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1. Introduction* Throughout this paper A — 0, α, δ, •••,// = #,
a, βf " and G will be abelian partially ordered groups (p.o. groups). G
is a p.o. extension of A by A if there is an order preserving homomorphism
(o-homomorphisn) π of G onto J with kernel A such that TΓ induces an
o-isomorphism of G/A with A, (i.e. τr(#) > θ implies g + A contains a
positive element). If A and A are lattice ordered groups (1-groups)
then G is an l-extension if G is an 1-group, TΓ is an 1-homomorphism
and π induces an 1-isomorphism between G/A and A. In this case A
is an 1-ideal of G.

If G is a p.o. extension of A by J then for eachaeAchooseτ{a)eG
such that π(r(a)) = α and r(0) = 0. Define

/(α, /3) = -r(a + β) + r(a) + τ(β) for all a, β e A

and

QΛ = {a e A | r(α) + α ̂  0} for α: e A+ = {δ e 41 δ ̂  }̂ .

Then the following conditions are satisfied for all a, β9 7 in A.
(i) f(a,β)=f(β,a)
(ii) f(a9θ)=f(θ,a) = 0
(iii) /(α, β) + /(α + /3, 7) = f(a, β + 7) + /(/S, 7).

Moreover, for a, β eA+ we have
(iv) QωΦΦ
(v) Q* + Qβ+/(tf,/9)SQ*+ β

(vi) Q , - A + .
Conditions (iv)-(vi) are due to L. Fuchs and can be derived from the
results in [5].

Now if G=Ax A and we define (α, a) + (b, β)=(a + b +/(α, β), a + β)
and (α, a) positive if a € A+ and a e Qaj then the mapping (α, α:) —>
r{a) + a is an o-isomorphism of G onto G. In what follows we usually
identify G and G.

Conversely, if we are given A, A,f:Ax A—>A and Q: A+—^{subsets of A}
such that / and Q satisfy (i)-(vi) then G is a p.o. extension of A by
A and the mapping (α, a) —> α is the corresponding o-homomorphism.

Two p.o. extensions G = (A, A, f, Q) and G' = (A, z/, /', Q') are
o-equivalent if there is a function £: z/ —> A such that
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f'(a, β) = f(a, β) - t(a + β) + t{a) + t(β)

and

Qi = -t{a) + Qa .

This is equivalent to the fact that there exists an o-isomorphism of
G onto G' that induces the identity on A and G/A = Δ.

In Theorem 1 we give necessary and sufficient conditions that a
p.o. extension G = {A, Δ,f, Q) be an 1-extension. If G is an 1-extension
such that for each a e Δ+, Qa is a principal dual ideal, that is, generated
by a single element, then Lemma 2.2 shows G is o-equivalent to the
cardinal sum A EB Δ. We show in Lemma 2.3, if A is a lexicographic
extension of an 1-ideal B (notation: A = <J3» then for each a e Δ+,
Qa = A or Qa is a principal dual ideal. Theorem 2 shows that if G
is an 1-extension of A = <(£Γ> then G contains an 1-ideal H = A EB J,
J S Δ and G is an 1-extension of H by the ordered group (o-group)
Δ/J. In addition if Δ is an o-group then G = </l EB jy.

Theorem 3 gives a method of constructing 1-extensions from an
abelian extension G = (A, Δ, f) that depends only on the cardinal
summands of A.

In § 4 we use the above to investigate those 1-extensions of an
1-group A with a finite basis. We show that to an o-equivalence every
1-extension of such an 1-group A by an 1-group Δ is determined by
a meet-preserving homomorphism of the semigroup Δ+ to the semigroup
of all cardinal summands of A such that f(af β) e Ha+β.

2. Extensions of lrgroups A subset Q of A is a dual ideal if
a e Q and b ^ a implies b e Q.

LEMMA 2.1. // A is an l-group and Q gΞ A is a dual ideal that
satisfies

(*) Q Γί(b + A+) has a smallest element for all be A,
then Q is a sublattice of A. Thus Q is a lattice dual ideal.

Proof. Let a,beQ, then a V beQ since Q is a dual ideal. Also,
α, b e Q n [(α Λ b) + A+] so by (*) there is an element x e Q Π [(a Λ b) + A+]
such that x ^a and a? fg 6. Hence, x g α Λ & s o α Λ δ e ζ ) and Q is
a sublattice of A as desired.

If £ is a subset of A then the dual ideal generated by E (notation:
DI{E)) is {x e A \ x ^ y for some y e E). If a dual ideal is generated
by a single element we say the dual ideal is principal.

THEOREM 1. Suppose A and Δ are l-groups and G = (A, Δ,f, Q)
is a p.o.-extension of A by Δ. Then G is an l-extension if and only if
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( 1 ) if a A β = θ then Qω Π [Qβ + b + f(a - β, β)] has a smallest
element for all be A,

and

( 2 ) Qω + Qβ + f{a, β) = Qa+β for a,βeJ+.

Proof. Let G be an 1-extension. Suppose be A and a, β e Δ+ are
such that a Λ β = θ. Let 7 = a — β. For aeAf the mapping of
(α, α) —> a is an 1-homomorphism so (6, 7) V (0, 0) = (df a) where deA.
Now (d, a) ^ (0, θ) implies d e QΛ and (d, a) ^ (6, 7) implies (0, θ) ^
(d, a) -ψ,Ύ) = [d-b- /(7, /9), β] so d - δ - /(7, /3) e Qβ. Hence,
d e Qa Π [Qβ + 6 + f{a - β, β)]. If c e Qa n [Qβ + 6 + /(α - /S, /9)] then
a similar argument shows (c, α) ̂  (6, 7) and (c, a) ^ (0, 61). Hence,
(c, a) ^ (d, α) and c ^ d. Therefore, d is the smallest element in
Q» Π [Qβ + b + f(a - β, β)] and (1) holds.

To show (2) let a, β e Δ+. If either a = θ or β = θ then (2) is
trivial, so suppose a > θ and β > θ. Since G is a p.o.-extension we
have ζ)α + Qβ + f(a, β) S Q*+β. For the reverse containment, let
x e Q.+β, yeQ«,b = x-y -f(a, β) and (α, /3) = (6, /S) V (0, β). Now
(c, α + /9) ̂  (0, <?) if and only if e e Qa+β; (c, α + /3) ̂  (6, /3) if and only
iίceQa + b + f(a, β). On the other hand, since (α, /3) = (6, /3) V (0, θ),
c e Q^β n [Q« + 6 + /(α, /3)] if and only if ceQΛ + a + f(a, β). Hence
Q«+β Π [QΛ + b + f(a, β)] = Qa + a + f(a, β) and by (1) a is the smallest
element in Qβ n (Qθ + b). Therefore,

[Q* + b + f(a, β)] n Q.+ β

= Q« + /(«, /5) + [Qβ Π (Q« + 6)] g Q , + f(a, β) + Qβ .

By the choice of b,xe[Qa + b+ f(a, β)] Π Qa>+β and Qα + Qβ + f(a, β) =

For the sufficiency assume (1) and (2) hold and suppose (6, β)eG
and that (6, β) is not comparable with (0, θ). Let c be the smallest
element in QβVJ Π [Q-{βA , + 6 + /(/8, -(/3 Λ ^))]. Then (c, βWθ)^ (0, 0)
and (6, β). If (α, α) ̂  (6, /S), (0, 0) then aeQaf] [Q*_β + 6 + / ( α - β, β)].
Condition (1) implies (*) so Qx-φvθ) is a sublattice of A and from (2)
we can derive the equality,

QΛ Π [Q»-β + b+f(a-β, β)] = [QΛ- ( P v β ) + /(α - (β V θ), β V θ)]

+ {Qβv, Π [Q-OΛ*) + 6 + /(/3, ~(/5 Λ

Since c was chosen as the smallest element we have aeQa-{βvθ) +
f(a - (β V θ), β V θ) + c and therefore (α, α) ̂  (c, β V θ). Hence,
(c, /S V θ) = (6, /9) V (0, 0) and G is an 1-extension of A by Δ. It can
be shown that conditions (1) and (2) are equivalent to those given by
L. Fuchs [5]. The entire proof was given so that this paper will be
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more self-contained.
An 1-group G is a cardinal sum of 1-ideals Al9 A2, , An (notation:

G = Ax ffl ffl An) if G is the direct sum (notation: G = Λ φ Λ © © AJ
of the A; and if for ĉ  e A<, αx + + an ^ 0 if and only if α̂  ̂  0
for i = 1, , n. It can be shown that a direct sum of 1-ideals of an
1-group is actually the cardinal sum. G is a lexico-extension of an
1-group A (notation: G = (A}) if A is an 1-ideal of G, G/A is an o-group,
and every positive element in G but not in A exceeds every element
in A. In this case we note that if a + A <b + A in G/A then each
element of b + A exceeds every element of a + A.

LEMMA 2.2. Suppose G is an l-extension of A by Δ.
(a) If Qa = A for all θ Φ a e Δ+ then G = <A>.
(b) If Qa is a principal dual ideal for each aeΔ+ then G is

o-equivalent to the cardinal sum, A EB Δ, of A and Δ.

Proof. Let G be an l-extension of A by Δ.
(a) If Qω = A for all θ Φ a e Δ+, then every positive element of

G\A exceeds every element of A. From (1) it follows that Δ is an
o-group and therefore G = <A>.

(b) If Qa is a principal dual ideal for each a e Δ+, let xΛ be the
generator of QΛ. By (2) we have xΛ + xβ + f(a, β) = xa+β. Let H =
A BB 4, then if = (A, zf, / ' = 0, Q' = A+) is an ^-extension of A by Δ.
Define £': J + —> A as £'(α) = a?Λ. Then V induces a function t: Δ —> A
and it follows that for a, β e Δ

0=f'(a, /3)=f(a, β) - t(a + β) + t(a) + t(β)

and

A+ = QL = -ί(α) + Qc for α e j + .

Hence G and if are o-equivalent 1-extensions*

LEMMA 2.3. Let A = <B>,AΦ B and G = (A, Δ,f,Q) be an
l-extension. Then for a e Δ+ either Qa = A or Q^ is a principal dual
ideal.

Proof. If A is an o-group, aeΔ+ and QaΦ A then there is 6 e A
such that b < a for all a e QΛ. Hence, (&, a) V (0, θ) = (c, a) implies c
is the smallest element in Qa and therefore Qa is a principal dual ideal.

If A is not an o-group then B czA and A/B is an o-group. Suppose
a e Δ+ and Q* Φ A, then there is 0 > b e A\B such that b + B Φ x + B
for all xeQa. For suppose for each 0 > be A\B there is an xeQa

such that b + B = x + B, then b + heQ* for some feeB. Now for
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a n y ceA t h e r e i s 0 > a e A \ B s u c h t h a t a + B<c + Bsoc>a + h
which implies c e Qω. Thus Qa = A, a contradiction.

Now Qω Γ\ (h + QΘ) must have a smallest element so it suffices to
show Qa S b + Qθ. To this end let x e QΛ. If a? + 5 g 6 + B then
either # + B < 6 + 5 which implies x < b and b e QΛ or a? + £ = 6 + B.
Both cases lead to contradictions sox + B>b + B which implies x > b
and a; e b + Qβ. The proof is complete.

COROLLARY 2.1. If A — (By then (1) may be replaced by

(Γ) If a, β e Δ+ and a A β = θ then either Qa and Qβ are principal
dual ideals or Q^ is principal and Qβ = A.

Proof. If G is an 1-extension and a, β e Δ+ such that a A β = θ
then (1) implies Qa Π Qβ must have a smallest element and (1') follows
from Lemma 2.3. Conversely, if x is the smallest element in Qa, y the
smallest in Qβ and be A then x V (y + b + f(a — β, β) is the smallest
in Q*n[Qβ + b+ f(a - β, β)]. If Qβ = A then x is the smallest and
if Qa = A, y + b + f(a — /9, /S) is the smallest.

From the above it follows that if A = <#> and 4 is an o-group
then (1) may be replaced by

(1") For each a e J+, Qa = A or Qω is a principal dual ideal.
From (2) of Theorem 1 we have: The only 1-extensions of A = (By

by an Archimedean o-group Δ are o-isomorphic to the cardinal extension
or the lexico-extension.

THEOREM 2. Let A = <ΊB> and Δ be l-groups and G = (A, A,f, Q)
be an l-extension. Then G contains an l-ideal H which is o-isomorphic
to A EB J, J £ Δ, and G is an l-extension of H by the o-group Δ/J.

Proof. By Lemma 2.3 either Qa = A or Q^ is principal for all
a e Δ+. Let J+ = {a e Δ+ \ Qω Φ A}. Then by (2) of Theorem 1, J+ is
a convex subsemigroup of Δ+. Let J be the l-ideal of Δ generated
by J+ and let H= {A, J, f\ Q') where f'=f\(jχj) and Qi = Qa,ae J+.
Then fl" is an l-ideal of G and Q* is a principal dual ideal for all aeJ+.
Therefore by Lemma 2.2, we have H o-isomorphic to A EB J.

By way of contradiction, if Δ/J is not an o-group then there are
X, Ye(Δ/J)+ such that X Λ Y = J. Let X = a + J, Y= β + J then
X A Y = (a + J) A (β + J) - (a A β) + J = J so a A β e J. Now a =
(α Λ /8) + T, /S = (α Λ β) + δ where 7 Λ δ = 6> and 7, δ e J, hence Qv =
A = Qδ. This contradicts Corollary 2.1. Thus Δ/J is an o-group.

Finally, the natural mappings induce an o-isomorphism of G/H onto
Δ/J. Hence, G is an l-extension of H by the o-group Δ/J.
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We note that if α e Δ+\J+ then Qa = A so if 0 < g e G\H then
g > a for all aeA.

COROLLARY 2.2. // Δ is an o-group and G — (A, Δ,f, Q) is an
l-extension then G = ζA EB jy.

Proof. If Δ is an o-group then Δ = <J>. The corollary follows
from the results of Conrad [3, p 235] since A E3 J contains all the
nonunits of G.

We note that if G is an 1-group with two disjoint elements but
not three then G is an l-extension of an o-group by an o-group and
hence we have the structure theorem of Conrad and Clifford [4] for
the abelian case.

3* l'extensions with each QΛ generated by a coset of an MdeaL
Throughout this section we will consider those 1-extensions G =
{A, Δ, /, Q) where, for each a e Δ+, Qa = DI(xω + HΛ), Ha an 1-ideal of A.

LEMMA 3.1. Suppose G = (A, Δ,f,Q) is an l-extension of the
above type. Then there is an l-extension Gr = {A, Δ,f, Q') o-equivalent
to G with Qf

Λ = DI{Ha) for each aeΔ+.

Proof. If G is an l-extension and QΛ = Dlix^, + Ha) for each
a G Δ+, then there is a mapping t: Δ+ —> A defined as t\a) = xa. Since
each a e Δ has a unique representation a = a+ — or where a+ = a V θ,
or — — (a A θ), we can extend V to a mapping t: Δ—> A by defining
t(a) = t\a+) - t\or).

Let f\a, β) = f(a, β) - t(a + β) + t(a) + t(β) and Q'Λ - -t{a) + QΛ.
It is easily verified that / ' and Q' satisfy conditions (i)-(vi) so Gf =
(A, Δ, / ', Q') is a p.o. extension of A by Δ. From Theorem 1 it follows
that G' is an l-extension. Clearly, Gr is o-equivalent to G and Qr =

For those 1-extensions G of A by z/ with Q̂  as above the question
of o-equivalence leads to an investigation of the 1-ideals of A. To
show this we need the following.

LEMMA 3.2. // A is an l-group, H and K l-ίdeals of A and
DI(y + H) = DI(z + K) then y + H = z + K and H = K.

Proof. Suppose DI(y + H) = DI(z + K) where H and K are 1-ideals
of A. lίx^z-y then DI(H) = DI(x + K). Since H g DI(x + K),
0 e DI(x + K). lί 0$x + K then 0>x + k,keKaox + K contains
a negative element. Since DI(H) is a semigroup, 2(x + k)e DI(x + K)
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so 2x + 2k ̂  x + 1,1 e K. Hence, x + (2k - 1) ̂  0. This is a contra-
diction since x + K can contain no positive elements. Thus 0 e x + K
and x G K. Moreover, we have DI(H) — DI(K) which implies H = K.
For if H Φ K then, without loss of generality, there is 0 > ft G H\K.
But ft G ZλΓ(iίΓ) so h > k £ K. Hence, 0 > ft > fc, and by convexity ft G if,
a contradiction. Thus, H=x + K=z — y + K and 2/ + H = s + if.

Now if G = (A, Δ, /, ζ>) and G' = (A, zf, / ' , Q') are two 1-extensions
with Qa and Qf

a generated by 1-ideals Ha and H'a of A, then G and G'
are o-equivalent if and only if there is a function t:Δ —>A such that

f'(a, β) = f(a, β) - t(a + β) + t(a) + t(β)
Hί - Ha and t(a) e i ^ .

The question at this point is which 1-extensions will have Qω generated
by a coset of an 1-ideal. We give a partial answer to this question
in the next section.

We complete this section by giving a method for the construction
of 1-extensions of 1-groups.

THEOREM 3. Suppose A and Δ are l-groups and G= {A, Δ,f) is
an abelίan extension of A by Δ. For each a e Δ+, let Ha be a cardinal
summand of A such that

(1*) if a A β = θ then HΰύΓ\Hβ = 0
(2*) H« + Hβ=H«+βandf(a,β)eHΛ+β.

If Q<* = DI(H«) then G = {A, Δ, f, Q) is an l-extension of A by Δ.

Proof. Clearly (iv) is satisfied and for any aeΔ+, (2*) implies
Hθ S HΛ. From (1*) it follows that Hθ = 0. Thus Q3 = A+ and (vi) is
satisfied. Moreover, from (2*) we have DI(HΛ + Hβ +f(a, β)) = DI(Ha+β)
so DI{Ha) + DI(Hβ) + f(a, β) = DI(HΛ+β) and (2) of Theorem 1 holds.

If a A β = θ then HΛ Π Hβ = 0 so Ha+β = Haζ&Hβ and since HΛ

and Hβ are 1-ideals we have HΛ+β — H^ ffl Hβ. Since HΛ+β is a cardinal
summand we conclude A — Ha+β ffl D = Ha ES Hβ ffl D where D is an
1-ideal of A. Suppose be A and b + f(a — β, β) — (al9 a2, α3) where
aλ G HΛ, a2 G Hβ and α3 G -D. We show (au 0, α3 V 0) is the smallest
element in

Q» Π (b+f(a -β,β) + Qβ) - DI(Hω) Π DI(b + f(a -β,β) + Hβ) .

Now (alf 0, α3 V0)^(α1, 0, 0) so (alf 0, α3 V0) e DI(HΛ). Also (αx, 0, α3) =
(alf 0, α8) = (αx, α2, α3) - (0, α2, 0) so (au 0, α8) G 6 + /(α - β, β) + Hβ and
(al90,asV0)eDI(b+f(a-β,β) + Hβ). If

(%, v, w) G Z?/(£ΓΛ) Π i)/(6 + f(a -β,β) + Hβ)

then u ^ hae Ha, v ^ 0 and w ^ 0. Also % ̂  αx, v ^ α2 + hβ where
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hβ e Hβ and w *> α3. Hence, (u, v,w) *z (al9 0, α3 V 0) and (alf 0, α3 V 0)
is the smallest element in Qa Π (b + /(α — β, β) + Qβ). Thus G is an
1-extension of A by Δ.

We note that, since any two representations of an 1-group as a
cardinal sum have a common refinement, the cardinal summands of an
1-group form an additive semigroup closed with respect to intersection.
That is, if H = A ffi A! and H = B ffi Br then A = (A Π -B) ffl (A Π B')r

A! = {Ar nΰ)ffl {A' Π £') and B - (A n ^) BB (A' n S). Thus if = A ffl
A' = (A + 2?) E (A' Π 2?')- Hence, A + B is a cardinal summand of G..

4. Extensions of l*grouρs with a finite basis. An element g of
an 1-group G is basic if 0 < g and {xeG\Q < x ^ g} is ordered. A
subset S of G is a basis for G if S is a maximum set of disjoint
elements and each g e S is basic. Conrad [2] has shown that an 1-group
A with a finite basis of n elements is a lexico-sum of n ordered subgroups.
In particular, A is the cardinal sum of two 1-groups each with a basis
of fewer than n elements, or A is a lexico-extension of such an 1-group.
In this section we are concerned with 1-extensions of 1-groups with,
finite bases.

LEMMA 4.1. Suppose A has a finite basis and G = (A, Δ,f, Q) is-
an l-extension of A. Then for a e Δ+, Qa = DKXa, + H^) where H^ is
an l-ideal of A.

Proof. Let A have a basis of n elements. The proof is by induction
on n.

It follows from Lemma 2.3 that we need only consider A = B EB C
and if n = 1 then Ha = A or Ha = 0.

So suppose the theorem is true for all 1-groups with a basis of
fewer than n elements. Let φ: A —> B and f i ^ C b e the projections.
Now B has a basis of fewer than n elements and G' = (S, Δ9 φf, φQ)
is an l-extension of B so by induction φQΛ = DI(x + Λf) where α? e J5
and M is an l-ideal of B. Similarly, fQ^ = J9I(̂ / + iV) where j/ e C
and JV is an l-ideal of C. Since Qa is a sublattice of A, a straight
forward argument shows Qω = DJ((a; + #) + (Λf + iSΓ)) and M + N is
an l-ideal of A. The proof is complete.

The following theorem shows that for an 1-group A with a finite
basis every l-extension G of A by an 1-group Δ is o-equivalent to an
l-extension constructed by the method described in Theorem 3. That
is, to an o-equivalence, every such l-extension is determined by a
meet-preserving homomorphism from the semigroup Δ+ to the semi-
group of all cardinal summands of A such that f(a, β) e Ha+β.

In what follows we may, by Lemmas 3.1 and 4.1, assume for eack
a e Δ+ that Qω = DI(HΛ).
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THEOREM 4. If A has a finite basis and G — (A, Δ> f, Q) is an
l-extension of A by an l-group Δ then, for a, β e Δ+

(a) if a A β = θ then H^nHβ^O
(b) H« + Hβ = Ha+β and f(a, β) e Ha+β

(c) Hω is a cardinal summand of A.

Proof. Let A have a finite basis of n elements and G be an
l-extension. By (1) if a Λ β = θ then Qa Γϊ Qβ must have a smallest
element w. Since 0 e Qa n Qβ, w ^ 0 and therefore w eH^f] Hβ. If
Hω (Ί Hβ Φ 0 then there is heH^Γί Hβ such that h < w and /& e Qα> Π Qβ,
a contradiction. Thus (a) holds.

From (2) we have

DI(Ha) + DI(Hβ) + f(a, β) = DI(Hω+β)

so

DI(HΛ + Hβ+ f(a, β)) = DI(Ha+β) .

Thus by Lemma 2.3, Ha + Hβ = iϊ^+β and f(a, β) e Ha+β and (b) holds.
Now if A = <5> then for each α: G z/+, fζ, = 0 or Ha = A and (c)

follows in a trivial way. So suppose A = i? EB C and (c) is true for
all 1-groups with a basis of fewer then n elements. If φ: A-+B and
ψ: A—> C are the projections then G' = (B, J, φf, φQ) and G" =
{C, Δ, φf, φQ) are 1-extensions where φQa = DI(φHa) and ^Q* =
DI(φHa). Hence, by induction, φiϊ^ is a cardinal summand of B and
φHa is a cardinal summand of C and we have A = B EB C = ^fl"Λ ffl
Jί ffl φHa m N= φHa m φHa mMmN=HamMmN where M is an
1-ideal of B and iV is an 1-ideal of C.

Using the results of Conrad [3, p. 223] we conclude that the minimal
cardinal summands of an l-group A with a finite basis are those 1-ideals
of A that are lexico-extensions and are not bounded in A.

Added in Proof. The results of this paper have been extended
by the author to include central extensions G of an abelian l-group
A by an arbitrary l-group Δ. For central extensions, Theorem 1 (1)
reads: if aΛβ = θ then QaΠ[Qβ + b+ f(β, a - β)\ has a smallest
element for all be A. In Theorem 2, GjH is still o-isomorphic to the
o-group Δ\J but G need not be a central extension of H by ΔjJ. The
remaining results are unchanged for central extensions.
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