ON THE RING-LOGIC CHARACTER OF CERTAIN RINGS

ApiL. YAQUB

Introduction. Boolean rings (B, X, +) and Boolean logics (= Boo-
lean algebras) (B, N, *) though historically and conceptionally different,
are equationally interdefinable in a familiar way [6]. With this
equational interdefinability as motivation, Foster introduced and studied
the theory of ring-logics. In this theory, a ring (or an algebra) R is
studied modulo K, where K is an arbitrary transformation group in
R. The Boolean theory results from the special choice, for K, of the
“Boolean group,” generated by «* =1 — x (order 2, 2** = x). More
generally, let (R, X, +) be a commutative ring with identity 1, and
let K ={p,, 0y, --+} be a transformation group in R. The K-logic (or
K-logical algebra) of the ring (R, X, +) is the (operationally closed)
system (R, X, 0, 0, +++) whose class R is identical with the class of
ring elements, and whose operations are the ring product “x” of the
ring together with the unary operations p,, 0, -+ of K. The ring
(R, x, +) is called a ring-logic, mod K if (1) the “+” of the ring is
equationally definable in terms of its K-logic (R, X; 0;, 0y ***), and
(2) the “+” of the ring is fitwed by its K-logic. Of particular inter-
est in the theory of ring-logics is the mormal group D which was
shown in [1] to be particularly adaptable to p*-rings. Our present
object is to extend further the class of ring-logics, modulo the normal
group D itself. A by-product of this extension is the following result,
namely, any finite commutative ring with zero radical is a ring-logic,
mod D (see Corollary 8). Furthermore, in Corollary 10, we prove that,
more generally, any (not necessarily finite) ring with unit which
satisfies 2" = x(n fixed, = 2) is a ring-logic (mod D). Finally, we
compare the normal group with the so-called natural group in regard
to the ring-logic character of a certain important class of rings (see
section 3).

1. The finite field case. Let (F,x, X, +) be a Galois (finite) field
with exactly p* elements (p prime). Then, as is well known, Fl
contains a multiplicative generator, &

Fpk = {0, g; SZ; Y Epk—l(zl)} .

We now have the following (compare with [1]).

THEOREM 1. Let F,1 be a Galois field, and let & be a generator
of Foe. Then the mapping x — 2 defined by
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(1.1) o™ =g+ (1 + Ex + £ + - 4 )
is a permutation of Fi, with inverse given by

(1.2) o = EFL 4w+ 2t e et )+ B

—~

Furthermore, the permutation 18 of period p*,

(1.3) T = (eee (T) T )T (pF-iterations) = x .

Proof. Since a”* ' =1, ac F,, a = 0, therefore, by (1.1), ™ =

Ex + {[(1 — (Ex)**']/(1 — Ex)} = Ex, if © # 0 and Ex # 1. Furthermore,
by (1.1), 0" =1 and 1/ =p*-1=0. Hence, 07 =1, 17 =§,
=8 " =g, .., (") =0. This proves (1.3). To prove
(1.2), observe that the right-side of (1.2) is equal to

1 1 { 1— e

Bl == v

PR g
Moreover, if © + 0 and « == 1/, then 2™ = &x and hence 2™~ = (1/&)x.
Since (1.2) clearly holds for x = 0, = 1/&, and « = 1, therefore (1.2)
is true for all elements of F,x, and the theorem is proved.

}:%x, ife#1and v +#0.

—_~

COROLLARY 2. Under the permutation —, F suffers the cyclic
permutation

(]-'4) (0’ 1y gr SZ’ §3y ] "::pkaz) .

Following [1], we call «™ the normal negation of x, and call the
cyclic group D whose generator is £ the normal group. By Theorem
1, it is now clear that

D = D(§) = {identity, ™, 72, 7%, +--, TP,
As in [1], we define
(45 axb=@> x b7~
It is readily verified that

(1.6) aX _0=a=0X_a.

COROLLARY 3. The elements of F,. are equationally definable
wn terms of the D-logic.

Proof. By Corollary 2, it is easily seen that
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0 = 0 2 e ep 2k

1=0"
E=1"
1.7
(L.7) g

g =),

and the corollary follows.

We recall from [3] the characteristic function 0.(x), defined as
follows: for a given e Fi,
ifo=p

1
. 0 —
(1.8 =10 itwep.

In view of Corollory 2, it is easily seen that, for any given #¢e Fy,
there exists an integer = such that # 7~ = 0. Then, clearly,
1.9 0u(x) = dg(x™7) where p7r =0,

Now, let >izra@; denote a, X _ @, X _ @, -+, where a, a,, a;, «--
are the elements of F. Then, by (1.6) and (1.8), we have the iden-
tity [3]

(L10)  fy, )= S f@ B )0u@onw)-) -

In (1.10), @, B, -+ range over all the elements of F,x while x, ¥, ---
are indeterminates over F,:. We shall use (1.9) and (1.10) presently.

LeMMA 4. The characteristic functions 0,(x), pe For, are equa-
tionally definable in terms of the D-logic.

Proof. Since 2" ' =1, %0, x € F,, therefore, 0,(x) =
((@** 7)1, Hence dy(x) is equationally definable in terms of the
D-logic. Therefore, by (1.9), d.(x) is also equationally definable in
terms of the D-logic, and the lemma is proved.

We are now in a position to prove the following.

THEOREM 5. The Galots field (Fox, X, +) s a ring-logte (mod D).

Proof. By (1.10), we have,

pty=_ 5 (@+B)0u@)n) -

Now, by Corollary 3, « + B is equationally definable in terms of the
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D-logic. Moreover, by Lemma 4, each of the characteristic functions
04(x) and d4(y) is equationally definable in terms of the D-logic. Hence
the “+” of F,: is equationally definable in terms of the D-logic
(Fpry, X, 7, ~). Next, we show that (F}, x, +) is fixed by its D-
logic. Suppose then that there exists another ring (F,r, X, +’), with
the same class of elements F,+ and the same “Xx” as (F,, X, +) and
which has the same logic as (F,x, X, +). To prove that +'= +.
Since both (F,x, X, +) and (F,, X, +') have the same class of ele-
ments and the same “X”, it readily follows that (F X +') is also
a Galois field with exactly p* elements. Since, up to isomorphism,
there is only one Galois field with exactly p* elements, therfore,
4+’ = 4+, and the theorem is proved.

2. The General Case. In order to extend Theorem 5 to any finite
commutative ring with zero radical, the following concept of inde-
pendence, introduced by Foster [2], is needed.

DEFINITION. Let A = {A4,, A,, -+-, A,} be a finite set of algebras
of the same species S,. We say that the algebras 4,, 4,, ---, A, are
independent if, corresponding to each set {@;} of expressions of species
S, ¢ =1, .--,n) there exists at least one expression + such that
¥ =@;(mod 4;) (¢t =1, ++-, n). By an expression we mean some com-
position of one or more indeterminate-symbols &, -+ in terms of the
primitive operations of A4,, 4,, -+, 4,; ¥ = @ (mod A) means that this
is an identity of the algebra A.

We now examine the independence of the D-logics (F'ki, X,
Indeed, we have the following (compare with [2]).

)
’

THEOREM 6. Let p,, «--, p, be distinct primes. Then the D-logics
(Fyriy x, 7, ) are independent.

Proof. Let n; = pii, F; = F,k; ={0,1, A, N, +-+, \"7%, n =
maXgic: {0}, N =1l52in;, m;N; =N, E=ETE 2«00 En1,
It is easily seen, since the n,’s are distinct prime powers, that

(et 1 (mod F};) . .
(&) = (B m)m = 0 (mod F,) (g#1.

=

Now, to prove the indepedence of the logiecs (F}, X, ™,
(t=1,---,t) let @, --+,p, be any set of ¢ expressions of species

A~

X, ™, 7, i.e., primitive compositions of indeterminate-symbols in terms
~_~

of the operations x, ™, . Define an expression K(®,, -++, ®,) as
follows (compare with [2]):

K(y, ++ 2, P) = (@@ X ~(Pae () X~ + o+ X (Pe|(8)) .
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Then it is easily seen that K(®,, -+, ®,) = ®; (mod F;) (t =1, «--, t),
since ¢ X _0=0 X__a = a, and the theorem is proved.

We shall now extend the concept of ring-logic to the direct sum
of certain ring-logics. We denote the direct sum of A, and A, by
A, DA, The direct power A™ will denote ADPDAD--- P4 (m
summands).

THEOREM 7. Let A be any subdirect sum with identity of (not
necessarily finite) subdirect powers of the Galois fields Fpr@=1,---,
t). Then A is a ring-logic (mod D).

Proof. Let qy, +--, q, be the distinct primes in {p,, +++, p,}. Since
the Galois Fields Fx and F,r; are both subfields of Fke,, it is easily
seen that A is a subring of a direct sum of direct powers of Fir,
(i=1,-++,7); ie.,, A is a subring of FhIEB EBF hr for some posi-
tive integers h,, ++-, h,. Now, by Theorem 5, each F ;» is a ring-logic
(mod D), and hence there exists a D-logical expression @; such that,
for every «;, y;€e Fori (1 =1, ---, 1),

T+ Y =P, Yis X, 7, )
Since, by Theorem 6, the D-logics (Fyti, X, ™, ™) (1 =1, ---,7) are
independent, there exists a D-logical expression K such that

P (mod Fyr)
K= {¢..
P, (mod Fery) .

Therefore, for every @, y;€ Fori (i =1, -+, 1),
@+ Y =P = K@, ¥i; X, 7, 77) .

Hence, the D-logical expression K represents the “+” of each
Fpi. Since the operations are component-wise in the direct sum

F;:ZIIEB G}F:iﬂ, therefore, for all «,y in this direct sum, we have,
¢+y=K@y x,,7).

Hence, a fortiori, the “+” of the subring A is equationally definable
in terms of the D-logie.

Next, we show that A is fized by its D-logic. Suppose there
exists a “+" such that (4, x, +’) is a ring, with the same class of
elements A and the same “X” as the ring (4, X, +), and which has
the same logic (4, X, ™, ) as the ring (4, %, +). To prove that

= +. Now, since A is a subdirect sum of subdirect powers of
F,ki, therefore, a new “+™ in A defines and is defined by a new
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“H17in For, “457 in Fyk, o0, “+1” in F,k, such that (Fyk, X, +17)
is a ring (¢ =1, +++,t). Furthermore, the assumption that (4, x, +’)
has the same logic as (A4, X, +) is equivalent to the assumption that
each (F,k, X, +;) has the same logic as (Fk, X, +) (¢t =1, --+,1).
Since, by Theorem 5, (F,k, X, +) is a ring-logic, and hence with its
“4+” fixed, it follows that +i{=+ (¢=1, ---,t). Hence +'= +,
and the theorem is proved.

Now, it is well known (see [4]) that any finite commutative ring
with zero radical and with more than one element is isomorphic to
the complete direct sum of a finite number of finite fields. Hence,
Theorem 7 has the following

COROLLARY 8. Any finite commutative ring with zero radical
18 a ring-logic (mod D).

It is also well known (see [1; 5]) that every p-ring (p prime) is
isomorphic to a subdirect power of F),, and every p*ring (p prime) is
isomorphic to a subdirect power of F,.. Hence, by letting ¢t =1 in
Theorem 7, we obtain the following (compare with [1; 7])

COROLLARY 9. Any p-ring with identity, as well as any p*-ring
with identity, is a ring-logic (mod D).

Now, let n be a fixed integer, n = 2. It is well known that a
ring R which satisfies 2" = ¢ for all # in R is isomorphic to a sub-
direct sum of (not necessarily finite) subdirect powers of a finite set
of Galois fields. Hence Theorem 7 has the following

COROLLARY 10. Let R be a ring with unit such that ™ = x for
all x in R, where n is a fived integer, n = 2. Then R is a ring-
logic (mod D).

3. The natural group and the normal group. Let (R, X, +) be
a commutative ring with unit 1. We recall (see [1]) that the natural
group N is the group generated by " =« + 1 (with inverse a2V =
x — 1). In [7], it was shown that (Fl:, X, +) is a ring-logic (mod N),
and hence the “+” of F,: is equationally definable in terms of the
N-logic (Fyx, X, ). Moreover, by Theorem 5, (F, X, +) is a ring-
logic (mod D), and hence the “+” of F,: is equationally definable in
terms of the D-logic (F,x, X, 7). Of the two rival logies, (Fpx, X, 7))
requires only a knowledge of the multiplication table in F: since,
by Corollary 2, the effect of ™ on F,: is the cyclic permutation
0,1,& &, -+, £, In this sense, the D-logical formula for the “+”
of F, i3 a strictly multiplicative formula, and addition is thus
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equationally definable in terms of multiplication whenever the gener-
ator & is chosen (compare with [1]). The situation is quite different
in the case of the N-logical formula for the “+4” of F,, since the
generator " = 2 + 1 of the natural group N already involves a limited
use of the addition table.
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