ON THE RING-LOGIC CHARACTER OF CERTAIN RINGS

Adil Yaqub

Introduction. Boolean rings $(B, \times,+)$ and Boolean logics ($=$ Boolean algebras) ($B, \cap, *$) though historically and conceptionally different, are equationally interdefinable in a familiar way [6]. With this equational interdefinability as motivation, Foster introduced and studied the theory of ring-logics. In this theory, a ring (or an algebra) R is studied modulo K, where K is an arbitrary transformation group in R. The Boolean theory results from the special choice, for K, of the "Boolean group," generated by $x^{*}=1-x$ (order 2, $x^{* *}=x$). More generally, let $(R, \times,+)$ be a commutative ring with identity 1 , and let $K=\left\{\rho_{1}, \rho_{2}, \cdots\right\}$ be a transformation group in R. The K-logic (or K-logical algebra) of the ring ($R, \times,+$) is the (operationally closed) system ($R, \times, \rho_{1}, \rho_{2}, \cdots$) whose class R is identical with the class of ring elements, and whose operations are the ring product " \times " of the ring together with the unary operations $\rho_{1}, \rho_{2}, \cdots$ of K. The ring $(R, \times,+)$ is called a ring-logic, $\bmod K$ if (1) the " + " of the ring is equationally definable in terms of its K-logic ($R, \times ; \rho_{1}, \rho_{2}, \cdots$), and (2) the "+" of the ring is fiixed by its K-logic. Of particular interest in the theory of ring-logics is the normal group D which was shown in [1] to be particularly adaptable to p^{k}-rings. Our present object is to extend further the class of ring-logics, modulo the normal group D itself. A by-product of this extension is the following result, namely, any finite commutative ring with zero radical is a ring-logic, $\bmod D$ (see Corollary 8). Furthermore, in Corollary 10, we prove that, more generally, any (not necessarily finite) ring with unit which satisfies $x^{n}=x(n$ fixed, $\geqq 2)$ is a ring-logic $(\bmod D)$. Finally, we compare the normal group with the so-called natural group in regard to the ring-logic character of a certain important class of rings (see section 3).

1. The finite field case. Let $\left(F_{p^{k}}, \times,+\right)$ be a Galois (finite) field with exactly p^{k} elements (p prime). Then, as is well known, $F_{p k}$ contains a multiplicative generator, ξ;

$$
F_{p k}=\left\{0, \xi, \xi^{2}, \cdots, \xi^{p^{k}-1}(=1)\right\} .
$$

We now have the following (compare with [1]).
Theorem 1. Let $F_{p k}$ be a Galois field, and let ξ be a generator of $F_{p^{k}}$. Then the mapping $x \rightarrow x^{\frown}$ defined by

[^0]\[

$$
\begin{equation*}
x^{\frown}=\xi x+\left(1+\xi x+\xi^{2} x^{2}+\cdots+\xi^{p k-2} x^{p k-2}\right) \tag{1.1}
\end{equation*}
$$

\]

is a permutation of $F_{p^{k}}$, with inverse given by

$$
\begin{equation*}
x^{\smile}=\xi^{p^{k}-2}\left(1+x+x^{2}+\cdots+x^{p^{k}-2}\right)+\xi^{p k-2} x \tag{1.2}
\end{equation*}
$$

Furthermore, the permutation - is of period p^{k},

$$
\begin{equation*}
x^{\rho^{k}}=\left(\cdots\left(x^{\circ}\right) \frown \cdots\right)^{\frown}\left(p^{k} \text {-iterations }\right)=x . \tag{1.3}
\end{equation*}
$$

Proof. Since $a^{p^{k-1}}=1, a \in F_{p k}, a \neq 0$, therefore, by (1.1), $x^{\frown}=$ $\xi x+\left\{\left[\left(1-(\xi x)^{p^{k}-1}\right] /(1-\xi x)\right\}=\xi x\right.$, if $x \neq 0$ and $\xi x \neq 1$. Furthermore, by (1.1), $0^{\frown}=1$ and $(1 / \xi)^{\frown}=p^{k} \cdot 1=0$. Hence, $0^{\frown}=1,1^{\frown}=\xi$, $\xi \frown=\xi^{2},\left(\xi^{2}\right)^{\frown}=\xi^{3}, \cdots,\left(\xi^{p^{k-2}}\right)^{\frown}=0$. This proves (1.3). To prove (1.2), observe that the right-side of (1.2) is equal to

$$
\frac{1}{\xi} x+\frac{1}{\xi}\left\{\frac{1-x^{p^{k-1}}}{1-x}\right\}=\frac{1}{\xi} x, \quad \text { if } x \neq 1 \text { and } x \neq 0
$$

Moreover, if $x \neq 0$ and $x \neq 1 / \xi$, then $x^{\frown}=\xi x$ and hence $x^{\smile}=(1 / \xi) x$. Since (1.2) clearly holds for $x=0, x=1 / \xi$, and $x=1$, therefore (1.2) is true for all elements of $F_{p^{k}}$, and the theorem is proved.

Corollary 2. Under the permutation $\frown, F_{p k}$ suffers the cyclic permutation

$$
\begin{equation*}
\left(0,1, \xi, \xi^{2}, \xi^{3}, \cdots, \xi^{p^{k-2}}\right) \tag{1.4}
\end{equation*}
$$

Following [1], we call x^{\frown} the normal negation of x, and call the cyclic group D whose generator is x^{\frown} the normal group. By Theorem 1 , it is now clear that

$$
D=D(\xi)=\left\{\text { identity }, \frown, \frown^{2}, \frown^{3}, \cdots, \frown^{p^{k-1}}\right\}
$$

As in [1], we define

$$
\begin{equation*}
a \times \frown b=\left(a^{\frown} \times b \frown\right)^{\smile} \tag{1.5}
\end{equation*}
$$

It is readily verified that

$$
\begin{equation*}
a \times_{\frown} 0=a=0 \times \frown \tag{1.6}
\end{equation*}
$$

Corollary 3. The elements of $F_{p^{k}}$ are equationally definable in terms of the D-logic.

Proof. By Corollary 2, it is easily seen that

$$
\begin{align*}
& 0=x x^{\frown} \frown^{-2} \cdots x^{\frown} p^{k-1} \\
& 1=0^{-} \\
& \xi=1 \\
& \xi^{2}=\xi^{\curvearrowleft} \tag{1.7}\\
& \cdots \\
& \cdots \\
& \xi^{p^{k-2}}=\left(\xi^{p^{k-3}}\right)^{-},
\end{align*}
$$

and the corollary follows.
We recall from [3] the characteristic function $\delta_{\mu}(x)$, defined as follows: for a given $\mu \in F_{p^{k}}$,

$$
\delta_{\mu}(x)= \begin{cases}1 & \text { if } x=\mu \tag{1.8}\\ 0 & \text { if } x \neq \mu .\end{cases}
$$

In view of Corollory 2 , it is easily seen that, for any given $\mu \in F_{p k}$, there exists an integer r such that $\mu^{\curvearrowleft}=0$. Then, clearly,

$$
\begin{equation*}
\delta_{\mu}(x)=\delta_{0}\left(\frown^{-}\right) \quad \text { where } \quad \mu \frown_{r}=0 . \tag{1.9}
\end{equation*}
$$

Now, let $\sum_{\alpha_{i} \in P}^{\times} \alpha_{i}$ denote $\alpha_{1} \times \alpha_{2} \times \alpha_{3} \cdots$, where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$ are the elements of F. Then, by (1.6) and (1.8), we have the identity [3]

$$
\begin{equation*}
f(x, y, \cdots)={ }_{\alpha, \beta, \ldots, \cdots r_{p k}}^{\sum_{\bar{p}}} f(\alpha, \beta, \cdots)\left(\delta_{\alpha}(x) \delta_{\beta}(y) \cdots\right) . \tag{1.10}
\end{equation*}
$$

In (1.10), α, β, \cdots range over all the elements of $F_{p^{k}}$ while x, y, \cdots are indeterminates over $F_{p^{k}}$. We shall use (1.9) and (1.10) presently.

Lemma 4. The characteristic functions $\delta_{\mu}(x), \mu \in F_{p k}$, are equationally definable in terms of the D-logic.

Proof. Since $x^{p k-1}=1, x \neq 0, x \in F_{p^{k}}$, therefore, $\delta_{0}(x)=$ $\left(\left(x^{p k-1}\right)^{-}\right)^{p k-1}$. Hence $\delta_{0}(x)$ is equationally definable in terms of the D-logic. Therefore, by (1.9), $\delta_{\mu}(x)$ is also equationally definable in terms of the D-logic, and the lemma is proved.

We are now in a position to prove the following.
Theorem 5. The Galois field $\left(F_{p^{k}}, \times,+\right)$ is a ring-logic $(\bmod D)$.
Proof. By (1.10), we have,

$$
x+y=\sum_{\alpha \in F_{p k}}^{\times}(\alpha+\beta)\left(\delta_{\alpha}(x) \delta_{\beta}(y)\right) .
$$

Now, by Corollary $3, \alpha+\beta$ is equationally definable in terms of the
D-logic. Moreover, by Lemma 4, each of the characteristic functions $\delta_{a}(x)$ and $\delta_{\beta}(y)$ is equationally definable in terms of the D-logic. Hence the " + " of $F_{p^{k}}$ is equationally definable in terms of the D-logic $\left(F_{p^{k}}, \times, \frown, \smile\right)$. Next, we show that $\left(F_{k}, \times,+\right)$ is fixed by its $D-$ logic. Suppose then that there exists another ring ($F_{p^{k},}, \times,+^{\prime}$), with the same class of elements $F_{p^{k}}$ and the same " \times " as ($F_{p^{k}}, \times,+$) and which has the same logic as $\left(F_{p^{k}}, \times,+\right)$. To prove that $+^{\prime}=+$. Since both ($F_{p^{k}}, \times,+$) and ($F_{p^{k}}, \times,+^{\prime}$) have the same class of elements and the same " \times ", it readily follows that ($F_{p^{k}}, \times+$) is also a Galois field with exactly p^{k} elements. Since, up to isomorphism, there is only one Galois field with exactly p^{k} elements, therfore, $+^{\prime}=+$, and the theorem is proved.
2. The General Case. In order to extend Theorem 5 to any finite commutative ring with zero radical, the following concept of independence, introduced by Foster [2], is needed.

Definition. Let $\bar{A}=\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$ be a finite set of algebras of the same species S_{p}. We say that the algebras $A_{1}, A_{2}, \cdots, A_{n}$ are independent if, corresponding to each set $\left\{\varphi_{i}\right\}$ of expressions of species $S_{p}(i=1, \cdots, n)$ there exists at least one expression ψ such that $\psi=\varphi_{i}\left(\bmod A_{i}\right)(i=1, \cdots, n)$. By an expression we mean some composition of one or more indeterminate-symbols ξ, \cdots in terms of the primitive operations of $A_{1}, A_{2}, \cdots, A_{n} ; \psi=\varphi(\bmod A)$ means that this is an identity of the algebra A.

We now examine the independence of the D-logics $\left(F_{p_{i}^{k}}, \times, \frown, \smile\right)$. Indeed, we have the following (compare with [2]).

Theorem 6. Let p_{1}, \cdots, p_{t} be distinct primes. Then the D-logics $\left(F_{p_{i}^{k_{i}}}, \times, \frown, \smile\right)$ are independent.

Proof. Let $n_{i}=p_{i}^{k_{i}}, \quad F_{i}=F_{p_{i}} k_{i}=\left\{0,1, \lambda, \lambda^{2}, \cdots, \lambda^{n_{i}-2}\right\}, \quad n=$ $\max _{1 \leq i \leq t}\left\{n_{i}\right\}, N=\Pi_{j=1}^{t} n_{j}, n_{i} N_{i}=N, E=\xi \xi \complement^{2} \frown_{2} \cdots \xi \frown_{n-1}$.

It is easily seen, since the n_{i} 's are distinct prime powers, that

$$
\left.\right|_{i}(\xi)=\left(E^{\left.N_{i}\right)^{n_{i}-1}}=\left\{\begin{array}{l}
1\left(\bmod F_{i}\right) \\
0\left(\bmod F_{j}\right)
\end{array} \quad(j \neq i)\right.\right.
$$

Now, to prove the indepedence of the logics $\left(F_{i}, \times, \frown, \smile\right)$ ($i=1, \cdots, t$) let $\varphi_{1}, \cdots, \varphi_{t}$ be any set of t expressions of species \times, \frown, \smile, i.e., primitive compositions of indeterminate-symbols in terms of the operations \times, \frown, \smile. Define an expression $K\left(\varphi_{1}, \cdots, \varphi_{t}\right)$ as follows (compare with [2]):

$$
K\left(\varphi_{1}, \cdots, \varphi_{t}\right)=\left(\left.\varphi_{1} \cdot\right|_{1}(\xi)\right) \times_{\frown}\left(\left.\varphi_{2} \cdot\right|_{2}(\xi)\right) \times_{\frown} \cdots \times_{\frown}\left(\left.\varphi_{t} \cdot\right|_{t}(\xi)\right) .
$$

Then it is easily seen that $K\left(\varphi_{1}, \cdots, \varphi_{t}\right)=\varphi_{i}\left(\bmod F_{i}\right)(i=1, \cdots, t)$, since $a \times \frown 0=0 \times \frown a=a$, and the theorem is proved.

We shall now extend the concept of ring-logic to the direct sum of certain ring-logics. We denote the direct sum of A_{1} and A_{2} by $A_{1} \oplus A_{2}$. The direct power A^{m} will denote $A \oplus A \oplus \cdots \oplus A$ (m summands).

ThEOREM 7. Let A be any subdirect sum with identity of (not necessarily finite) subdirect powers of the Galois fields $F_{p_{i}^{k_{i}}}(i=1, \cdots$, t). Then A is a ring-logic $(\bmod D)$.

Proof. Let q_{1}, \cdots, q_{r} be the distinct primes in $\left\{p_{1}, \cdots, p_{t}\right\}$. Since the Galois Fields $F_{p^{k i}}$ and $F_{p^{k j}}$ are both subfields of $F_{p^{k} k^{k}{ }^{k}}$, it is easily seen that A is a subring of a direct $\operatorname{sum}_{m_{1}}$ of direct powers of $F_{q_{i}^{h_{i}}}$, $(i=1, \cdots, r)$; i.e., A is a subring of $F_{q_{1}^{h_{1}}}^{m_{1}} \oplus \cdots \oplus F_{q_{r}^{h_{r}}}^{m_{r}}$ for some positive integers h_{1}, \cdots, h_{r}. Now, by Theorem 5, each $F_{q_{i}^{h_{i}}}$ is a ring-logic $(\bmod D)$, and hence there exists a D-logical expression φ_{i} such that, for every $x_{i}, y_{i} \in F_{q_{i}^{h_{i}}}(i=1, \cdots, r)$,

$$
x_{i}+y_{i}=\varphi_{i}\left(x_{i}, y_{i} ; \times, \frown, \smile\right)
$$

Since, by Theorem 6, the D-logics $\left(F_{q_{i} h_{i}}, \times, \frown, \smile\right)(i=1, \cdots, r)$ are independent, there exists a D-logical expression K such that

$$
K=\left\{\begin{array}{l}
\varphi_{1}\left(\bmod F_{q_{1}^{1}}^{k_{1}}\right) \\
\cdots \\
\varphi_{r}\left(\bmod F_{q_{r}^{h_{r}}}\right)
\end{array}\right.
$$

Therefore, for every $x_{i}, y_{i} \in F_{q_{i}^{k_{i}}}(i=1, \cdots, r)$,

$$
x_{i}+y_{i}=\varphi_{i}=K\left(x_{i}, y_{i} ; \times, \frown, \smile\right)
$$

Hence, the D-logical expression K represents the " + " of each $F_{q_{i}^{h_{i}}}^{m_{1}}$. Since the operations are component-wise in the direct sum $F_{q_{1}^{1}}^{m_{1}} \oplus \cdots \oplus F_{q_{r}}^{m_{r}}$, therefore, for all x, y in this direct sum, we have,

$$
x+y=K(x, y ; \times, \frown, \smile) .
$$

Hence, a fortiori, the " + " of the subring A is equationally definable in terms of the D-logic.

Next, we show that A is fixed by its D-logic. Suppose there exists a " + "" such that $\left(A, \times,+^{\prime}\right)$ is a ring, with the same class of elements A and the same " \times " as the ring $(A, \times,+)$, and which has the same logic $(A, \times, \frown, \smile)$ as the ring $(A, \times,+)$. To prove that $+^{\prime}=+$. Now, since A is a subdirect sum of subdirect powers of

 is a ring $(i=1, \cdots, t)$. Furthermore, the assumption that $\left(A, \times,+^{\prime}\right)$ has the same logic as $(A, \times,+)$ is equivalent to the assumption that each $\left(F_{p_{i}^{k}}, \times,+_{i}^{\prime}\right)$ has the same logic as $\left(F_{p_{i}{ }_{i}}, \times,+\right)(i=1, \cdots, t)$. Since, by Theorem $5,\left(F_{p_{i}^{k}}, \times,+\right)$ is a ring-logic, and hence with its " + " fixed, it follows that $+_{i}^{\prime}=+(i=1, \cdots, t)$. Hence $+^{\prime}=+$, and the theorem is proved.

Now, it is well known (see [4]) that any finite commutative ring with zero radical and with more than one element is isomorphic to the complete direct sum of a finite number of finite fields. Hence, Theorem 7 has the following

Corollary 8. Any finite commutative ring with zero radical is a ring-logic $(\bmod D)$.

It is also well known (see $[1 ; 5]$) that every p-ring (p prime) is isomorphic to a subdirect power of F_{p}, and every p^{k}-ring (p prime) is isomorphic to a subdirect power of $F_{p^{k}}$. Hence, by letting $t=1$ in Theorem 7, we obtain the following (compare with [1;7])

Corollary 9. Any p-ring with identity, as well as any p^{k}-ring with identity, is a ring-logic $(\bmod D)$.

Now, let n be a fixed integer, $n \geqq 2$. It is well known that a ring R which satisfies $x^{n}=x$ for all x in R is isomorphic to a subdirect sum of (not necessarily finite) subdirect powers of a finite set of Galois fields. Hence Theorem 7 has the following

Corollary 10. Let R be a ring with unit such that $x^{n}=x$ for all x in R, where n is a fixed integer, $n \geqq 2$. Then R is a ringlogic $(\bmod D)$.
3. The natural group and the normal group. Let $(R, \times,+)$ be a commutative ring with unit 1 . We recall (see [1]) that the natural group N is the group generated by $x^{\wedge}=x+1$ (with inverse $x^{\vee}=$ $x-1)$. In [7], it was shown that $\left(F_{p^{k}}, \times,+\right)$ is a ring-logic $(\bmod N)$, and hence the "+" of $F_{p^{k}}$ is equationally definable in terms of the N-logic $\left(F_{p^{k}}, \times, \wedge\right)$. Moreover, by Theorem $5,\left(F_{p^{k}}, \times,+\right)$ is a ringlogic $(\bmod D)$, and hence the " + " of $F_{p^{k}}$ is equationally definable in terms of the D-logic ($F_{p^{k}}, \times, \frown$). Of the two rival logics, $\left(F_{p^{k}}, \times, \frown\right)$ requires only a knowledge of the multiplication table in $F_{p^{k}}$ since, by Corollary 2, the effect of \frown on $F_{p k}$ is the cyclic permutation $\left(0,1, \xi, \xi^{2}, \cdots, \xi^{p^{k-2}}\right)$. In this sense, the D-logical formula for the " + " of $F_{p^{k}}$ is a strictly multiplicative formula, and addition is thus
equationally definable in terms of multiplication whenever the generator ξ is chosen (compare with [1]). The situation is quite different in the case of the N-logical formula for the "+" of $F_{p^{k}}$, since the generator $x^{\wedge}=x+1$ of the natural group N already involves a limited use of the addition table.

References

1. A. L. Foster, p^{k}-rings and ring-logics, Ann. Scn. Norm Pisa, 5 (1951), 279-300.
2. -, The identities of-and unique subdirect factorization within-classes of universal algebas, Math. Z., 62 (1955), 171-188.
3. -, Generalized Boolean theory of universal algebras, Part I, Math. Z, 58 (1953), 306-336.
4. N. H. McCoy, Rings and ideals, Carus Math. Monog., 8 (1947).
5. N. H. McCoy and D. Montgomery, A representation of generalized Boolean rings, Duke Math J., 3 (1937), 455-459.
6. M. H. Stone, The theory of representations of Boolean algebras, Trans. Amer. Soc., 40 (1936), 37-111.
7. A. Yaqub, On certain finite rings and ring-logics, Pacific J. Math., 12 (1962), 785-790.

University of California, Santa Barbara

[^0]: Received August 16, 1963.

