
ON THE RING-LOGIC CHARACTER OF CERTAIN RINGS

ADIL YAQUB

Introduction. Boolean rings (B, x , + ) and Boolean logics ( = Boo-
lean algebras) (B, (Ί , *) though historically and conceptionally different,
are equationally interdeίinable in a familiar way [6]. With this
equational interdefinability as motivation, Poster introduced and studied
the theory of ring-logics. In this theory, a ring (or an algebra) R is
studied modulo K, where K is an arbitrary transformation group in
R. The Boolean theory results from the special choice, for K, of the
"Boolean group," generated by #* = 1 — x (order 2, £** = x). More
generally, let (R, x , + ) be a commutative ring with identity 1, and
let K = {plf p2, •••} be a transformation group in R. The K-logic (or
K-logical algebra) of the ring (R, x , + ) is the (operationally closed)
system (R, x, plt ft, •••) whose class R is identical with the class of
ring elements, and whose operations are the ring product " x " of the
ring together with the unary operations p19 p2y of K. The ring
(i?, x , + ) is called a ring-logic, moάK if (1) the " + " of the ring is
equationally definable in terms of its if-logic (R, x ft, ft, •••)» a n<i
(2) the "+" of the ring is fiixed by its iΓ-logic. Of particular inter-
est in the theory of ring-logics is the normal group D which was
shown in [1] to be particularly adaptable to p^-rings. Our present
object is to extend further the class of ring-logics, modulo the normal
group D itself. A by-product of this extension is the following result,
namely, any finite commutative ring with zero radical is a ring-logic,
mod D (see Corollary 8). Furthermore, in Corollary 10, we prove that,
more generally, any (not necessarily finite) ring with unit which
satisfies xn = x(n fixed, ^ 2) is a ring-logic (mod D). Finally, we
compare the normal group with the so-called natural group in regard
to the ring-logic character of a certain important class of rings (see
section 3).

l The finite field case* Let (Fpk, X, + ) be a Galois (finite) field
with exactly pk elements (p prime). Then, as is well known, Fpk
contains a multiplicative generator, ξ;

We now have the following (compare with [1]).

THEOREM 1. Let Fpk be a Galois field, and let ξ be a generator
of Fpk. Then the mapping x —> x^ defined by
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(1.1) x* = ξx + (l + ξx + £V + + p*-V*-a)

is a permutation of Fpk, with inverse given by

(1.2) £ w = ξpk~\l + x + x2 + +xpk~2) + p*-2£ .

Furthermore, the permutation ^ is of period pk,

(1.3) x^pk = ( ( a O ^ ) ^ {pk-iterations) = x .

Proof. Since a**"1 = 1, ae Fph, a φ 0, therefore, by (1.1), a O =
ξx + {[(1 - (^)?)&-1]/(l - ξx)} = ξx, if x Φ 0 and fa? ^ 1. Furthermore,
by (1.1), 0 ^ = 1 and ( 1 / | ) ^ = Pfc l - 0. Hence, 0 ^ = 1, 1 ~ = | ,

(1.2), observe that the right-side of (1.2) is equal to

λx + JLf JiZLϊllLl = Λa , if x ^ 1 and x Φ 0 .
I ξ\ 1 - x I |

Moreover, if & ̂  0 and x Φ 1/ξ, then x ^ = ξx and hence ίc^^ = (l/ξ)x.
Since (1.2) clearly holds for x = 0, # = 1/1, and cc = 1, therefore (1.2)
is true for all elements of Fpk, and the theorem is proved.

COROLLARY 2. Under the permutation ^ , Fpu suffers the cyclic
permutation

α.4) «>,i,f,p,r, ...,rft-2).

Following [1], we call a O the normal negation of &, and call the
cyclic group D whose generator is x^ the normal group. By Theorem
1, it is now clear that

D = D{ξ) = {identity, ~ , ^ 2 , ^ 3 , , ^^~1} .

As in [1], we define

(1.5) a x^b = (a^ x δ^) w .

It is readily verified that

(1.6) a x^0 = a = 0 x^α .

COROLLARY 3. The elements of Fpk are equationally definable
in terms of the D-logic.

Proof. By Corollary 2, it is easily seen that
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0 = XX^X^ 'X^"k-i

(1.7)

and the corollary follows.
We recall from [3] the characteristic function δμ(x), defined as

follows: for a given μ e Fpk,

(1 if x = μ

(1.8) *Λ*)=L ..
(0 \i x Φ μ .

In view of Corollory 2, it is easily seen that, for any given μ e Fpk,
there exists an integer r such that μ^r = 0. Then, clearly,

(1.9) δμ,(x) = δo(x^ή w h e r e μ^r = o .

Now, let Σί/e * α ί denote αx x ^ α2 x ^ as , where alf a2, a3,
are the elements of î 7. Then, by (1.6) and (1.8), we have the iden-
tity [3]

(1.10) f(x9 2/, •) = Σ /(<*, β, )(δω(x)δώ/) •) .

In (1.10), α, /3, range over all the elements of Fp* while x,y,
are indeterminates over J^,*. We shall use (1.9) and (1.10) presently.

LEMMA 4. Γfcβ characteristic functions δμ(cc), JW e i'V, are
tionally definable in terms of the D-logic.

Proof. Since x**-1 = 1, cc =£ 0, » G JF7^, therefore, δo(x) =
((xp/b~1)w)pA;~1. Hence do(x) is equationally definable in terms of the
D-logic. Therefore, by (1.9), δμ(as) is also equationally definable in
terms of the D-logic, and the lemma is proved.

We are now in a position to prove the following.

THEOREM 5. The Galois field (Fpk, x , +) is a ring-logic (modi)).

Proof. By (1.10), we have,

x + y= Σ (α + β)(δΛ(x)Sβ(v)) .
cύ β€F kpic

Now, by Corollary 3, a + β is equationally definable in terms of the
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ZMogic. Moreover, by Lemma 4, each of the characteristic functions
da(x) and Sβ(y) is equationally definable in terms of the ZMogic. Hence
the " + " of Fpk is equationally definable in terms of the ZMogic
(Fpk, x , ^ , w ) . Next, we show that (Fk, x , + ) is fixed by its D-
logic. Suppose then that there exists another ring (Fpk, x , +'), with
the same class of elements Fpk and the same " x " as (Fpk9 x , + ) and
which has the same logic as {Fpk, x , + ) . To prove that + ' = + .
Since both (Fpk, x , + ) and (Fpk, x , + ') have the same class of ele-
ments and the same " x " , it readily follows that (Fpk9 x +') is also
a Galois field with exactly pk elements. Since, up to isomorphism,
there is only one Galois field with exactly pk elements, therfore,
+ ' = + , and the theorem is proved.

2» The General Case, In order to extend Theorem 5 to any finite
commutative ring with zero radical, the following concept of inde-
pendence, introduced by Foster [2], is needed.

DEFINITION. Let A = {Alf A2, , An) be a finite set of algebras
of the same species Sp. We say that the algebras Al9 A29 * ,An are
independent if, corresponding to each set {φj of expressions of species
Sp (i = 1, , n) there exists at least one expression ψ such that
ψ = ψi (mod Ai) (i = 1, , n). By an expression we mean some com-
position of one or more indeterminate-symbols ξ, in terms of the
primitive operations of Au A2, , An; ψ = φ (mod A) means that this
is an identity of the algebra A.

We now examine the independence of the D-logics (Fpkif x , ^ , w ) .
Indeed, we have the following (compare with [2]).

THEOREM 6. Let pl9 * 9pt be distinct primes. Then the D-logics
(Fpki9 x , ^ , w ) are independent.

Proof. Let n, = pf*, Fi - F9tkt = {0, 1, λ, λ2, , Xn-2}9 n =

^ t K}, N = nun* niNi = N9 E = ξξ^ξ^ ... |^»-i.
It is easily seen, since the n/s are distinct prime powers, that

Now, to prove the indepedence of the logics (Fi9 x , ^ , w )
(i == 1, . . . , t) let φl9 " 9<pt be any set of t expressions of species
x, ^ , w , i.e., primitive compositions of indeterminate-symbols in terms

of the operations x , ^ , w . Define an expression K(φlf ,φt) as
follows (compare with [2]):

K(φl9 , φt) = fa 1̂ 1)) X _ ( φ 2 1,(1)) X _ X ̂ fa |,(f)) .
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Then it is easily seen that K(φlf , φt) = φt (mod F{) (i = 1, , t),
since a x ^ 0 = 0 x ^ α = α, and the theorem is proved.

We shall now extend the concept of ring-logic to the direct sum
of certain ring-logics. We denote the direct sum of Ax and A2 by
A10 A2. The direct power Am will denote A 0 A 0 0 A (m
summands).

THEOREM 7. Let A be any subdirect sum with identity of (not
necessarily finite) subdirect powers of the Galois fields Fφ^i (i = 1, ,
t). Then A is a ring-logic (mod D).

Proof. Let q19 , qr be the distinct primes in {pu , pt}. Since
the Galois Fields Fp*i and Fpk} are both subfields of FpWj, it is easily
seen that A is a subring of a direct sum of direct powers of Fqhif

(i — 1, , r); i,e., A is a subring of Fqh\ 0 0 Fq\ for some posi-
tive integers klf •••,/&,.. Now, by Theorem 5, each Fq^% is a ring-logic
(modi)), and hence there exists a D-logical expression φ{ such that,
for every xif y{ e Ffy (i ~ 1, , r),

Xi + yi = <Pi{Xi, yύ x , " , w ) .

Since, by Theorem 6, the .D-logics (Fqhh x , ^ , w ) (i = 1, •••, r) are
independent, there exists a -D-logical expression K such that

cpr (mod Fqkr) .

Therefore, for every xi9 y{ e Fqkt (i = 1, , r),

Hence, the I?-logical expression iΓ represents the " + " of each
Fφ. Since the operations are component-wise in the direct sum

Fq}i Θ ' * * ΘJFffJr, therefore, for all x9 y in this direct sum, we have,

x + y = #(&, y; x, ^ , w ) .

Hence, α fortiori, the " + w of the subring A is equationally definable
in terms of the Z)-logic.

Next, we show that A is jftίcecϊ by its D-logic. Suppose there
exists a " + ' " such that (A, x, +') is a ring, with the same class of
elements A and the same " x " as the ring (A, x, +), and which has
the same logic (A, x , Λ , w ) as the ring (A, x, +) . To prove that
+ ' = + . Now, since A is a subdirect sum of subdirect powers of
Fp% therefore, a new " + ' " in A defines and is defined by a new
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" + Γ in F9*i, " + Γ in FP**f • • - , " + , ' " in Fp*t, such that (Fph, x , +ί)
is a ring (i = 1, •••, t). Furthermore, the assumption that {A, x , +')
has the same logic as {A, x , + ) is equivalent to the assumption that
each (Fp*i, x , ' + ί ) has the same logic as (Fph, x , + ) (i = 1, •••, t).
Since, by Theorem 5, (FPρ9 x , + ) is a ring-logic, and hence with its
"+" fixed, it follows that + ί = + (i = 1, •••, t). Hence + ' = + ,
and the theorem is proved.

Now, it is well known (see [4]) that any finite commutative ring
with zero radical and with more than one element is isomorphic to
the complete direct sum of a finite number of finite fields. Hence,
Theorem 7 has the following

COROLLARY 8. Any finite commutative ring with zero radical
is a ring-logic (modD).

It is also well known (see [1; 5]) that every p-ring (p prime) is
isomorphic to a subdirect power of FPf and every paring (p prime) is
isomorphic to a subdirect power of Fpk. Hence, by letting ί = 1 in
Theorem 7, we obtain the following (compare with [1; 7])

COROLLARY 9. Any p-ring with identity, as well as any pk-ring
with identityf is a ring-logic (modD).

Now, let n be a fixed integer, n ^ 2. It is well known that a
ring R which satisfies xn = x for all ώ in R is isomorphic to a sub-
direct sum of (not necessarily finite) subdirect powers of a finite set
of Galois fields. Hence Theorem 7 has the following

COROLLARY 10. Let R be a ring with unit such that xn = x for
all x in R, where n is a fixed integer, n^2. Then R is a ring-
logic (moάD).

3* The natural group and the normal group* Let (R9 X, +) be
a commutative ring with unit 1. We recall (see [1]) that the natural
group N is the group generated by xA = x + 1 (with inverse xv =
x — 1). In [7], it was shown that (Fpk, x, +) is a ring-logic (mod JV),
and hence the " + " of Fpu is equationally definable in terms of the
JV-logic (Fpk, x, Λ). Moreover, by Theorem 5, (Fpk, x, +) is a ring-
logic (modD), and hence the " + " of Fpk is equationally definable in
terms of the D-logic (Fpkf x, ^ ) . Of the two rival logics, (Fp*, x, ^ )
requires only a knowledge of the multiplication table in Fpu since,
by Corollary 2, the effect of ^ on Fpk is the cyclic permutation
(0,1, ξ, ξ2, , ξpk'2). In this sense, the D-logical formula for the " + "
of Fpk is a strictly multiplicative formula, and addition i$ thue
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equationally definable in terms of multiplication whenever the gener-
ator ξ is chosen (compare with [1]). The situation is quite different
in the case of the iV-logieal formula for the " + " of Fpk, since the
generator xA = x + 1 of the natural group N already involves a limited
use of the addition table.
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