
NORMAL FORM FOR A PFAFFIAN

RICHARD ARBNS

l Introduction. It is well known that "generally" (which is to
is the say, usually) a Pfaffian, or 1-form,

a = ax{x)dxΎ + + an(x)dxn

in Rn has one or the other of the two representations

1.1 a = uxdu2 +
\du2p+1

in an appropriate coordinate system (u\ u2, , un). Moreover, the last
index (2p or 2p + 1) appearing in 1.1 is the rank r of the n x (n + 1)
matrix

1.2

av

^ 2

in which α o is an abbreviation for da^dx1 — ddj/dx*.
It goes without saying that this is regarded as a local proposition,

indicating that if the rank of 1.2 were constant in some neighborhood
of a point Po, then a smaller neighborhood of Po and a curvilinear
coordinate system valid on that neighborhood, could be found yielding
the representation 1.1.

It is very probable that a satisfactory proof concerning the possibility
of reducing a Pfaffian in this way exists in the literature1. Nevertheless,
it should be pointed out that the accepted version is not exactly true
(and this is part of our object in writing this paper,)

Consider the Pfaffian ydx + 2xdy in ordinary R\ The Pfaffian
matrix is

v
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2x

- 1

0_

Received June 7. 1963.
1 For references to the older literature, see pp. 324-6 of E. Weber's article in the

Encyklop. d. Math. Wiss. Band II, Erster Teil, Erste Halfte (1.1) Teubner (1916). This
article attributes to Frobenius a proof of the sort of proposition stated above, which we
will therefore call the accepted version.
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It has rank 2 everywhere. Indeed, this Pfaffian can be written

y~xd{xy2) ,

but this does not confirm the accepted version for points at which
y = o. (Actually, as our Theorem 2.1 shows, the representation u dv
is possible at any point different from the origin.) We will now
indicate why there do not exist functions u and v each ^°° in a
neighborhood of (0, 0) such that y dx + 2xdy = u dv. It is evident
that v — f(xy2), whence /(λ) = ^(λε"2, ε) for some ε Φ 0. This shows
that / is c<^°° in some neighborhood of 0. From this we obtain
y~xd{xy2) = ydx + 2xdy = uf'(xy2)d(xy2) wherever y Φ 0, or y~λ =
uf'(xy2) where y Φ 0, which shows that y"1 is bounded where y φ 0—
an absurdity. Thus the accepted version is defective.

The only explanation of this state of affairs is that Pfaff's problem
problem is, by the authors mentioned in our bibliography at least, not
regarded as an "advanced calculus" type of problem (or theorem.) This
is made explicit by Thomas in his postulational approach; and it is
made evident by the fact that a reading of the first line of his table
on p. 45, shows that co = ydx + 2x dy should have a canonical form
pdq, since 0 φ dω = dx Λ dy and ω A dω = 0, if that theory really
did apply.

Our proof, given below, shows that a sufficient additional assumption
is that the Pfaffian does not vanish at P (and this is already implicitly
assumed when r is odd.)

A person might imagine that it would be an easy task to glance
at some rather elementary proof such as the first proof presented by
Gours at in his book, and verify that the denominator of each quotient
formed by Goursat does not vanish at P if the Pfaffian does not. But
this proof is by induction, and it is apparent that if you lop terms
off a Pfaffian you may find at some lower (even) dimension that the
non-vanishing feature has been lost. The exercise of vigilance of this
kind almost doubles the length of Goursat's proof. On the other hand,
explicit use of Frobenius' theorem on involutory vector field systems,
enables us to present a proof which is shorter than Goursat's.

Cartan, in his book (p. 57) sketches a theory of Pfaffian equations,
which is to say that two Pfaffians differing by a factor which is only
a function are regarded as equivalent. It appears that he permits
these functions to have zeros. (Indeed if he did not, then his short
proof on p. 57 would establish the accepted version).

2 The reduction of Pfaffians, The solution of "Pfaff?s Problem"
lies in the following theorem.

2.1 THEOREM. Let a = aλdxx + + andxn be a Pfaffian with
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^oo components au , an defined in the neighborhood of the origin
ϋ in R*. Let

dxj

and suppose that the rank of the matrix

aΛ,

2.11

is constant in a neighborhood of 0. Let that constant be r. If r is
<even,

2.12 suppose that the aly , an do not all vanish at 0.

Then there is a coordinate system (u1, , un) defined in a
neighborhood of 0 in Rn such that

(0 if r = 2p

' \du2p+1 if r = 2p + 1 .
2.13 a = uΎdu% + + u2p'

We observe first some invariance properties of the rank of 2.11.

2.2 Prop. Let P be a point of Rn and let els (d, P) be the class
of a at Py namely the linear dimension of the class of vectors X at
P such that

2.21

and

2.22

<a, X> - 0

ζd a; X, Y} = 0 for all vectors Y at P .

Then els (a, P) equals the rank of 2.11 at P.
The proof of 2.2 is by simple linear algebra.
Thus els (a, P) may be calculated as the rank of

• , & •

2.23

Ai> * * > bnn_
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where a = bλdyτ + + bn dyn in some other coordinate system, and

Let aa)=a, am — da, a{z)=aAda, a{i) = daAda, a{5)=aAda, etc.

2.24 Prop, (cf. Cartan, p. 58). The class of a at a point P is
the greatest integer r for which a{r){P) Φ 0.

Proof. Suppose P is the origin, which we shall denote by 0. A
theorem of linear algebra [cf. Cartan, p. 12] shows that a coordinate
system (y1, , yn) can be found such that da at the origin has the
form dy1 Λ dy2 + + dy2*-1 Λ dy2p. In this coordinate system, a
has components b19 , bn, and

da =
dyj

A ώ2/ΐ = 4 - 22 ί,i
Λ

The array of the bi3 (0) is thus as follows

0 - 1

1 0

0 - 1

1 0

0 - 1

1 0

with p such boxes situated on the diagonal (note 2p ^ n) and zeros
in the unmarked places. This array has rank 2p. Considering the
way in which it enters into 2.23 we see that 2.23 has rank 2p precisely
if 02P+I(O), &22>+2(0), •••, bn(0) are 0, and rank 2p + 1 otherwise.

Returning to the form of da at 0, we see that a{t)(0) = 0 for
ί > 2p + 2. Indeed,

= [δ 2 P + 1 ((W p + 1 + + bn(0)dyn] A dy1 A dy2 A dy2p .
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This is 0 or non-0 according to whether b2p+1(0) = — bn(0) = 0, or
not. This proves 2.24.

We will now prove 2.2 by induction, assuming it true for each
Pfaffian β whose class is less than r. We suppose, then, that a =
aidxi (using the summation convention in this proof) is of class r in
a neighborhood U of 0, in Rn.

The constancy of els {a,.) in a neighborhood V of 0 enables one to
find n — r vector fields Xr+1, Xn defined on a neighborhood W of
0 such that at each point P of W, any vector X such that 2.21 and
2.22 hold, is representable in the form

Let sing-sol (a, 0) designate the class of vector fields X representable
in the form

r+iχr+1+... +f*x%

where fr+1, - -, fn are <£"" functions on some neighborhood of 0. (We
will stop naming these neighborhoods). The term sing-sol refers to
the fact that these vectors are both solvers of a (2.21) and singular
for d a (2.22). It is easy to see that if X and Y are vector fields in
sing-sol {a, 0) then so is [X, Y]m Accordingly, we have here an
involutory distribution so that one may assert [cf. Chevalley, p. 89.
The theorem holds equally well in the ^°° situation. Incidentally, 2.1
holds equally well in the analytic situation.] that there is a coordinate
system y1, *—,yn in a neighborhood of 0 such that sing-sol (α, 0) is
generated by the vector fields

2.25 θ d d

dyr+1 dyr+2 dyn

Let a = bλ dy1 + + bn dyn. Let X = d\dys where s > r. Then 2.21
holds and tells us that

2.26 bs = 0 for s > n .

Let Y = d\dy\ Thus 2.22 holds. Thus

dys % dy1 s dys dy1 dys

Therefore

2.27 a = bλdyx + + brdyr

where b19 , br depend only on y1, , yr.
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Our reduction problem is thus obviously reduced to the case n = r+
We therefore start all over again, supposing n = r.

We consider first the case in which the skew symmetric matrix,
the r by r minor of 2.11

has a nonzero determinant. Then r is necessarily even: r — 2p. One
can then solve the equations

2.28 ai3 Y
j = a{ (summation conveπtionl)

for the functions Y\ •••, Yr which are not all 0 by 2.12. Let Y be
the vector field

γ
dXj "

There is a coordinate system y1, , yr such that Y = 9/%r [cf. Chevalley,
p. 89, Lemma 1].

Using the original coordinates, it is easy to see from 2.28, that
for our Y

2.29 <d ay Y, Z> = <α, Z} for every Z .

Let Z = δ/θί/4. Expanding 2.29 (as in the lines between 2.26 and
2.27 above) one obtains

, _ θb< dbr

dyr dyι

For i = r this says that br = 0, and this in turn shows that d\dy (6ie~1/) =
0. (Here y is an abbreviation for y\) Thus <x = evβ where

β = h.dy1 + + K-M~x

and

2.3 hl9 , fer_! depend only on y1, , 2/r~x .

We will show that β satisfies the conditions of 2.1 with r replaced by
r - 1. Since a = evβ we have da = ev(d?/ Λ /3 + d/3). Now α(2p)(0) =̂ 0
so, in a neighborhood of 0,

0 ψ (dy A β + dβ) A Λ (dy Λ β + dβ) (p factors) ,

whence

QΦpdyAβAdβA ••• Adβ + dβ A ••• Λi/3

or
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0 φ p dy A β{2p~1] + β{2p) .

Now β{2p) certainly is 0, because it has 2p = r differentials dy1, , dyr~L

in it, so that there will be repetitions. Thus β{r~1] Φ 0 in a neighborhood
of 0, while β{r) = 0 as we just observed. Now 2.24 shows that
els (β, 0) = r - 1. Thus 2.1 applies and

β = uτdu2 + + du**-1

in some coordinate system u1, *-,u%. Thus

a = vxdu2

These functions are independent because a{2p) Φ 0. Hence the desired
reduction has been achieved.

The remaining case is where the determinant of [a^] vanishes at
0. In this case its rank is less than r, but it cannot be less than
r — 1, because the rank of 2.11 is r. Hence its rank is r — 1 and
so r — 1 is even2, as the rank of an antisymmetric matrix is even.
In particular, the rank of [a^] cannot be r, so that det [a{j] = 0.
However [aiό\ has at least one r — 1 rowed minor whose determinant
is nonzero. It follows that there are functions F 1 , , Yr such that

2.31 a, Yι = 1 and ai0 Yi = 0 .

Let Y= Yjd/dxj. Properties 2.31 translate into

2.32 <α, F> = 1 and <d a; Y, Z> - 0 for every Z .

We now choose coordinates y1, , yr so that Y = d/dyr. Using

2.32 in the same way as before, we find that

a = bxdyλ + + brdyr

where

2.33 br = 1 and b19 , br^ depend only on y1, , yΊ
— 1

Let b.dy1 + + δr-i dyT"1 = β. Then a = β + dyr. Now r = 2p + 1
and 0 Φ a(r; = a Λ ^ ( 2 p ) = α Λ β{2p). Hence /S^-^ ^ 0. On the other
hand β{r) ΞΞ 0. Thus r — 1 is clearly the rank of the matrix 2.11 for
β. We must, however, verify that β(P) Φ 0, because els (β) is even.
This might in fact not be true! We can, in such a case write

a = (b, + l)dyλ + + 6r_x dy7"1 + d(yr - y1) = Ύ + dy ,

where y stands for yr — y1, and the last equality itself defines 7.
Then Ί{P) Φ 0, and otherwise 7 has all the properties of β that have

[cf. Cartan, p. 13]
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already been established for the induction argument. Thus β (or 7)
has the form wW + + updvp and a can easily be brought into
the desired from.
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