ON THE RING-LOGIC CHARACTER OF CERTAIN RINGS

ADIL YAQUB

Introduction. Boolean rings $(B, \times, +)$ and Boolean logics (= Boolean algebras) $(B, \cap, *)$ though historically and conceptionally different, are equationally interdefinable in a familiar way [6]. With this equational interdefinability as motivation, Foster introduced and studied the theory of ring-logics. In this theory, a ring (or an algebra) R is studied modulo K, where K is an arbitrary transformation group in R. The Boolean theory results from the special choice, for K, of the "Boolean group," generated by $x^* = 1 - x$ (order 2, $x^{**} = x$). More generally, let $(R, \times, +)$ be a commutative ring with identity 1, and let $K = \{\rho_1, \rho_2, \dots\}$ be a transformation group in R. The K-logic (or K-logical algebra) of the ring $(R, \times, +)$ is the (operationally closed) system $(R, \times, \rho_1, \rho_2, \cdots)$ whose class R is identical with the class of ring elements, and whose operations are the ring product " \times " of the ring together with the unary operations ρ_1, ρ_2, \cdots of K. The ring $(R, \times, +)$ is called a *ring-logic*, mod K if (1) the "+" of the ring is equationally definable in terms of its K-logic $(R, \times; \rho_1, \rho_2, \cdots)$, and (2) the "+" of the ring is *fiixed* by its K-logic. Of particular interest in the theory of ring-logics is the normal group D which was shown in [1] to be particularly adaptable to p^k -rings. Our present object is to extend further the class of ring-logics, modulo the normal group D itself. A by-product of this extension is the following result, namely, any finite commutative ring with zero radical is a ring-logic, mod D (see Corollary 8). Furthermore, in Corollary 10, we prove that, more generally, any (not necessarily finite) ring with unit which satisfies $x^n = x(n \text{ fixed}, \ge 2)$ is a ring-logic (mod D). Finally, we compare the normal group with the so-called *natural* group in regard to the ring-logic character of a certain important class of rings (see section 3).

1. The finite field case. Let $(F_{p^k}, \times, +)$ be a Galois (finite) field with exactly p^k elements (p prime). Then, as is well known, F_{p^k} contains a multiplicative generator, ξ ;

$${F}_{p^k} = \{0,\,\xi,\,\xi^2,\,\cdots,\,\xi^{p^k-1}\,(=1)\}$$
 .

We now have the following (compare with [1]).

THEOREM 1. Let F_{p^k} be a Galois field, and let ξ be a generator of F_{p^k} . Then the mapping $x \to x^{\frown}$ defined by

Received August 16, 1963.

ADIL YAQUB

(1.1)
$$x = \xi x + (1 + \xi x + \xi^2 x^2 + \dots + \xi^{p^k - 2} x^{p^k - 2})$$

is a permutation of F_{p^k} , with inverse given by

(1.2)
$$x = \xi^{p^k-2}(1 + x + x^2 + \cdots + x^{p^k-2}) + \xi^{p^k-2}x$$
.

Furthermore, the permutation \frown is of period p^k ,

(1.3)
$$x \widehat{}_{p^k} = (\cdots (x \widehat{}) \widehat{} \cdots) \widehat{} (p^k \text{-iterations}) = x$$
.

Proof. Since $a^{p^{k-1}} = 1$, $a \in F_{p^k}$, $a \neq 0$, therefore, by (1.1), $x \frown = \xi x + \{[(1 - (\xi x)^{p^{k-1}}]/(1 - \xi x)] = \xi x$, if $x \neq 0$ and $\xi x \neq 1$. Furthermore, by (1.1), $0 \frown = 1$ and $(1/\xi) \frown = p^k \cdot 1 = 0$. Hence, $0 \frown = 1$, $1 \frown = \xi$, $\xi \frown = \xi^2$, $(\xi^2) \frown = \xi^3$, \cdots , $(\xi^{p^{k-2}}) \frown = 0$. This proves (1.3). To prove (1.2), observe that the right-side of (1.2) is equal to

$$rac{1}{\xi}x+rac{1}{\xi}\Big\{rac{1-x^{p^k-1}}{1-x}\Big\}=rac{1}{\xi}x$$
, if $x
eq 1$ and $x
eq 0$.

Moreover, if $x \neq 0$ and $x \neq 1/\xi$, then $x = \xi x$ and hence $x = (1/\xi)x$. Since (1.2) clearly holds for x = 0, $x = 1/\xi$, and x = 1, therefore (1.2) is true for all elements of F_{pk} , and the theorem is proved.

COROLLARY 2. Under the permutation \frown , F_{pk} suffers the cyclic permutation

(1.4)
$$(0, 1, \xi, \xi^2, \xi^3, \cdots, \xi^{p^{k-2}})$$
.

Following [1], we call $x \frown$ the normal negation of x, and call the cyclic group D whose generator is $x \frown$ the normal group. By Theorem 1, it is now clear that

$$D=D(\xi)=\{ ext{identity}, \frown, \frown^2, \frown^3, \cdots, \frown^{p^k-1}\}$$
 .

As in [1], we define

$$(1.5) a \times b = (a^{\frown} \times b^{\frown})^{\smile}.$$

It is readily verified that

$$a \times \mathbf{0} = a = \mathbf{0} \times \mathbf{a}.$$

COROLLARY 3. The elements of F_{p^k} are equationally definable in terms of the D-logic.

Proof. By Corollary 2, it is easily seen that

(1.7)

$$0 = xx^{2} \cdots x^{p^{k-1}}$$

$$1 = 0^{2}$$

$$\xi = 1^{2}$$

$$\xi^{2} = \xi^{2}$$

$$\cdots$$

$$\xi^{p^{k-2}} = (\xi^{p^{k-3}})^{2},$$

and the corollary follows.

We recall from [3] the characteristic function $\delta_{\mu}(x)$, defined as follows: for a given $\mu \in F_{p^k}$,

(1.8)
$$\delta_{\mu}(x) = \begin{cases} 1 & \text{if } x = \mu \\ 0 & \text{if } x \neq \mu \end{cases}.$$

In view of Corollory 2, it is easily seen that, for any given $\mu \in F_{p^k}$, there exists an integer r such that $\mu \widehat{r} = 0$. Then, clearly,

(1.9)
$$\delta_{\mu}(x) = \delta_0(x \hat{r})$$
 where $\mu \hat{r} = 0$.

Now, let $\sum_{\alpha_i \in F}^{\times} \alpha_i$ denote $\alpha_1 \times \alpha_2 \times \alpha_3 \cdots$, where $\alpha_1, \alpha_2, \alpha_3, \cdots$ are the elements of F. Then, by (1.6) and (1.8), we have the identity [3]

(1.10)
$$f(x, y, \cdots) = \sum_{\alpha, \beta, \cdots \in F_{p^k}}^{\times} f(\alpha, \beta, \cdots) (\delta_{\alpha}(x) \delta_{\beta}(y) \cdots) .$$

In (1.10), α , β , \cdots range over all the elements of F_{p^k} while x, y, \cdots are indeterminates over F_{p^k} . We shall use (1.9) and (1.10) presently.

LEMMA 4. The characteristic functions $\delta_{\mu}(x)$, $\mu \in F_{p^k}$, are equationally definable in terms of the D-logic.

Proof. Since $x^{p^{k-1}} = 1$, $x \neq 0$, $x \in F_{p^k}$, therefore, $\delta_0(x) = ((x^{p^{k-1}})^{-})^{p^{k-1}}$. Hence $\delta_0(x)$ is equationally definable in terms of the *D*-logic. Therefore, by (1.9), $\delta_{\mu}(x)$ is also equationally definable in terms of the *D*-logic, and the lemma is proved.

We are now in a position to prove the following.

THEOREM 5. The Galois field $(F_{p^k}, \times, +)$ is a ring-logic (mod D).

Proof. By (1.10), we have,

$$x + y = \sum_{lpha \ eta \in \mathbb{F}_{p^k}}^{ imes} (lpha + eta) (\delta_{lpha}(x) \delta_{eta}(y)) \; .$$

Now, by Corollary 3, $\alpha + \beta$ is equationally definable in terms of the

D-logic. Moreover, by Lemma 4, each of the characteristic functions $\delta_x(x)$ and $\delta_{\beta}(y)$ is equationally definable in terms of the D-logic. Hence the "+" of F_{p^k} is equationally definable in terms of the D-logic $(F_{p^k}, \times, \frown, \frown)$. Next, we show that $(F_k, \times, +)$ is fixed by its D-logic. Suppose then that there exists another ring $(F_{p^k}, \times, +')$, with the same class of elements F_{p^k} and the same " \times " as $(F_{p^k}, \times, +)$ and which has the same logic as $(F_{p^k}, \times, +')$. To prove that +' = +. Since both $(F_{p^k}, \times, +)$ and $(F_{p^k}, \times, +')$ have the same class of elements and the same " \times ", it readily follows that $(F_{p^k}, \times, +')$ is also a Galois field with exactly p^k elements. Since, up to isomorphism, there is only one Galois field with exactly p^k elements, therfore, +' = +, and the theorem is proved.

2. The General Case. In order to extend Theorem 5 to any finite commutative ring with zero radical, the following concept of independence, introduced by Foster [2], is needed.

DEFINITION. Let $\overline{A} = \{A_1, A_2, \dots, A_n\}$ be a finite set of algebras of the same species S_p . We say that the algebras A_1, A_2, \dots, A_n are *independent* if, corresponding to each set $\{\varphi_i\}$ of expressions of species S_p $(i = 1, \dots, n)$ there exists at least one expression ψ such that $\psi = \varphi_i \pmod{A_i}$ $(i = 1, \dots, n)$. By an *expression* we mean some composition of one or more indeterminate-symbols ξ, \dots in terms of the primitive operations of A_1, A_2, \dots, A_n ; $\psi = \varphi \pmod{A}$ means that this is an identity of the algebra A.

We now examine the independence of the *D*-logics $(F_{p_i^{k_i}}, \times, \widehat{}, \check{})$. Indeed, we have the following (compare with [2]).

THEOREM 6. Let p_1, \dots, p_t be distinct primes. Then the D-logics $(F_{p_t^{k_i}}, \times, \frown, \smile)$ are independent.

Proof. Let $n_i = p_i^{k_i}$, $F_i = F_{p_i}k_i = \{0, 1, \lambda, \lambda^2, \dots, \lambda^{n_i-2}\}$, $n = \max_{1 \le i \le t} \{n_i\}$, $N = \prod_{j=1}^t n_j$, $n_i N_i = N$, $E = \xi \xi \widehat{-} \xi \widehat{-}^2 \dots \xi \widehat{-}^{n-1}$.

It is easily seen, since the n_i 's are distinct prime powers, that

$$|_i(\xi)=(E^{\frown_{F_i}})^{n_i-1}=egin{cases}1\pmod{F_i}\0\pmod{F_j}\end{pmatrix}(j
eq i)\;.$$

Now, to prove the indepedence of the logics $(F_i, \times, \widehat{}, \check{})$ $(i = 1, \dots, t)$ let $\varphi_1, \dots, \varphi_t$ be any set of t expressions of species $\times, \widehat{}, \check{}, \check{}, \check{}, i.e.$, primitive compositions of indeterminate-symbols in terms of the operations $\times, \widehat{}, \check{}, \check{}$. Define an expression $K(\varphi_1, \dots, \varphi_t)$ as follows (compare with [2]):

$$K(\varphi_1, \cdots, \varphi_t) = (\varphi_1 \cdot |_1(\xi)) \times (\varphi_2 \cdot |_2(\xi)) \times (\varphi_t \cdot |_t(\xi)).$$

Then it is easily seen that $K(\varphi_1, \dots, \varphi_i) = \varphi_i \pmod{F_i}$ $(i = 1, \dots, t)$, since $a \times 0 = 0 \times a = a$, and the theorem is proved.

We shall now extend the concept of ring-logic to the direct sum of certain ring-logics. We denote the direct sum of A_1 and A_2 by $A_1 \bigoplus A_2$. The direct power A^m will denote $A \bigoplus A \bigoplus \cdots \bigoplus A$ (*m* summands).

THEOREM 7. Let A be any subdirect sum with identity of (not necessarily finite) subdirect powers of the Galois fields $F_{p_{i}^{k_{i}}}$ $(i = 1, \dots, t)$. Then A is a ring-logic (mod D).

Proof. Let q_1, \dots, q_r be the *distinct* primes in $\{p_1, \dots, p_t\}$. Since the Galois Fields $F_{p^{k_i}}$ and $F_{p^{k_j}}$ are both subfields of $F_{p^{k_i k_j}}$, it is easily seen that A is a subring of a direct sum of direct powers of $F_{q_i^{k_i}}$, $(i = 1, \dots, r)$; i.e., A is a subring of $F_{q_1^{k_1}}^{m_1} \oplus \dots \oplus F_{q_r^{k_r}}^{m_r}$ for some positive integers h_1, \dots, h_r . Now, by Theorem 5, each $F_{q_i^{k_i}}$ is a ring-logic (mod D), and hence there exists a D-logical expression φ_i such that, for every $x_i, y_i \in F_{q_i^{k_i}}$ $(i = 1, \dots, r)$,

$$x_i + y_i = \varphi_i(x_i, y_i; \times, \frown, \smile)$$
.

Since, by Theorem 6, the D-logics $(F_{q_i^{h_i}}, \times, \frown, \smile)$ $(i = 1, \dots, r)$ are independent, there exists a D-logical expression K such that

$$K = \begin{cases} \varphi_1 \pmod{F_{q_1^{h_1}}}\\ \cdots \\ \varphi_r \pmod{F_{q_r^{h_r}}} \end{cases}.$$

Therefore, for every $x_i, y_i \in F_{q_i^{h_i}}$ $(i = 1, \dots, r)$,

$$x_i + y_i = \varphi_i = K(x_i, y_i; \times, \frown, \smile)$$
.

Hence, the *D*-logical expression *K* represents the "+" of each $F_{q_{i}^{h}i}$. Since the operations are component-wise in the direct sum $F_{q_{i}^{h}1}^{m_{1}} \bigoplus \cdots \bigoplus F_{q_{r}^{h_{r}}}^{m_{r}}$, therefore, for all x, y in this direct sum, we have,

$$x + y = K(x, y; \times, \frown, \smile)$$
.

Hence, a fortiori, the "+" of the subring A is equationally definable in terms of the D-logic.

Next, we show that A is *fixed* by its D-logic. Suppose there exists a "+" such that $(A, \times, +')$ is a ring, with the same class of elements A and the same " \times " as the ring $(A, \times, +)$, and which has the same logic $(A, \times, \frown, \smile)$ as the ring $(A, \times, +)$. To prove that +' = +. Now, since A is a subdirect sum of subdirect powers of $F_{p_k^{k_i}}$, therefore, a new "+" in A defines and is defined by a new

"+" in $F_{p_1^{k_1}}$, "+" in $F_{p_2^{k_2}}$, ..., "+" in $F_{p_i^{k_t}}$, such that $(F_{p_i^{k_i}}, \times, +'_i)$ is a ring $(i = 1, \dots, t)$. Furthermore, the assumption that $(A, \times, +')$ has the same logic as $(A, \times, +)$ is equivalent to the assumption that each $(F_{p_i^{k_i}}, \times, +'_i)$ has the same logic as $(F_{p_i^{k_i}}, \times, +)$ $(i = 1, \dots, t)$. Since, by Theorem 5, $(F_{p_i^{k_i}}, \times, +)$ is a ring-logic, and hence with its "+" fixed, it follows that $+'_i = +$ $(i = 1, \dots, t)$. Hence +' = +, and the theorem is proved.

Now, it is well known (see [4]) that any finite commutative ring with zero radical and with more than one element is isomorphic to the complete direct sum of a finite number of finite fields. Hence, Theorem 7 has the following

COROLLARY 8. Any finite commutative ring with zero radical is a ring-logic (mod D).

It is also well known (see [1; 5]) that every *p*-ring (*p* prime) is isomorphic to a subdirect power of F_p , and every p^k -ring (*p* prime) is isomorphic to a subdirect power of F_{p^k} . Hence, by letting t = 1 in Theorem 7, we obtain the following (compare with [1; 7])

COROLLARY 9. Any p-ring with identity, as well as any p^{k} -ring with identity, is a ring-logic (mod D).

Now, let n be a fixed integer, $n \ge 2$. It is well known that a ring R which satisfies $x^n = x$ for all x in R is isomorphic to a subdirect sum of (not necessarily finite) subdirect powers of a *finite* set of Galois fields. Hence Theorem 7 has the following

COROLLARY 10. Let R be a ring with unit such that $x^n = x$ for all x in R, where n is a fixed integer, $n \ge 2$. Then R is a ringlogic (mod D).

3. The natural group and the normal group. Let $(R, \times, +)$ be a commutative ring with unit 1. We recall (see [1]) that the natural group N is the group generated by $x^{\wedge} = x + 1$ (with inverse $x^{\vee} = x - 1$). In [7], it was shown that $(F_{pk}, \times, +)$ is a ring-logic (mod N), and hence the "+" of F_{pk} is equationally definable in terms of the N-logic (F_{pk}, \times, \wedge) . Moreover, by Theorem 5, $(F_{pk}, \times, +)$ is a ringlogic (mod D), and hence the "+" of F_{pk} is equationally definable in terms of the D-logic (F_{pk}, \times, \frown) . Of the two rival logics, (F_{pk}, \times, \frown) requires only a knowledge of the multiplication table in F_{pk} since, by Corollary 2, the effect of \frown on F_{pk} is the cyclic permutation $(0, 1, \xi, \xi^2, \dots, \xi^{pk-2})$. In this sense, the D-logical formula for the "+" of F_{pk} is a strictly multiplicative formula, and addition is thus equationally definable in terms of multiplication whenever the generator ξ is chosen (compare with [1]). The situation is quite different in the case of the N-logical formula for the "+" of F_{p^k} , since the generator $x^{\wedge} = x + 1$ of the natural group N already involves a limited use of the addition table.

References

1. A. L. Foster, pk-rings and ring-logics, Ann. Scn. Norm Pisa, 5 (1951), 279-300.

2. ____, The identities of and unique subdirect factorization within-classes of universal algebas, Math. Z., **62** (1955), 171-188.

3. _____, Generalized Boolean theory of universal algebras, Part I, Math. Z, 58 (1953), 306-336.

4. N. H. McCoy, Rings and ideals, Carus Math. Monog., 8 (1947).

5. N. H. McCoy and D. Montgomery, A representation of generalized Boolean rings, Duke Math J., 3 (1937), 455-459.

6. M. H. Stone, The theory of representations of Boolean algebras, Trans. Amer. Soc., **40** (1936), 37-111.

7. A. Yaqub, On certain finite rings and ring-logics, Pacific J. Math., 12 (1962), 785-790.

UNIVERSITY OF CALIFORNIA, SANTA BARBARA