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Let A be a real, positive definite, n x n matrix; with A we
associate, in the Euclidean w-space Rn, the ellipsoid E(A) of points x
for which

(x, Ax) ^ 1

where (x, y) denotes the usual inner product. In references [5], [6],
[7] certain means of convex bodies were studied. It will be shown
here that two particular means of ellipsoids of the type E(A) corre-
spond to two simple combinations of the corresponding matrices A.
The applications mentioned in the title rest upon this correspondence.
The first two give results about positive definite matrices, including
•a refinement of a determinant inequality of Minkowski; the third
application shows the existence of a set of unique ellipsoids related
to a convex body by a set of similar extremal problems, the classical
Loewner ellipsoid being a particular instance.

Throughout this paper the letters A and B, sometimes with
distinguishing marks, denote real, positive definite, n x n matrices.
The distance from x to the origin is written \\x\\.

1. The distance and support functions of E(A) are:

F(x) = V(x, Ax) , H(x) = V(x, A~λx) .

I n t h e first case , if x Φ 0, w e h a v e F{x) = | | a 5 | | / | | « | | w h e r e aj/| |ί»| | =
zj\\z\\ and (z, Az) = 1, and so

\\x\\l\\z\\ = \\x\\V(zl\\z\\,Azl\\z\\)

In the second case

H(x) — max (x, y) where (y, Ay) — 1 .
y

"We represent y in the form λA"1^ + v where (x, v) — 0. Then

{y, Ay) = \\x, A-'x) + (v, Av) ,

whence
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(x, y) = \(x9 A-χx) = V(%, A-'xWil - (v, Av)] ,

and the maximum is attained for v = 0.
The polar reciprocal E(A) of E(A) with respect to the unit sphere

E(I) has H(x) as its distance function, F(x) as its support function.
Consequently

IS (A) = EiA-1) .

In [5] the p-άot mean of two convex bodies Ko, Kλ in Rn, which
have the origin as a common interior point, was defined for p Ξ> 1 tσ
be to convex body MP(K0, Kλ\ ΰ) whose distance function is

[(1 - ϋ)Ff(x) + ΰFftx)]1'*

where Fi is the distance function of K{ and 0 S & ̂ = 1. From this it
follows that M2(E(A0), E(A^m

9 ϋ) has the distance function

•/[(I - ϋ)(x, Aox) + #(x, Axx)} = V{x, [(1 -

Thus

(2)

In [7] the p-mean MP(KO, Kx\ ϋ) was defined for p ^ 1 to be the
convex body whose support function is

[(1 - ϋ)Hf(x) + &H?(B)Γ/P

where Hi is the support function of Kit Therefore, by reasoning
similar to the preceding, we have

(3) M2(E(A0), E(Ad; ϋ) =

2. Our first application is based on the inclusion

( 4) M2(K0, Kx; &) S M2(K0, Ki; ΰ) ,

established in [5] and [7]1 with equality if and only if Ko = Klf and the
observation that

E(A) S E(B)

if and only if A — B is positive semi-definite. For the latter we write
A ^ B; we call such an inequality strict if A — B is not a zero matrix.
From (2), (3) and (4) we have

1 The inclusion is not specifically mentioned, but in [7] it is proved that Mi £ Mp

for p > 1 and in [5] that MP 9 Mi and Mi £ Mi.
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Hence, from (5) we obtain an "inequality of arithmetic and harmonic
means" for positive definite matrices.

T H E O R E M 1 . If A o , A x are any two real, positive definite, nxn
matrices, then

(1 - #)Ao + ϋAλ ^ [(1 - ^)A0"
1 + ϋA^Y1

for 0 ^ ΰ ^ 1. The inequality is strict except in the trivial cases
AQ = Ax or # = 0,1.

3 The next application is a refinement of the following determi-
nant inequality of Minkowski, cf [1], p. 70.

det1/ίl (Ao + A) ^ det1/w Ao + det1/w A, .

Let V be the volume functional. In [5] it was shown that

( 6 ) V(MP(KQ, Ki; &)) g [(1 - &) V~Pln(K0) + &V-*ln{KJ\-nl*

with equality if and only if Ko = \K± for some λ > 0. Since

V(E(A)) = πnηΓ{l + w/2)i/det A ,

we have, with p = 2 in (6),

( 7 ) det [(1 - ϋ)AQ + f?AJ έ [(1 - t?) det1/ίl Λ

with equality if and only if A = λAx for some λ > 0. With a slight
change in notation, this is Minkowski's determinant inequality.

If L is any A -dimensional linear subspace of Rny then

M2(E(A0) n L, E{Aλ) Π L; #) = M,{E{AQ), E(Ad\ ϋ)ς\L.

Consequently, by letting A' be the k x fc, positive definite matrix
associated with E(A) Π L, we obtain

To this we apply (7), with n — k, to get

( 8 ) det [(1 - ϋ)A, + &AJ' ^ [(1 - t?)

Let us define \A\k to be the product of the k least eigenvalues
of A, repeated eigenvalues being counted according to their multiplicity.
The inequality

det A ^ I A \k

with equality if and only if L is the λ -dimensional space spanned by
the eigenvectors corresponding to the k least eigenvalues of A, is
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essentially Theorem 20, p. 74 of [1].

In (8) choose L to be the linear subspace spanned by those
eigenvectors of (1 — ΰ)AQ + ϋ A, which correspond to the k smallest
eigenvalues of (1 - #)A0 + &Alm By (9):

(10) d e t Ai ^ I A o \ k , d e t A[^\Ax\h9

and so (8) becomes

(11) I (1 - #)A0 + &A1 \k ^ [(1 - #) IAo I1,"* + # I A, |i'*]* .

There is equality in (8) if and only if, for some λ > 0,

A'o = XA[

and equality in (10) if and only if the subspaces L appropriate to
I A) |jb> I 4L lib are the same. Hence, in (11), there is equality if and
only if the following conditions are met. Let xlf •••,#* be eigenvectors
of AQ corresponding to the k smallest eigenvalues λx ^ ^ Xk. These
are eigenvectors of Aλ corresponding to the k smallest eigenvalues of
Ax which are of the form λλx ^ ^ λλfc for some λ > 0.

Inequality (11), which includes (7) when k = n9 is an improvement
of a result of Ky Fan, cf. [1], Theorem 21, p. 74, in which the right
side of (11) is replaced by the geometric mean | Ao|ί~*| Axljj since the
power mean of order 1/k appearing on the right side of (11) exceeds
this geometric mean.

If we define k\A\ to be the product of the k greatest eigenvalues
of A, then

(12) \A-'\k = yk\A\.

We apply (11) to (1 — ΰ)A^ + ΰ Aϊ1 and obtain, after taking reciprocals,

1/1 (1 - ^Ao"1 + Λ4Γ1 \k ^ [(1 - 0) fc| Ao I-1/* + &k\A1 | " 1 / f e ]- f c .

With the use of (12) on the left side, we have finally

,| [(1 - ^ A - + $A?Y' I ^ [(1 - ϋ) k\ Ao |-v* + #k\A1 |-ι/*]-»

as a "dual" result to (11). The cases of equality are given by the
conditions for equality in (11) with the word "smallest" replaced by
"greatest" throughout.

The last application concerns a generalization of the Loewner
ellipsoid of a convex body K. Let x be an interior point of K. The
classical Loewner ellipsoid is that unique ellipsoid, centred at x and
containing K, which has minimum volume, cf. [3]. Let us take the
point x to be the origin and denote the mean cross-sectional measures
TΓV, v = 0,1, , n - 1, of E(A) by WV(A); for their definition see
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[2]. In particular W0(A) = V(E(A)). We will show that, for each v
there is a unique ellipsoid E(A) containing K for which WV{A) is a
minimum.

It is clear that WV(A) depends continuously on the entries a^ of
A. Moreover, when we restrict the ellipsoids E(A) not only to contain
K, but also to be contained in the sphere E(I/p2)f the domain of
definition of the functions WV(A) is closed and bounded. Consequently
each of the functions ΫFV(̂ ) attains a minimum. Furthermore, if the
radius of the bounding sphere E{Ijp2) is chosen to be sufficiently large,
the minimum of WV{A) and the matrix or matrices for which it is
attained will be independent of p. Thus the uniqueness is the only
point in question.

In [6] inequality (6) was extended to read

(13) Wllin-V)[MP(KO, Kn ΰ)] ^ [(1 - d)W-pl{n-v)(K0) + &Wς*n*-*\KdYllP

for p = 1, with equality if and only if Ko = \Kλ for some λ > 0.
Inequality (13) is true for all p ^ 1 however. This can be shown from
the special case p = 1 in the following fashion. We make the usual
type of reduction to the special case in which Wv(Ki) = 1, i = 0, 1,
by setting:

Then

MP(KO', Kl; &') = Mp(KOf Ki; ϋ)lμ

where

Since WV(K() — 1, in order to prove (13) it is enough to prove

I ^ Λ Ki; #') ^ 1 .

This has been shown to be true for p = 1. By Theorem 2 of [5]

MP(K{, Kl; ^') S ΛίiW, Kl; *')

with equality if and only if Kό = K(. These assertions, together with
the monotonic character of Wv cf. [2], p. 50, prove (13) and establish
the cases of equality. Naturally we will use (13) for p = 2.

Let Av be a matrix which is a solution of the minimum problem:

K £ E(A) , WV{A) = minimum.

Suppose A[ is a second solution. From



58 WILLIAM J. FIREY

K £ E(AV) , K S E(A[)

we have

K S E((l - #)AV + tfAC)

from (13) we have

with equality in the inequality if and only if Av = \A[. The last
equality shows that we must have λ = 1 and so Ay is unique.

In a similar way we can establish that, given K and an interior
point of K which we take as the origin, there is a unique ellipsoid
E{BV) which is contained in K for which is a maximum. The only
difference is the use of Theorem 2 of [7] in lieu of inequality (13).

We summarize:

Theorem 2. Given a convex body K in Euclidean nspace and an
interior point of K which we take as the origin, there are positive
definite n x n matrices Av, i?v, v = 0,1, , n — 1 such that, among
the ellipsoids E{A) which contain K, E{AV) is the unique, outer,
Loewner ellipsoid minimizing Wv and among the ellipsoids E(B)
which are contained in K, E{BV) is the unique inner, Loewner ellipsoid
maximizing Wv.

We close with several observations. Suppose K is the polar re-
ciprocal of K with respect to E(I), then, in the notation of Theorem
2, E(B^) is the vth outer Loewner ellipsoid of K while E(A~λ) is the
vth inner Loewner ellipsoid. To prove this, we denote the outer and
inner Loewner ellipsoids of K with respect to the origin by E(AV),
E(BV) respectively. If KQ S Klt then KQ 2 Kλ. Consequently, by (1),

E(Ay) = E(A^) S K , E(BV) = EiB?) 2 K .

Therefore

EiA-1) C E(BV) , E{B?) 2 E(AV) .

Applying the same argument to Av and Bv we get

?) S E(BV) , Eφ-1) 2 E(AV) .

In terms of the ordering of positive definite matrices, these in-
clusions become

(14) A?^BV, A^B-1, A^^BV, A^B?.



SOME APPLICATIONS OF MEANS OF CONVEX BODIES 59

Now when B ^ A, then A"1 ^ B'1 since, from the first condition we
have

E{A) 2 E(B)

and, by taking polar reciprocals, we obtain

'1) S E{B~λ) .

Apply this to the last inequality of (14). Taken together with the
first inequality of (14), this yields

A:1 ^Bv^ A-1 .

Thus Bv — A"1 is both positive and negative semi-definite. Hence

A"1 - Bv .

By a similar argument it is shown that

. Part of Theorem 2 remains true even if the centre of the ellipsoids
to be considered does not lie within K. We give this as a corollary.

COROLLARY TO THEOREM 2. Given α convex body K, not necessarily
containing the origin, there are positive definite matrices Av, v =
0,1, •••, n — 1, such that, among the ellipsoids E(A) which contain
K, E(AV) is the unique outer Loewner ellipsoid minimizing Wv.

Suppose E(A) contains K; since E(A) is centred at the origin it
also contains a sufficiently small sphere E(ρl) and so, by the convexity
of E(A), E(A) contains

K' = K\J E(pl)

where the bar denotes the convex closure. Conversely, if E(A) contains
K' it contains the subset K. We claim as proof of the corollary that
the outer Loewner ellipsoid E{AV) of Kf is also that of K. Indeed
E(AV) contains K and if an ellipsoid E{A[) contains K and is such that

Wv(Al) £ WV(AV)

then E(A[) must contain K' and so, by Theorem 2, A' = Av.
Let x be the interior point mentioned in Theorem 2 and let E(Ay($))>

E(Bv(x)) be the vth outer and inner Loewner ellipsoids of K which are
centred at x. We allow x to vary and so generate two collections of
ellipsoids {E(Av(x))} and {EiB^x))}. For v = 0 Danzer, Laugwitz and
Lenz in [4] have shown that in the first collection there is a unique
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ellipsoid for which the volume WQ is a minimum and in the second
collection there is a unique ellipsoid for which the volume is a maxi-
mum. We have not been able to decide if this is also true for v = lr

2,* , n — 1 with Wv in place of the volume.
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