EXTREMAL SPECTRAL FUNCTIONS OF A SYMMETRIC OPERATOR

RICHARD C. GILBERT

1. Introduction. Let H_1 be a symmetric operator in a Hilbert space \mathfrak{H}_1 . If H is a self-adjoint operator in a Hilbert space \mathfrak{H} such that $\mathfrak{H}_1 \subset \mathfrak{H}$ and $H_1 \subset H$, then H is called a *self-adjoint extension* of H_1 . If $\mathfrak{H} \odot \mathfrak{H}_1$ is finite-dimensional, then H is called a *finite-dimension*al self-adjoint extension of H_1 . H is called a *minimal* self-adjoint extension if neither $\mathfrak{H} \odot \mathfrak{H}_1$ nor any of its subspaces different from $\{0\}$ reduces H.

Suppose H is a self-adjoint extension of H_1 . If $E(\lambda)$ is the spectral function of H and if P_1 is the operator in \mathfrak{H} of orthogonal projection on \mathfrak{H}_1 , then the operator function $E_1(\lambda) = P_1 E(\lambda)$ restricted to \mathfrak{H}_1 is called a spectral function of H_1 . We shall say that the spectral function $E_1(\lambda)$ is defined by the self-adjoint extension H.

The family of spectral functions of H_1 is a convex set, i.e., if $E'_1(\lambda)$ and $E''_1(\lambda)$ are spectral functions of H_1 and if a and b are nonnegative real numbers such that a + b = 1, then $aE'_1(\lambda) + bE''_1(\lambda)$ is also a spectral function of H_1 . A spectral function $E_1(\lambda)$ of H_1 is said to be *extremal* if it is impossible to find two different spectral functions $E'_1(\lambda)$, $E''_1(\lambda)$ and positive real numbers a and b, a + b = 1, such that $E_1(\lambda) = aE'_1(\lambda) + bE''_1(\lambda)$.

For further information we refer the reader to Achieser and Glasmann [1].

M. A. Naimark [6] has shown that the finite-dimensional extensions of a symmetric operator define extremal spectral functions of the operator. Finite-dimensional extensions exist, however, only for symmetric operators with equal deficiency indices. In §4 of this paper it is shown that self-adjoint extensions defined by the addition of maximal symmetric operators determine extremal spectral functions for a symmetric operator with unequal deficiency indices. The proof uses the proposition of M. A. Naimark [6] that if $E_1(\lambda)$ is defined by the minimal self-adjoint extension H, then $E_1(\lambda)$ is extremal if and only if every bounded self-adjoint operator A which commutes with H and satisfies the condition (Af, g) = (f, g) for all $f, g \in \mathfrak{H}_1$ is reduced by \mathfrak{H}_1 . Section 2 is devoted to a description of the self-adjoint extensions of a symmetric operator, and section 3 identifies some extremal spectral functions of a symmetric operator with infinite equal deficiency indices other than the ones defined by finite-dimensional extensions.

Received May 15, 1963. This work was supported by the Mathematics Research Center, U.S. Army, Madison, Wisconsin, under Contract No.: DA-11-022-ORD-2059.

The proof is based on the proposition of M. A. Naimark mentioned above.

Self-adjoint extensions of a symmetric operator. 2. The linear operator H in the Hilbert space \mathfrak{H} is said to be Hermitian if (Hf, g) =(f, Hg) for all $f, g \in \mathfrak{D}(H)$. H is symmetric if it is Hermitian and $\overline{\mathfrak{D}(H)} = \mathfrak{H}$. If H is a closed Hermitian operator and λ is a nonreal number, we define the subspaces $\mathfrak{M}(\lambda)$ and $\mathfrak{L}(\lambda)$ by the equations $\mathfrak{L}(\lambda) =$ $\mathfrak{R}(H-\overline{\lambda}E)$ and $\mathfrak{M}(\lambda) = \mathfrak{H} \oplus \mathfrak{L}(\lambda)$. (E stands for the identity operator.) $\mathfrak{M}(\lambda)$ is called a *deficiency subspace* of H and has the same dimensions for all λ in the same half-plane (upper or lower.) If $m = \dim \mathfrak{M}(\overline{\lambda})$, $n = \dim \mathfrak{M}(\lambda)$, then (m, n) are called the *deficiency indices* of H (with respect to λ). (We add "with respect to λ " because the ordered pair (m, n) depends on the half-plane λ is in.) The operator $U(\lambda) =$ $(H - \overline{\lambda}E)(H - \lambda E)^{-1}$ is an isometry mapping $\mathfrak{L}(\overline{\lambda})$ onto $\mathfrak{L}(\lambda)$. It is the Cayley transform of H. We have that H =called $(\lambda U(\lambda) - \overline{\lambda} E)(U(\lambda) - E)^{-1}$. Since λ is a fixed non-real number in the following, we shall write U in place of $U(\lambda)$. For fixed λ the correspondence between a Hermitian operator and its Cayley transform is a one-to-one inclusion-preserving correspondence between the set of closed Hermitian operators H and the set of closed isometric operators U for which $(U-E)^{-1}$ exists. We note, finally, that a subspace \mathfrak{H}_1 reduces H if and only if \mathfrak{H}_1 reduces U. In this circumstance, if $\mathfrak{H}_2 = \mathfrak{H} igodow \mathfrak{H}_1$, and if H_i and U_i are H and U respectively restricted to \mathfrak{P}_i , then U_i is the Cayley transform of H_i and $H = H_1 \bigoplus H_2$, $U = U_1 \bigoplus U_2$.

M. A. Naimark [5] has proved the following theorem which describes all self-adjoint extensions of a symmetric operator.

THEOREM 1. Let λ be any fixed nonreal number. Let H_1 be a closed symmetric operator with deficiency indices (m_1, n_1) (with respect to λ). Then every self-adjoint extension H of H_1 is obtained as follows:

(1) Let H_2 be a closed Hermitian operator in \mathfrak{H}_2 with deficiency indices (m_2, n_2) (with respect to λ) satisfying $m_1 + m_2 = n_1 + n_2$, $m_2 \leq n_1$.

(2) Let $H_0 = H_1 \bigoplus H_2$ in $\mathfrak{H} = \mathfrak{H}_1 \bigoplus \mathfrak{H}_2$. $(H_0$ is therefore a closed Hermitian operator with equal deficiency indices $(m_1 + m_2, n_1 + n_2)$, and if U_i is the Cayley transform of H_i , i = 0, 1, 2, then $U_0 = U_1 \bigoplus U_2$. Further, $\mathfrak{M}_0(\overline{\lambda}) = \mathfrak{M}_1(\overline{\lambda}) \bigoplus \mathfrak{M}_2(\overline{\lambda})$, $\mathfrak{M}_0(\lambda) = \mathfrak{M}_1(\lambda) \bigoplus \mathfrak{M}_2(\lambda)$).

(3) Let V be an arbitrary isometric operator mapping $\mathfrak{M}_0(\overline{\lambda})$ onto $\mathfrak{M}_0(\lambda)$ satisfying the condition $\varphi \in \mathfrak{M}_2(\overline{\lambda})$, $V\varphi \in \mathfrak{M}_2(\lambda)$ implies $\varphi = 0$.

(4) Let $\mathfrak{D}(H)$ be defined as all $g = f + V\varphi - \varphi$, where $f \in \mathfrak{D}(H_0)$, $\varphi \in \mathfrak{M}_0(\overline{\lambda})$.

(5) If $g \in \mathfrak{D}(H)$, let $Hg = H_0 f + \lambda V \varphi - \overline{\lambda} \varphi$.

Then, H is self-adjoint extension in \mathfrak{H} of H_1 , and every selfadjoint extension of H_1 is obtained in this way. We have that $\mathfrak{D}(H_2) = \mathfrak{D}(H) \cap \mathfrak{H}_2$.

We say that H_2 and V of Theorem 1 define the self-adjoint extension H of H_1 .

We can put the operator V into correspondence with a matrix (V_{ik}) of operators such that V_{11} : $\mathfrak{M}_1(\overline{\lambda}) \to \mathfrak{M}_1(\lambda)$, V_{12} : $\mathfrak{M}_2(\overline{\lambda}) \to \mathfrak{M}_1(\lambda)$, V_{21} : $\mathfrak{M}_1(\overline{\lambda}) \to \mathfrak{M}_2(\lambda)$, V_{22} : $\mathfrak{M}_2(\overline{\lambda}) \to \mathfrak{M}_2(\lambda)$. Then condition on V in (3) of theorem 1 then becomes $V_{12}\mathcal{P} = 0$ implies $\mathcal{P} = 0$.

We now give a theorem which gives a more detailed analysis of the structure of V.

THEOREM 2. Suppose that $\mathfrak{M}_1(\lambda)$, $\mathfrak{M}_1(\overline{\lambda})$, $\mathfrak{M}_2(\lambda)$, $\mathfrak{M}_2(\overline{\lambda})$ are Hilbert spaces and that V is an isometry which maps $\mathfrak{M}_1(\overline{\lambda}) \oplus \mathfrak{M}_2(\overline{\lambda})$ onto $\mathfrak{M}_1(\lambda) \oplus \mathfrak{M}_2(\lambda)$. (λ here has nothing to do with the theorem and is retained only as a notational convenience.) If $V = (V_{ik})$ in matrix form, suppose that $V_{12}\varphi = 0$ implies that $\varphi = 0$. Then the following conclusions are true:

(1) If $\mathfrak{M}_1^-(\lambda)$ is defined by the equation $\mathfrak{M}_1^-(\lambda) = [V_{12}\mathfrak{M}_2(\overline{\lambda})]^c$ (c indicates closure of a set) and if $\mathfrak{N}_1(\lambda)$ is defined by $\mathfrak{N}_1(\lambda) = \mathfrak{M}_1(\lambda) \bigoplus \mathfrak{M}_1^-(\lambda)$, then $\mathfrak{N}_1(\lambda)$ is the null space of V_{12}^* . Thus, V_{12}^* is one-to-one on $\mathfrak{M}_1^-(\lambda)$. Further, $\mathfrak{M}_2(\overline{\lambda}) = [V_{12}^*\mathfrak{M}_1^-(\lambda)]^c$.

(2) $V^* = V^{-1}$ maps $\mathfrak{N}_1(\lambda)$ onto a subspaces of $\mathfrak{M}_1(\overline{\lambda})$, which we denote by $\mathfrak{N}_1(\overline{\lambda})$. Thus, $\mathfrak{N}_1(\overline{\lambda}) = V^*\mathfrak{N}_1(\lambda)$, $\mathfrak{N}_1(\lambda) = V\mathfrak{N}_1(\overline{\lambda})$.

(3) If $\mathfrak{M}_1^-(\overline{\lambda})$ is defined by the equation $\mathfrak{M}_1^-(\overline{\lambda}) = \mathfrak{M}_1(\overline{\lambda}) \bigoplus \mathfrak{N}_1(\overline{\lambda})$, then V maps $\mathfrak{M}_1^-(\overline{\lambda}) \bigoplus \mathfrak{M}_2(\overline{\lambda})$ isometrically onto $\mathfrak{M}_1^-(\lambda) \bigoplus \mathfrak{M}_2(\lambda)$.

Thus, $V_{11}\mathfrak{M}_1^-(\overline{\lambda}) \subset \mathfrak{M}_1^-(\lambda)$.

(4) V_{21} is one-to-one on $\mathfrak{M}_1^-(\overline{\lambda})$, and $\mathfrak{N}_1(\overline{\lambda})$ is the null space of V_{21} . $\mathfrak{M}_2(\lambda) = [V_{21}\mathfrak{M}_1^-(\overline{\lambda})]^c$.

(5) V_{21}^* is one-to-one on $\mathfrak{M}_2(\lambda)$ and $\mathfrak{M}_1^-(\overline{\lambda}) = [V_{21}^*\mathfrak{M}_2(\lambda)]^c$.

(6) If $m_1 = \dim \mathfrak{M}_1(\overline{\lambda})$, $n_1 = \dim \mathfrak{M}_1(\lambda)$, $m_2 = \dim \mathfrak{M}_2(\overline{\lambda})$, $n_2 = \dim \mathfrak{M}_2(\overline{\lambda})$, then $m_1 + m_2 = n_1 + n_2$, $m_2 = \dim \mathfrak{M}_2(\overline{\lambda}) = \dim \mathfrak{M}_1^-(\overline{\lambda}) \leq n_1$, $n_2 = \dim \mathfrak{M}_2(\lambda) = \dim \mathfrak{M}_1^-(\overline{\lambda}) \leq m_1$.

(7) If $m_2 = n_2$, $m_1 = n_1$.

Proof. (1) Since $\mathfrak{N}_1(\lambda)$ is the orthogonal complement of the closure of the range of V_{12} , $\mathfrak{N}_1(\lambda)$ is the null space of V_{12}^* , and V_{12}^* is one-to-one on $\mathfrak{M}_1^-(\lambda)$.

Suppose $g \in \mathfrak{M}_2(\overline{\lambda})$ and g is perpendicular to $V_{12}^*\mathfrak{M}_1^-(\lambda)$. Then $0 = (g, V_{12}^*f) = (V_{12}g, f)$ for all $f \in \mathfrak{M}_1^-(\lambda)$. Therefore, $V_{12}g = 0$, and, since V_{12} is one-to-one, g = 0. Thus, $M_2(\overline{\lambda}) = [V_{12}^*\mathfrak{M}_1^-(\lambda)]^\circ$.

(2) Since

$$V^* = egin{pmatrix} V_{11}^* & V_{21}^* \ V_{12}^* & V_{22}^* \end{pmatrix}$$
 ,

 $V^*\mathfrak{N}_1(\lambda) = V^*_{11}\mathfrak{N}_1(\lambda) \subset \mathfrak{M}_1(\overline{\lambda})$. Thus, $V^* = V^{-1}$ maps $\mathfrak{N}_1(\lambda)$ onto a subspace of $\mathfrak{M}_1(\overline{\lambda})$.

(3) Clear, since $\mathfrak{N}_1(\lambda) = V \mathfrak{N}_1(\overline{\lambda})$.

(4) We first show that V_{21} is one-to-one on $\mathfrak{M}_1^-(\overline{\lambda})$. Suppose $f \in \mathfrak{M}_1^-(\overline{\lambda})$, $V_{21}f = 0$. Then, $Vf = V_{11}f + V_{21}f = V_{11}f \in \mathfrak{M}_1^-(\overline{\lambda})$. Let $g = V_{11}f = Vf$, so that $f = V^*g = V_{11}^*g + V_{12}^*g$. Since $f \in \mathfrak{M}_1^-(\overline{\lambda})$, $V_{11}^*g \in \mathfrak{M}_1^-(\overline{\lambda})$, $V_{12}^*g \in \mathfrak{M}_2(\overline{\lambda})$, we have that $V_{12}^*g = 0$. By (1) and the fact that $g \in \mathfrak{M}_1^-(\lambda)$, g = 0. Thus, $f = V^*g = 0$, and our contention is proved.

Since $\mathfrak{N}_1(\lambda) = V\mathfrak{N}_1(\overline{\lambda})$, $V_{21}f = 0$ for all $f \in \mathfrak{N}_1(\overline{\lambda})$. On the other hand, we have just shown that V_{21} is one-to-one on $\mathfrak{M}_1^-(\overline{\lambda})$. It follows that $\mathfrak{N}_1(\overline{\lambda})$ is the null space of V_{21} .

Because $(V_{21}^*)^* = V_{21}$ and the null space of $(V_{21}^*)^*$ is the orthogonal complement of the closure of the range of V_{21}^* , we see that $\mathfrak{M}_1^-(\overline{\lambda}) = [V_{21}^*\mathfrak{M}_2(\lambda)]^c$.

We claim finally that $\mathfrak{M}_2(\lambda) = [V_{21}M_1^-(\overline{\lambda})]^c$. Suppose $g \in \mathfrak{M}_2(\lambda)$ and that g is perpendicular to $V_{21}\mathfrak{M}_1^-(\overline{\lambda})$. Therefore, $0 = (V_{21}f, g) = (f, V_{21}^*g)$ for all $f \in \mathfrak{M}_1^-(\overline{\lambda})$. Since $V_{21}^*g \in \mathfrak{M}_1^-(\overline{\lambda})$, it follows that $V_{21}^*g = 0$. Thus, $V^*g = V_{22}^*g \in \mathfrak{M}_2(\overline{\lambda})$. Let $f = V^*g$. Then, $g = Vf = V_{12}f + V_{22}f$, where $g \in \mathfrak{M}_2(\lambda)$, $V_{12}f \in \mathfrak{M}_1^-(\lambda)$, $V_{22}f \in \mathfrak{M}_2(\lambda)$. Hence, $V_{12}f = 0$ and f = 0. Whence, g = Vf = 0. This proves our claim and completes the proof of (4).

(5) We have already shown in (4) that $\mathfrak{M}_1^-(\overline{\lambda}) = [V_{21}^*\mathfrak{M}_2(\lambda)]^c$. Since we also showed in (4) that $\mathfrak{M}_2(\lambda) = [V_{21}\mathfrak{M}_1^-(\overline{\lambda})]^c$, it follows that the null space of V_{21}^* is empty and therefore V_{21}^* is one-to-one on $\mathfrak{M}_2(\lambda)$.

(6) $m_1 + m_2 = n_1 + n_2$ follows from the fact that V maps $\mathfrak{M}_1(\overline{\lambda}) \bigoplus \mathfrak{M}_2(\overline{\lambda})$ isometrically onto $\mathfrak{M}_1(\lambda) \bigoplus \mathfrak{M}_2(\lambda)$.

We claim now that dim $\mathfrak{M}_2(\overline{\lambda}) = \dim \mathfrak{M}_1^-(\lambda)$. Let $\{\mathcal{P}_{\alpha}\}$ be a complete orthonormal system in $\mathfrak{M}_2(\overline{\lambda})$. Then $\{V_{12}\mathcal{P}_{\alpha}\}$ is a fundamental set in $\mathfrak{M}_1^-(\lambda)$. (See Nagy [4] for definitions.) Therefore dim $\mathfrak{M}_2(\overline{\lambda}) = P\{\mathcal{P}_{\alpha}\} =$ $P\{V_{12}\mathcal{P}_{\alpha}\} \ge \dim \mathfrak{M}_1^-(\lambda)$, where P stands for cardinality. Using V_{12}^* and an analogous argument, we obtain that dim $\mathfrak{M}_1^-(\lambda) \ge \dim \mathfrak{M}_2(\overline{\lambda})$. Thus, dim $\mathfrak{M}_2(\overline{\lambda}) = \dim \mathfrak{M}_1^-(\lambda)$, and $m_2 = \dim \mathfrak{M}_2(\overline{\lambda}) = \dim \mathfrak{M}_1^-(\lambda) \le n_1$. Similarly, $n_2 = \dim \mathfrak{M}_2(\lambda) = \dim \mathfrak{M}_1^-(\overline{\lambda}) \le m_1$.

(7) The proof is clear from the inequalities in (6).

Theorem 2 is therefore completely proved.

THEOREM 3. (M. A. Naimark [5]). For each self-adjoint extension H in \mathfrak{F} of a symmetric operator H_1 in \mathfrak{F}_1 there exists a minimal self-adjoint extension H_0 in \mathfrak{F}_0 such that

(1) $\mathfrak{H}_1 \subset \mathfrak{H}_0 \subset \mathfrak{H};$

(2) $H_1 \subset H_0 \subset H;$

(3) H_0 and H define the same spectral function of H_1 .

THEOREM 4. Suppose that H_1 is a closed symmetric operator and that H_2 and V define a self-adjoint extension H of H_1 . Let H_0 be a self-adjoint extension of H_1 having the properties that $\mathfrak{F}_1 \subset \mathfrak{F}_0 \subset \mathfrak{F}$ and $H_1 \subset H_0 \subset H$. Then the following statements are true:

(1) If we write $\mathfrak{H}_0 = \mathfrak{H}_1 \oplus \mathfrak{H}_3$, $\mathfrak{H} = \mathfrak{H}_0 \oplus \mathfrak{H}_4 = \mathfrak{H}_1 \oplus \mathfrak{H}_3 \oplus \mathfrak{H}_4$, $\mathfrak{H}_2 = \mathfrak{H}_3 \oplus \mathfrak{H}_4$, then H is reduced by \mathfrak{H}_4 and $H = H_0 \oplus H_4$, where H_4 is a self-adjoint operator in \mathfrak{H}_4 .

(2) $\mathfrak{H}_4 \subset \mathfrak{L}_2(\overline{\lambda}) \cap \mathfrak{L}_2(\lambda), \ \mathfrak{M}_2(\overline{\lambda}) \subset \mathfrak{H}_3, \ \mathfrak{M}_2(\lambda) \subset \mathfrak{H}_3.$

(3) H_2 is reduced by \mathfrak{H}_4 and $H_2 = H_3 \bigoplus H_4$, where H_3 is a closed Hermitian operator in \mathfrak{H}_3 with the same deficiency subspaces $M_2(\overline{\lambda})$, $\mathfrak{M}_2(\lambda)$ as H_2 .

(4) H_0 is defined by H_3 and V.

(5) H and H_0 define the same spectral function of H_1 .

Proof. (1) Since $H_1 \subset H_0 \subset H$, we have that $U_1 \subset U_0 \subset U$. Because U_0 maps \mathfrak{H}_0 isometrically onto \mathfrak{H}_0 and U maps \mathfrak{H} isometrically onto \mathfrak{H}_4 . Thus, \mathfrak{H}_4 reduces U, and hence $U = U_0 \oplus U_4$, $H = H_0 \oplus H_4$, where H_4 is a self-adjoint operator in \mathfrak{H}_4 with Cayley transform U_4 . This proves (1).

(2) We claim first that $\mathfrak{F}_4 \subset \mathfrak{L}_2(\overline{\lambda})$. Let $f \in \mathfrak{F}_4$. Since $H_4 \subset \mathfrak{F}_2 = \mathfrak{M}_2(\overline{\lambda}) \oplus \mathfrak{L}_2(\overline{\lambda})$, f = f' + f'', where $f' \in \mathfrak{M}_2(\overline{\lambda})$, $f'' \in \mathfrak{L}_2(\overline{\lambda})$. Hence, $Uf = Uf' + Uf'' = Vf' + U_2f'' = V_{12}f' + V_{22}f' + U_2f''$, where $Uf \in \mathfrak{F}_4 \subset \mathfrak{F}_2$, $V_{12}f' \in \mathfrak{M}_1(\lambda) \subset \mathfrak{F}_1$, $V_{22}f' \in \mathfrak{M}_2(\lambda) \subset \mathfrak{F}_2$, $U_2f'' \in \mathfrak{L}_2(\lambda) \subset \mathfrak{F}_2$. Thus, $V_{12}f' = 0$, and therefore f' = 0. It follows that $f = f'' \in \mathfrak{L}_2(\overline{\lambda})$ and that $\mathfrak{F}_4 \subset \mathfrak{L}_2(\overline{\lambda})$.

Since $\mathfrak{F}_4 \subset \mathfrak{F}_2(\overline{\lambda})$, and since U maps \mathfrak{F}_4 isometrically onto \mathfrak{F}_4 and $\mathfrak{F}_2(\overline{\lambda})$ isometrically onto $\mathfrak{F}_2(\lambda)$, we conclude that $\mathfrak{F}_4 \subset \mathfrak{F}_2(\lambda)$. Hence, $\mathfrak{F}_4 \subset \mathfrak{F}_2(\overline{\lambda}) \cap \mathfrak{F}_2(\lambda)$. It follows immediately that $\mathfrak{M}_2(\overline{\lambda}) \subset \mathfrak{F}_3$, $\mathfrak{M}_2(\lambda) \subset \mathfrak{F}_3$. (2) is therefore completely proved.

(3) Because $U_2 = U$ on $\mathfrak{L}_2(\overline{\lambda})$, we see that U_2 maps \mathfrak{H}_4 isometrically onto \mathfrak{H}_4 . We know, however, that U_2 maps $\mathfrak{L}_2(\overline{\lambda})$ isometrically onto $\mathfrak{L}_2(\lambda)$. It follows that \mathfrak{H}_4 reduces U_2 . Thus, $U_2 = U_3 \bigoplus U_4$, where U_3 maps $\mathfrak{L}_2(\overline{\lambda}) \odot \mathfrak{H}_4$ isometrically onto $\mathfrak{L}_2(\lambda) \odot \mathfrak{H}_4$, and $H_2 = H_3 \bigoplus H_4$, where H_3 is a closed Hermitian operator in \mathfrak{H}_3 with Cayley transform U_3 . Noting that $\mathfrak{H}_3 = \mathfrak{M}_2(\lambda) \bigoplus [\mathfrak{L}_2(\overline{\lambda}) \odot \mathfrak{H}_4] = \mathfrak{M}_2(\lambda) \bigoplus [\mathfrak{L}_2(\lambda) \odot \mathfrak{H}_4]$, we see that H_3 has deficiency subspaces $\mathfrak{M}_2(\overline{\lambda})$, $\mathfrak{M}_2(\lambda)$. This proves (3).

(4) By Theorem 1, H_3 and V define a self-adjoint extension H'_0 of H_1 in $\mathfrak{H}_0 = \mathfrak{H}_1 \oplus \mathfrak{H}_3$. If U'_0 is the Cayley transform of H'_0 , then $U'_0 = U_1 = U$ on $\mathfrak{H}_1(\overline{\lambda})$, $U'_0 = V = U$ on $\mathfrak{M}_1(\overline{\lambda}) \oplus \mathfrak{M}_2(\overline{\lambda})$, $U'_0 = U_3 = U$ on $\mathfrak{H}_2(\overline{\lambda}) \oplus \mathfrak{H}_4$. It follows that $U'_0 = U$ on $\mathfrak{H}_1 \oplus \mathfrak{H}_3 = \mathfrak{H}_0$. But since $U_0 \subset U$, $U_0 = U$ on \mathfrak{H}_0 , hence, $U_0 = U'_0$, and therefore $H_0 = H'_0$. This

proves (4).

(5) As we have shown, $H = H_0 \bigoplus H_4$. Thus, $E(\lambda) = E_0(\lambda) \bigoplus E_4(\lambda)$, and therefore $E(\lambda)f = E_0(\lambda)f$ for all $f \in \mathfrak{H}_1$. If P is the operator of orthogonal projection of \mathfrak{H} onto \mathfrak{H}_1 and if P_0 is the operator of orthogonal projection of \mathfrak{H}_0 onto \mathfrak{H}_1 , $PE(\lambda)f = PE_0(\lambda)f = P_0E_0(\lambda)f$ for all $f \in \mathfrak{H}_1$, so that H and H_0 define the same spectral function of H_1 . This proves (5), and the proof of theorem 4 is completed.

3. Extremal spectral functions of a symmetric operator with equal deficiency indices.

THEOREM 5. Let H be a self-adjoint extension of the closed symmetric operator H_1 . Suppose that H is defined by H_2 and V. Then the following statements are equivalent:

- (1) $\mathfrak{D}(H_2) = \{0\}.$
- (2) $\mathfrak{M}_2(\overline{\lambda}) = \mathfrak{M}_2(\lambda) = \mathfrak{H}_2.$
- (3) $\mathfrak{D}(H) \cap \mathfrak{H}_2 = \{0\}.$

Proof. That (1) implies (2) is clear from the definition of $\mathfrak{M}_2(\overline{\lambda})$ and $\mathfrak{M}_2(\lambda)$. Suppose, on the other hand, that $\mathfrak{M}_2(\overline{\lambda}) = \mathfrak{M}_2(\lambda) = \mathfrak{H}_2$. Then, $\mathfrak{R}(H_2 - \lambda E) = \mathfrak{R}(H_2 - \overline{\lambda}E) = \{0\}$. If $f \in \mathfrak{D}(H_2)$, $H_2f - \lambda f = 0$ and $H_2f - \overline{\lambda}f = 0$. Subtracting the first equation from the second, $(\lambda - \overline{\lambda})f = 0$, and therefore f = 0. Thus, $\mathfrak{D}(H_2) = \{0\}$, and we have proved that (2) implies (1).

By Theorem 1, $\mathfrak{D}(H_2) = \mathfrak{D}(H) \cap \mathfrak{H}_2$, so that (1) and (3) are clearly equivalent.

THEOREM 6. Let H_1 be a closed symmetric operator. Suppose that H is a self-adjoint extension of H_1 defined by H_2 and V. If $\mathfrak{D}(H_2) = \{0\}$, the following statements are true:

- (1) $m_1 = n_1$, i.e., the deficiency indices of H_1 are equal.
- (2) H is minimal.
- (3) The spectral function $E_1(\lambda)$ of H_1 defined by H is extremal.

Proof. (1) By Theorem 5, $\mathfrak{D}(H_2) = \{0\}$ implies that $m_2 = n_2$. By theorem 2, (7), $m_1 = n_1$.

(2) By Theorem 5, $\mathfrak{D}(H_2) = \{0\}$ implies that $\mathfrak{M}_2(\overline{\lambda}) = \mathfrak{M}_2(\lambda) = \mathfrak{H}_2$. Hence, $\mathfrak{L}_2(\overline{\lambda}) = \mathfrak{L}_2(\lambda) = \{0\}$. It follows from Theorem 3 and Theorem 4, (2), that H is minimal.

(3) Let A be any bounded operator in \mathfrak{D} having a matrix representation,

$$A \sim \begin{pmatrix} E & B \\ B^* & C \end{pmatrix}$$
,

where E is the identity in \mathfrak{H}_1 , B maps \mathfrak{H}_2 into \mathfrak{H}_1 , C maps \mathfrak{H}_2 into \mathfrak{H}_2 , and C is self-adjoint. Suppose that A commutes with H. We shall show that this implies that $B \equiv 0$. By the proposition of M. A. Naimark [6] mentioned in the introduction, then, it follows that the spectral function $E_i(\lambda)$ defined by H is extremal.

Since A commutes with H, it commutes with the Cayley transform U of H. If we represent U as a matrix, $U \sim (U_{j_k})$, where U_{j_k} maps \mathfrak{H}_k into \mathfrak{H}_j , then the fact that A commutes with U implies that $BU_{21} = U_{12}B^*$. Taking adjoints, we also have that $U_{21}^*B^* = BU_{12}^*$. We observe, further, that U = V on $\mathfrak{M}_1(\overline{\lambda}) \oplus \mathfrak{M}_2(\overline{\lambda})$ and that $U^* = U^{-1} = V^{-1} = V^*$ on $\mathfrak{M}_1(\lambda) \oplus \mathfrak{M}_2(\lambda)$.

Using the equation $BU_{12}^* = U_{21}^*B^*$, the fact that $\mathfrak{M}_2(\lambda) = \mathfrak{D}_2$, and Theorem 2, we obtain that $BV_{12}^*\mathfrak{M}_1^-(\lambda) = BU_{12}^*\mathfrak{M}_1^-(\lambda) = U_{21}^*B^*\mathfrak{M}_1^-(\lambda) \subset U_{21}^*\mathfrak{D}_2 = U_{21}^*\mathfrak{M}_2(\lambda) = V_{21}^*\mathfrak{M}_2(\lambda) \subset \mathfrak{M}_1(\overline{\lambda})$. Since by Theorem 2 $V_{12}^*\mathfrak{M}_1^-(\lambda)$ is dense in $M_2(\overline{\lambda}) = \mathfrak{D}_2$ and since B is bounded, it follows that $B\mathfrak{D}_2 \subset \mathfrak{M}_1(\overline{\lambda})$.

Similarly, using the equation $BU_{21} = U_{12}B^*$, we obtain that $BV_{21}\mathfrak{M}_1^-(\overline{\lambda}) = BU_{21}\mathfrak{M}_1^-(\overline{\lambda}) = U_{12}B^*\mathfrak{M}_1^-(\overline{\lambda}) \subset U_{12}\mathfrak{D}_2 = U_{12}\mathfrak{M}_2(\overline{\lambda}) = V_{12}\mathfrak{M}_2(\overline{\lambda}) \subset \mathfrak{M}_1(\lambda)$, and therefore $B\mathfrak{D}_2 \subset \mathfrak{M}_1(\lambda)$.

Thus, $B\mathfrak{G}_2 \subset \mathfrak{M}_1(\overline{\lambda}) \cap \mathfrak{M}_1(\lambda)$. But $\mathfrak{M}_1(\overline{\lambda}) \cap \mathfrak{M}_1(\lambda) = \{0\}$, because $\mathfrak{M}_1(\overline{\lambda})$ and $\mathfrak{M}_1(\lambda)$ are the deficiency subspaces of a symmetric operator. Hence, $B \equiv 0$. This complete the proof of Theorem 6.

By use of a somewhat less general form of Theorem 6, M. A. Naimark [6] has shown that every finite-dimensional extension H of a closed symmetric operator H_1 defines an extremal spectral function of H_1 .

THEOREM 7. If H is a finite-dimensional extension of a closed symmetric operator H_1 , then H_1 must have equal deficiency indices.

Proof. Suppose that H is defined by H_2 and V. Then H_2 is a Hermitian operator in the finite-dimensional space \mathfrak{H}_2 . Since U_2 maps $\mathfrak{L}_2(\overline{\lambda})$ isometrically onto $\mathfrak{L}_2(\lambda)$, it follows that dim $\mathfrak{L}_2(\overline{\lambda}) = \dim \mathfrak{L}_2(\lambda)$. Hence dim $\mathfrak{M}_2(\overline{\lambda}) = \dim \mathfrak{M}_2(\lambda)$, i.e., $m_2 = n_2$. By Theorem 2, (7), $m_1 = n_1$. This proves Theorem 7.

4. Extremal spectral functions of a symmetric operator with unequal deficiency indices. We first introduce the notion of a partial isometry and some of the properties thereof. (See Murray and von Neumann [3].) A bounded linear operator W in a Hilbert space \mathcal{D} is called a *partial isometry* if it maps a subspace \mathfrak{T} isometrically onto another subspace \mathfrak{T} , while it maps $\mathfrak{D} \subset \mathfrak{T}$ onto $\{0\}$. \mathfrak{T} is called the *initial set* of W, and \mathfrak{T} is called the *final set* of W. If W is a partial isometry, then the following statements hold:

(1) If $P(\mathfrak{G})$ is the operator of orthogonal projection on \mathfrak{G} and if $P(\mathfrak{F})$ is the operator of orthogonal projection on \mathfrak{F} , then $P(\mathfrak{G}) = W^* W$,

 $P(\mathfrak{F}) = WW^*$.

(2) U^* is a partial isometry with initial set \mathfrak{F} and final set \mathfrak{E} .

(3) As a mapping of F onto G, U^* is the inverse of U as a mapping of G onto F.

THEOREM 8. Suppose that W is a partial isometry with initial set \mathfrak{M} and final set \mathfrak{H} . Let $\mathfrak{N} = \mathfrak{H} \ominus \mathfrak{M}$. Then, $\mathfrak{M} = \mathfrak{M}' \oplus \mathfrak{M}''$, where

(1) W maps \mathfrak{M}'' isometrically onto \mathfrak{M}'' ;

(2) if $f \in \mathfrak{N} \oplus \mathfrak{M}'$, $\lim_{p\to\infty} W^p f = 0$.

Proof. Let $\mathfrak{M}_i = (W^*)^i \mathfrak{N}$, $i = 0, 1, 2, \cdots$. Then each \mathfrak{M}_i is a subspace (i.e., a closed linear manifold), and the following statements are true:

(a) $\mathfrak{M}_i \subset \mathfrak{M}$ for $i = 1, 2, \cdots$. This is clear because W^* is a partial isometry with initial set \mathfrak{P} and final set \mathfrak{M} .

(b) If $f \in \mathfrak{M}_n$, where $n \geq 0$, then $W^p f \in \mathfrak{M}_{n-p}$ for $1 \leq p \leq n$, and $W^p f = 0$ for p > n. Proof: If $f \in \mathfrak{M}_n$, then $f = (W^*)^n g$ for some $g \in \mathfrak{N}$. Since $WW^* = E$, $W^p f = (W^*)^{n-p} g \in \mathfrak{M}_{n-p}$, $1 \leq p \leq n$. If p > n, $W^p f = W^{p-n}g = 0$.

(c) If $f \in \mathfrak{M}_i$, $i = 0, 1, 2, \cdots$, and if *n* is a positive integer, then $(W^*)^n f \in \mathfrak{M}_{i+n}$. Proof: If $f \in \mathfrak{M}_i$, $f = (W^*)^i g$, where $g \in \mathfrak{N}$. Therefore, $(W^*)^n f = (W^*)^{i+n} g \in \mathfrak{M}_{i+n}$.

(d) \mathfrak{M}_i is perpendicular to \mathfrak{M}_j if $i \neq j$. Proof: Suppose i < j, and let $f \in \mathfrak{M}_i$, $g \in \mathfrak{M}_j$. Then there exists $f_1 \in \mathfrak{N}$ and $g_1 \in \mathfrak{N}$ such that $f = (W^*)^i f_1$, $g = (W^*)^j g_1$. Hence, $(f, g) = ((W^*)^i f_1, (W^*)^j g_1) =$ $(f_1, (W^*)^{j-i} g_1) = 0$, since $f_1 \in \mathfrak{N}$, $(W^*)^{j-i} g_1 \in \mathfrak{M}_{j-i} \subset \mathfrak{M}$.

Now let $\mathfrak{M}' = \sum_{i=1}^{\infty} \mathfrak{M}_i$. Then \mathfrak{M}' is a subspace of \mathfrak{M} . Let $\mathfrak{M}'' = \mathfrak{M} \ominus \mathfrak{M}'$. We shall show that \mathfrak{M}' and \mathfrak{M}'' satisfy (1) and (2).

Since $\mathfrak{M} = \mathfrak{M}' \oplus \mathfrak{M}''$ and $\mathfrak{H} = \mathfrak{N} \oplus \mathfrak{M}' \oplus \mathfrak{M}''$, and since W maps \mathfrak{M} isometrically onto \mathfrak{H} , in order to prove (1) it is sufficient to show that W maps \mathfrak{M}' onto $\mathfrak{N} \oplus \mathfrak{M}'$. Suppose $f \in \mathfrak{M}'$. Then, $f = \sum_{i=1}^{\infty} f_i$, where $f_i \in \mathfrak{M}_i$, and $Wf = \sum_{i=1}^{\infty} Wf_i$. Because by (b) $Wf_i \in \mathfrak{M}_{i-1}$, we see that $Wf \in \mathfrak{N} \oplus \mathfrak{M}'$. Thus, W maps \mathfrak{M}' into $\mathfrak{N} \oplus \mathfrak{M}'$. To show that the map is onto, let $g \in \mathfrak{N} \oplus \mathfrak{M}'$. Then, $g = \sum_{i=0}^{\infty} f_i$, where $f_i \in \mathfrak{M}_i$. If $f = W^*f = \sum_{i=0}^{\infty} W^*f_i \in \mathfrak{M}'$, by (c). Further, $Wf = WW^*g = g$. Hence, W maps \mathfrak{M}' onto $\mathfrak{N} \oplus \mathfrak{M}'$.

We now prove (2). Let $f \in \mathfrak{N} \bigoplus \mathfrak{M}'$. Then, $f = \sum_{i=0}^{\infty} f_i$, where $f_i \in \mathfrak{M}_i$. By (b), $W^p f = \sum_{i=0}^{\infty} W^p f_i = \sum_{i=p}^{\infty} W^p f_i$. Hence, $||W^p f||^2 = \sum_{i=p}^{\infty} ||W^p f_i||^2 = \sum_{i=p}^{\infty} ||f_i||^2$. Thus, $\lim_{p\to\infty} ||W^p f||^2 = 0$. This proves (2) and completes the proof of the theorem.

THEOREM 9. Let λ be a fixed nonreal number. Suppose that H_1 is a closed symmetric operator in \mathfrak{H}_1 with deficiency indices (m, n)

(with respect to λ), and suppose that $m \neq n$. Let H be a self-adjoint extension of H_1 defined by H_2 and V, where H_2 is a closed Hermitian operator with deficiency indices (0, s), n + s = m, if m > n and (s, 0), m + s = n, if m < n. Then the spectral function defined by H is extremal.

Proof. Assume that m > n. The case m < n then follows by interchanging the roles of $\overline{\lambda}$ and λ in Theorem 1 and defining H by H_2 and V^* .

By Theorem 3 there exists a minimal self-adjoint extension H_0 of H_1 such that $\mathfrak{H}_1 \subset \mathfrak{H}_0 \subset \mathfrak{H}$, $H_1 \subset H_0 \subset H$, and H_0 and H define the same spectral function of H_1 . By Theorem 4, H_0 is defined by V and a Hermitian operator H_3 with the same deficiency subspaces as H_2 . Since we can always consider H_0 instead of H, it follows that without loss of generality we can consider H to be a minimal self-adjoint extension.

Since $\mathfrak{M}_2(\overline{\lambda}) = \{0\}$ and $\mathfrak{L}_2(\overline{\lambda}) = \mathfrak{H}_2$, we have that if $f \in \mathfrak{H}_2$, $Uf \in \mathfrak{L}_2(\lambda) \subset \mathfrak{H}_2$. If we represent U as a matrix, $U \sim (U_{j_k})$, where U_{j_k} maps \mathfrak{H}_k into \mathfrak{H}_j , then it follows that $U_{12} \equiv 0$ on \mathfrak{H}_2 . Further, $Uf = U_{22}f$ for all $f \in \mathfrak{H}_2$, so that U_{22} maps \mathfrak{H}_2 isometrically onto $\mathfrak{L}_2(\lambda)$. U_{22} is thus a partial isometry in \mathfrak{H}_2 with initial set \mathfrak{H}_2 and final set $\mathfrak{L}_2(\lambda)$, while U_{22}^* is a partial isometry with initial set $\mathfrak{L}_2(\lambda)$ and final set \mathfrak{H}_2 . We have that $E = P(\mathfrak{H}_2) = U_{22}^*U_{22}$, while $P(\mathfrak{L}_2(\lambda)) = U_{22}U_{22}^*$.

Now let A be any bounded operator in \mathfrak{Y} with matrix representation

$$A \sim \begin{pmatrix} E & B \\ B^* & C \end{pmatrix}$$
,

where E is the identity in \mathfrak{H}_1 , B maps \mathfrak{H}_2 into \mathfrak{H}_1 , C maps \mathfrak{H}_2 into \mathfrak{H}_2 , and C is self-adjoint. Suppose that A commutes with H. We shall show that this implies $B \equiv 0$. Then by the proposition of M. A. Naimark [6] mentioned in the introduction, it follows that the spectral function $E_1(\lambda)$ defined by H is extremal.

Since A commutes with H, it commutes with the Cayley transform U of H. This implies that $BU_{21} = U_{12}B^*$ and $U_{12} + BU_{22} = U_{11}B + U_{12}C$. Since $U_{12} \equiv 0$, these equations become $BU_{21} \equiv 0$ and $BU_{22} = U_{11}B$. On $\mathfrak{M}_1(\overline{\lambda})$, $U_{21} = V_{21}$ and therefore $BV_{21}\mathfrak{M}_1(\overline{\lambda}) = BU_{21}\mathfrak{M}_1(\overline{\lambda}) = \{0\}$. Becaese by Theorem 2, $V_{21}\mathfrak{M}_1(\overline{\lambda})$ is dense in $\mathfrak{M}_2(\lambda)$, $B\mathfrak{M}_2(\lambda) = \{0\}$, i.e., $BP(\mathfrak{M}_2(\lambda)) = 0$. From the equation $BU_{22} = U_{11}B$ we have that $BP(\mathfrak{L}_2(\lambda)) = BU_{22}U_{22}^* = U_{11}BU_{22}^*$. Adding $BP(\mathfrak{L}_2(\lambda)) = U_{11}BU_{22}^*$ with $BP(\mathfrak{M}_2(\lambda)) = 0$, we obtain that $B = U_{11}BU_{22}^*$. By iterating this equation we see that $B = U_{11}^*B(U_{22}^*)^p$ for every positive integer p. Since $||U_{11}|| \leq 1$, $||Bf|| \leq ||B|| ||(U_{22}^*)^p f||$ for each $f \in \mathfrak{H}_2$ and each positive integer p.

By Theorem 8, $\mathfrak{L}_2(\lambda) = \mathfrak{M}' \oplus \mathfrak{M}''$, where U_{22}^* maps \mathfrak{M}'' isometrically onto \mathfrak{M}'' , and if $f \in \mathfrak{M}_2(\lambda) \oplus \mathfrak{M}'$, then $\lim_{p \to \infty} || (U_{22}^*)^p f || = 0$. But if U_{22}^* maps \mathfrak{M}'' isometrically onto \mathfrak{M}'' , then U_{22} and therefore U maps \mathfrak{M}'' isometrically onto \mathfrak{M}'' . This means that U and therefore H is reduced by \mathfrak{M}'' , a subspace of \mathfrak{H}_2 . Since H is a minimal self-adjoint extension of H_1 , $\mathfrak{M}'' = \{0\}$. Hence, $\mathfrak{H}_2 = \mathfrak{M}_2(\lambda) \oplus \mathfrak{M}'$, and thus if $f \in \mathfrak{H}_2$, $\lim_{p\to\infty} || (U_{22}^*)^p f || = 0$. Since $|| Bf || \leq || B || || (U_{22}^*)^p f ||$ for each $f \in \mathfrak{H}_2$ and for every positive integer p, it follows that $B \equiv 0$ on \mathfrak{H}_2 . This completes the proof of Theorem 9.

Since the operator H_2 in Theorem 9 is a *Hermitian* operator with deficiency indices (0, s) or (s, 0), it may seem that we are dealing with a wider class of operators than the maximal symmetric operators. That this is not so is shown by Theorem 10 below.

THEOREM 10. If H is a Hermitian operator with deficiency indices (0, s) or (s, 0), then H is a maximal symmetric operator. If H is a Hermitian operator with deficiency indices (0, 0), then H is a self-adjoint operator.

Proof. If H is a Hermitian operator and $\mathfrak{B} = \mathfrak{H} \bigoplus [\mathfrak{D}(H)]^{\circ}$, then $\mathfrak{B} \cap \mathfrak{L}(\overline{\lambda}) = \{0\}$. (If $h \in \mathfrak{B} \cap \mathfrak{L}(\overline{\lambda})$, then $h = (H - \lambda E)g$, Hence, $0 = (h, g) = (Hg, g) - \lambda(g, g)$. Since (Hg, g) is real while λ is not, g = 0. This simple argument is due to M. A. Krasnosel'skii [2, Lemma 2].) If H has deficiency indices (0, s), $\mathfrak{M}(\overline{\lambda}) = \{0\}$ so that $\mathfrak{B} \subset \mathfrak{L}(\overline{\lambda})$. Thus, $\mathfrak{B} = \{0\}$ and H is symmetric. Similarly, H is symmetric if its deficiency indices are (s, 0). It follows immediately that if H has deficiency indices (0, 0), H is self-adjoint. Theorem 10 is proved.

References

1. N. I. Achieser and I. M. Glasmann, Theorie der linearen operatoren im Hilbert-Raum, Akademie-Verlag, Berlin, 1954.

2. M. A. Krasnosel'skii, On self-adjoint extensions of Hermitian operators, Ukrainskii Mat. Zhurnal, No. 1 (1949), 21-38.

3. F. J. Murray and J. v. Neumann, On rings of operators, Annals of Math., 37 (1936), 116-229.

4. Bela v. Sz. Nagy, Spektraldarstellung linearer transformationen des Hilbertschen-Raumes, Springer Verlag, Berlin, 1942.

5. M. A. Naimark, Spectral functions of a symmetric operator, Izvest. Akad. Nauk SSSR, Ser. Mat., 4 (1940), 277-318.

6. _____, Extremal spectral functions of a symmetric operator, Izvest. Akad. Nauk_ SSSR, Ser. Mat., **11** (1942), 327-344.

MATHEMATICS RESEARCH CENTER, U.S. ARMY UNIVERSITY OF WISCONSIN, AND UNIVERSITY OF CALIFORNIA, RIVERSIDE