ON SOME FINITE GROUPS AND THEIR COHOMOLOGY

Kung-Wei Yang

The purposes of this paper are: (I) to characterize the finite groups whose 2-Sylow subgroups are not isomorphic to a generalized quaternion group and which have periodic cohomology of period 4, (II) to show that all possible cohomologies of such a group G can be realized by direct sums of G-modules which belong to a specific finite family of G-modules.

The author wishes to express his deep gratitude to Professor G. Whaples and Dr. K. Grant for many helpful suggestions and continual encouragement.

The reader is referred to [1, Ch. XII] for basic notions, definitions and notations concerning cohomology of finite groups. The only departure from [1, Ch. XII] is the following: we shall say that a finite group G has periodic cohomology of period k if k is the least positive integer such that $\hat{H}^{k}(G, Z)$ contains a maximal generator [1, pp. 260-261]. And to avoid typographical difficulties we will denote by $Z(l)$ the cyclic group of order l.

Proposition I. Let G be a finite group whose 2-Sylow subgroups are not isomorphic to a generalized quaternion group. Then G has periodic cohomology of period 4 if and only if G has a presentation

$$
G=\left\{\sigma, \tau: \sigma^{s}=1, \tau^{t}=1, \tau \sigma \tau^{-1}=\sigma^{-1}\right\}, \text { with the conditions }
$$

(i) s is an odd integer >1,
(ii) t is a positive even integer prime to s.

Proof. Let G be a finite group whose 2-Sylow subgroups are not isomorphic to a generalized quaternion group and which has periodic cohomology of period 4. It is well-known [1, Theorem 11.6, p. 262] that if a finite group has periodic cohomology (of finite period) every Sylow subgroup of the group is either cyclic or is a generalized quaternion group. Since we assume that the 2-Sylow subgroups of G are not isomorphic to a generalized quaternion group, every Sylow subgroup of G is cyclic. It is also well-known [6, Theorem 11, p. 175] that a finite group G containing only cyclic Sylow subgroups is metacyclic and has a presentation

$$
G=\left\{\sigma, \tau: \sigma^{s}=1, \tau^{t}=1, \tau \sigma \tau^{-1}=\sigma^{r}\right\}, \text { with the conditions }
$$

[^0](1) $0<s$, $(s t=$ the order of the group $G)$,
(2) $((r-1) t, s)=1$
(3) $\quad r^{t} \equiv 1(\bmod s)$, and conversely.

We observe that if $s=1$ or $t=1$ or $r=1$ the finite group G is cyclic and G has periodic cohomology of period 2 (or 0). These cases are therefore excluded. On the other hand, once these exceptional cases are excluded G is no more a cyclic group and it will have periodic cohomology of period $\geqq 4$.

Notice that (1), (2) and (3) imply (i)
Let H be the subgroup of G generated by the element $\sigma . H$ is clearly a cyclic normal subgroup of order s. And G / H is cyclic of order t. By condition (2), s and t are relatively prime to each other. We can therefore apply the decomposition theorem of Hochschild-Serre [2, Theorem 1, p. 127] and obtain

$$
\begin{equation*}
\hat{H}^{k}(G, K) \cong \hat{H}^{k}\left(G / H, K^{H}\right) \bigoplus\left(\hat{H}^{k}(H, K)\right)^{G \mid H} \tag{4}
\end{equation*}
$$

for all $k>0$ and for all G-module K. (For $k>0, \hat{H}^{k}(G, K)=H^{k}(G, K)$). In particular, we have

$$
\hat{H}^{k}(G, Z) \cong \hat{H}^{k}(G / H, Z) \oplus\left(\hat{H}^{k}(H, Z)\right)^{G / E}
$$

for $k>0$. The G / H-operators on $\hat{H}^{k}(H, K)$ are explicitly described in [2, p. 117]. In particular, G / H-operators on $\hat{H}^{k}(H, Z)$ are induced by the automorphisms of H which are themselves induced, on H, by inner automorphisms of G. In the present situation, all such automorphisms of H are generated by the automorphism $f(\rho)=\rho^{r}\left(=\tau \rho \tau^{-1}\right)$, where $\rho \in H$. The automorphism $f: H \rightarrow H$ induces an automorphism f^{*} of $\hat{H}^{k}(H, Z)$ [4, Lemma 3, p. 343] such that if $g_{2 k} \in \hat{H}^{2 k}(H, Z)$, then $f^{*}\left(g_{2 k}\right)=r^{k} g_{2 k}$. Therefore $\hat{H}^{4}(G, Z)$ has a maximal generator, i.e. G has periodic cohomology of period $\leqq 4$ if and only if $f^{*}(g)=g$ for all $g \in \hat{H}^{4}(H, Z)$. This is equivalent to
(5) $\quad r^{2} \equiv 1(\bmod s)$.
(We recall that $r=1$ we excluded). An elementary number theoretic calculation shows that the only solution for r in (2) and (5) is $r \equiv$ $-1(\bmod s)$. Therefore the number t in (3) is an even positive integer (if it is negative, we can present G by letting $\tau^{\prime}=\tau^{-1}$). This shows that the finite group G has a presentation as mentioned above.

The converse of the proposition is obvious.
We know that if l is the order of the group G then for any G module K all the cohomology groups $\hat{H}^{k}(G, K)(-\infty<k<\infty)$ are of exponent l-that is, for all $g \in \hat{H}^{k}(G, K), l g=0$. Let

$$
s=p_{1}^{u_{1}} \cdots p_{h}^{u_{h}}, P_{1}=\left\{p_{1}, \cdots, p_{h}\right\} \quad \text { and } \quad t=q_{1}^{v_{1}} \cdots q_{e}^{v_{e}}, P_{2}=\left\{q_{1}, \cdots, q_{e}\right\}
$$

be decompositions of s and t into products of prime powers (where
$q_{1}=2$ and $v_{1} \geqq 1$). It is obvious from (4) that a group with periodic cohomology of period 4 has P_{2}-period [1, Exercise 11, p. 265] equal to 2. Conversely, we have

Proposition II. Let G be a group having a presentation

$$
G=\left\{\sigma, \tau: \sigma^{s}=1, \tau^{t}=1, \tau \sigma \tau^{-1}=\sigma^{-1}\right\} \text { with the conditions }
$$

(i) s is an odd integer >1.
(ii) t is a positive even integer prime to s.

Let P_{1}, P_{2} be as defined above. Then there exists a finite family of G-modules \mathscr{F} such that given any sequence of abelian groups $A_{k}(-\infty<k<\infty)$ satisfying
(a) each A_{k} is of exponent st,
(b) the sequence is periodic of period 4,
(c) the P_{2}-period of the sequence is equal to 2 , then there exists a G-module M which is a direct sum of G-modules of \mathscr{F} such that $\hat{H}^{k}(G, M)=A_{k}(-\infty<k<\infty)$.

First we observe the following
Lemma. Let G be a finite group and let K be a G-module. Let S be a set of primes in the ring of integers Z and let $Q(S)$ be the quotient ring [5, p.46] of Z with respect to the multiplicative system generated by S. (As usual when $Q(S)$ is considered as a G-module it is to be understood that G operates trivially on (the additive group of) $Q(S))$. Then

$$
\hat{H}^{k}(G, K \otimes Q(S)) \cong \hat{H}^{k}(G, K) \otimes Q(S)(-\infty<k<\infty)
$$

where $\boldsymbol{\otimes}=\boldsymbol{\otimes}_{z}$
The proof is immediate.
Proof of Proposition II. Let s, t, P_{1}, P_{2} be as before. Let

$$
\begin{aligned}
& s(i, \mu)=s / p_{i}^{\mu}\left(i=1, \cdots, h, 0 \leqq \mu \leqq u_{i}\right) \\
& t(i, \nu)=t / q_{i}^{\imath}\left(i=1, \cdots, e, 0 \leqq \nu \leqq v_{i}\right)
\end{aligned}
$$

Let $K^{1}(i, \mu)=\sum_{j=1}^{s(i \mu)} Z x_{j}^{(i, \mu)}$ (direct sum on the symbols $x_{j}^{(i \mu)}$)

$$
K^{2}(i, \nu)=\sum_{j=1}^{t i \nu)} Z y_{j}^{(i, \nu)}\left(\text { direct sum on the symbols } y_{j}^{(i, \nu)}\right) .
$$

Define G-operators on $K^{1}(i, \mu)$ and $K^{2}(i, \nu)$ by

$$
\begin{aligned}
& \sigma x_{j}^{(i, \mu)}=x_{j+1}^{(i, \mu)} \\
& \tau x_{j}^{(i, \mu)}=x_{-j}^{(i \mu)},
\end{aligned} \quad(\text { subscripts are modulo } s(i, \mu))
$$

$$
\begin{aligned}
\sigma y_{j}^{(i, \nu)} & =y_{j}^{(i, \nu)} \\
\tau y_{j}^{(i, \nu)} & =y_{j}^{(i, \nu)}
\end{aligned} \quad(\text { subscripts are modulo } t(i, \nu))
$$

Let

$$
\begin{aligned}
& M^{1}(i, \mu)=K^{1}(i, \mu) \otimes Q\left(\left(P_{1}-\left\{p_{i}\right\}\right) \cup P_{2}\right), \\
& M^{2}(i, \nu)=K^{2}(i, \nu) \otimes Q\left(P_{1} \cup\left(P_{2}-\left\{q_{i}\right\}\right)\right) .
\end{aligned}
$$

By (4), the above lemma and the fact that $\left(\hat{H}^{4 k+2}\left(H, K^{1}(i, \mu)\right)^{G / H}=(0)\right.$, one shows

$$
\left.\begin{array}{rlrl}
\hat{H}^{4 k}\left(G, M^{1}(i, \mu)\right) & =Z\left(p_{i}^{\mu}\right) & \quad \hat{H}^{4 k}\left(G, M^{2}(i, \nu)\right) & =Z\left(q_{i}^{\iota}\right) \\
\hat{H}^{4 k+1}\left(G, M^{1}(i, \mu)\right) & =(0) & & \hat{H}^{4 k+1}\left(G, M^{2}(i, \nu)\right)
\end{array}\right)=(0)
$$

The calculation is purely mechanical.
Now, let $0 \rightarrow I \rightarrow Z[G] \stackrel{\varepsilon}{\rightarrow} Z \rightarrow 0$, where $\varepsilon\left(\sum_{\sigma \in G} l_{\sigma} \sigma\right)=\sum_{\sigma \in \theta} l_{\sigma}, I=$ $\operatorname{Ker}(\varepsilon)$, and let \mathscr{F} consist of

$$
\begin{aligned}
& I^{k} \otimes M^{1}(i, \mu)\left(k=0,1,2,3, i=1, \cdots, h, 0 \leqq \mu \leqq u_{i}\right) \\
& I^{k} \otimes M^{2}(i, \nu)\left(k=0,1, i=1, \cdots, e, 0 \leqq \nu \leqq v_{i}\right)
\end{aligned}
$$

where $I^{k}=I \otimes \cdots \otimes I(k$ times $), I^{\circ}=Z$.
Suppose we are given a sequence of abelian groups $A_{k}(-\infty<k<\infty)$ satisfying conditions (a), (b), (c). Since by (a) each A_{k} is of exponent st, it follows from [3, Theorem 6, p. 17] that A_{k} is a direct sum of cyclic groups. Let $n A$ denote the direct sum of n copies of A, where A is either an abelian group or a G-module and n is a cardinal number. Then we can write

$$
A_{k}=\sum_{i=1}^{h} \sum_{0 \leqq \mu \leq u_{i}} m(k, i, \mu) Z\left(p_{i}^{\mu}\right) \oplus \sum_{i=1}^{e} \sum_{0 \leq \nu \leq v_{i}} n(k, i, \nu) Z\left(q_{i}^{\nu}\right),
$$

where $m(k, i, \mu)=m(k+4, i, \mu)\left(i=1, \cdots, h, 0 \leqq \mu \leqq u_{i}\right), n(k, i, \nu)=$ $n(k+2, i, \nu)\left(i=1, \cdots, e, 0 \leqq \nu \leqq v_{i}\right)$ and $m(k, i, \mu), n(k, i, \nu)$ are cardinal numbers. Take

$$
\begin{aligned}
M= & \sum_{k=0}^{3} \sum_{i=1}^{h} \sum_{0 \leqq \mu \leqq u_{i}} m(k, i, \mu) I^{k} \otimes M^{i}(i, \mu) \\
& \oplus \sum_{k=0}^{1} \sum_{i=1}^{e} \sum_{0 \leqq \nu \leqq v_{i}} n(k, i, \nu) I^{k} \otimes M^{2}(i, \nu) .
\end{aligned}
$$

Observe that $\hat{H}^{k-l}(G, K) \cong \hat{H}^{k}\left(G, I^{l} \otimes K\right)$. Clearly $\hat{H}^{k}(G, M)=A_{k}$ $(-\infty<k<\infty)$.

Remark. In a similar but much simpler fashion one can show that all possible cohomology of a cyclic group G can also be realized by direct sums of G-modules of a certain finite family of G-modules \mathscr{F}^{\prime}.

Addendum to the paper

"On Some Finite Groups And Their Cohomology"

(Received October 11, 1963)
Let group G have a presentation
(*)

$$
G=\left\{\sigma, \tau: \sigma^{s}=1, \tau^{t}=1, \tau \sigma \tau^{-1}=\sigma^{r}\right\}
$$

with the conditions
(i) $0<s$
(ii) $((r-1) t, s)=1$
(iii) $r^{t} \equiv 1(\bmod s)$
(iv) there exists a positive integer n such that n is the order to which r belongs to moduli $p_{i}(i=1, \cdots, h)$ (i.e. n is the smallest positive integer such that $\left.r^{n} \equiv 1\left(\bmod p_{i}\right)\right)$, where $s=p_{1}^{u_{1}} \cdots p_{h}^{u_{h}}$. Let s, t, P_{1}, P_{2}, be as defined before (here q_{1} is not necessarily $=2$). It is clear from condition (iv) that G has P_{1}-period equal to $2 n$ and P_{2}-period equal to 2.

Proposition III. Let G be a group having a presentation (*) with the conditions (i), (ii), (iii), (iv). Then there exists a finite family of G-modules \mathscr{F} such that given any sequence of abelian groups $A_{k}(-\infty<k<\infty)$ satisfying the following conditions:
(a) each A_{k} is of exponent st
(b) the P_{1}-period (in the obvious sense) of the sequence is $2 n$
(c) the P_{2}-period of the sequence is 2 ,
there exists a G-module M, which is a direct sum of G-modules of \mathscr{F} such that $\hat{H}^{k}(G, M)=A_{k}(-\infty<k<\infty)$.

Proof. Let $s(i, \mu), t(i, \nu), K^{1}(i, \mu), K^{2}(i, \nu)$, be as defined in Proposition II, Define G-operators on $K^{1}(i, \mu)$ and $K^{2}(i, \nu)$ by

$$
\left.\begin{array}{l}
\sigma x_{j}^{(i, \mu)}=x_{j+1}^{(i, \mu)} \\
\tau x_{j}^{(i, \mu)}=x_{r, j}^{(i, \mu)}, \\
\sigma y_{j}^{(i, \nu)}=y_{j}^{(i, \nu)} \\
\left.\tau y_{j}^{(i \nu)}=y_{j+1}^{(i, \nu)} \quad \text { (subscripts are modulo } s(i, \mu)\right) \\
\end{array} \quad \text { subscripts are modulo } t(i, \nu)\right) .
$$

By condition (iv) we have

$$
\hat{H}^{2 n k+i}\left(H, K^{1}(i, \mu)\right)^{G / H}=(0)(i=1,2, \cdots, 2 n-1)
$$

The rest of the proof is parallel to that of Proposition II. \mathscr{F} consists of G-modules

$$
\begin{aligned}
& I^{k} \otimes M^{1}(i, \mu)\left(k=0,1, \cdots, 2 n-1 ; i=1, \cdots, h ; \mu=0,1, \cdots, u_{i}\right) \\
& I^{k} \otimes M^{2}(i, \nu)\left(k=0,1 ; i=1,2, \cdots, e ; \nu=0,1, \cdots, v_{i}\right)
\end{aligned}
$$

Bibliography

1. H. Cartan and S. Eilenberg, Homological Algebra, Princeton, 1956.
2. G. Hochschild and J-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc., 74 (1953), 110-134.
3. I. Kaplanksy, In finite Abelian Groups, University of Michigan Press, Ann Arbor, 1956.
4. R. G. Swan, The p-period of a finite group, Ill. J. Math. 4 (1960), 341-346.
5. O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, Van Nostrand, Princeton, 1958.
6. H. Zassenhaus, The Theory of Groups, 2nd ed., Chelsea, New York, 1958.

Indiana University

[^0]: Received August 21, 1963.

