables).

It is easy to prove

THEOREM 3. // (a) ψ e S (Re λ) and has a zero of order at least
n at 0, (b) either λ is not an integer or λ is an integer greater than
n-2, (c)

K? =
N(z9 χ)D{Zf ζy

π 1 (λ + ό)

and (d)

(19) G.(C) = \π\φ{z) K?{z, ζ, X)dx dy ,

then

The conditions imposed on λ are sufficient to guarantee that the
integral (19) converges absolutely. The proof of the theorem is just
a matter of differentiating and is omitted. If, however, φe S(Reλ),
then for each positive integer n, znφ(z) is also in S(Re λ), and, therefore,
if we define

(20) En(ζ) - y * * 9*z)Kϊ(z, C, λ)cta dy ,

En(ζ) is well defined, absolutely convergent and has the property that

The simplicity of (20) may make it more useful then either (15) or (16)
in some cases.
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