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l Introduction* The present paper is concerned with conditions
under which the quasi-nilpotent part of a spectral operator is actually
nilpotent of some order k. As might be expected, the case of a
spectral operator on a Hubert space has been settled longest. (See
[4].) The case of a Banach space has been treated quite thoroughly
by C. A. McCarthy [7] who showed that with a certain rate of growth
condition on Q, the nilpotent part of the spectral operator T = S + Qr

satisfies Qm+2 — 0, where the m is a positive integer involved in the
rate of growth condition. He alsσ discusses more special cases in
which Qm+1 = 0 and provides examples to show that these exponents
are the lowest possible in each case. The question of extending these
results to general locally convex spaces could not even be formulated
until a theory of spectral operators in these spaces had been devised
The work of C. Ionescu Tulcea [5] having laid the foundations in
this area, we may now attempt to solve the problem of generalizing
McCarthy's results. It is shown below that his theorems, and indeed
some part of the proofs, may be carried over to the locally convex
case, with a suitable reformulation of some of the conditions and
reworking of some of the supporting theory.

The basic assumptions are as follows. E denotes a locally convex
linear topological space over the field, C, of complex numbers. More-
over, E is assumed to be separated, barrelled and quasi-complete.
The strong dual of E is denoted by E'. The space of continuous
linear mappings of E into itself is jSf(E, E), which we shall always
assume to be given the topology j?~h of uniform convergence on the
bounded subsets of E. We denote the adjoint of T by ίΓ, for each
Te^?(E, E). The resolvent set of T, res Γ, is a certain subset of
C, the one-point compactification of C. Specifically, λ e res T provided
there is a neighborhood Vλ of λ in C and a function Rτ with domain
Vλ Π C and range in £f(E, E) such that

(a ) the set {Rτ(z)x: 2 e FλΓΊ C} is a bounded subset of E for each
x e E, and

(b) Rτ(z)(zl- T) = (zl- T)Rτ(z) = I for all zeVλf]C. The
complement of res T, in C, is the spectrum of Γ, denoted sp T. If
co g sp T, then sp T is compact in C and we say T is regular. We
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denote by J3°°(C) the algebra of bounded complex-valued Baire func-
tions on C, with norm | / | M = sup,€(7 \f(z) |, and by S(C) the Baire sets,
i.e., those subsets, A, of C whose characteristic function, φΛ9 is in
B°°(C). We denote by M1 the set of bounded Radon measures on C,

with norm | μ | = sup j \fdμ\:feB°°(C), l / | w = l | . By sup μ we
mean the support of the measure μ. Further information about locally
convex spaces and Radon measures may be found in the well-known
Bourbaki books [1] and [2]. Concerning the resolvent and spectrum
of T, see L. Waelbroeck [10] and [11].

Turning now to spectral operators, we review some of the defini-
tions and theorems to be found in the above mentioned work of
Ionescu Tulcea [5]. See also F. Maeda [6] and H. Schaeffer [8]. The
latter paper contains a monumental quantity of information about
spectral measures and extensions and proofs of many of the observations
listed in this paragraph. With E as above, let άΓ = {μXtχf: x e E, %' e E'}
be a set of bounded Radon measures on C, indexed as indicated by
E x E'. We say that ^ is a spectral family of measures if there
is a continuous algebraic representation of B°°(C) in J&f(E, E)1 denoted
by /—> U$tf (or Uf, if no confusion will ensue) such that Ut = I, and
<Ufx, O = ( fdμx,x, for all xeE,x'e E\ and fe B°°{C). The function
I is defined by l(z) — 1 for all z e C. By sup j^~ we mean

U xeE sup//^/. We say that Te J>f(E, E) commutes with a spectral
x'βE'

family j r ; provided TUf = UfT for all feB°°(C). Denote by P ^
the £f(E, £;)-valued function defined on S(C) by P^(σ) = Uφ<r. Then
P^f has the following properties:

( i ) Psf(Φ) = O.
(ii) P^iσ Γiδ) = P^(σ)P^(δ) for all σ, δ e S(C).
(iii) The set function mXf defined on S(C) with values in E by

mx(σ) — Pg{σ)x, is countably additive for each x e E.
(iv) P^(C) = I.

We shall call P$ the spectral measure associated with ^ . It is quite

common to write \ fdPg for Uf. For each σ e S(C), let Eσ = Psf(σ)E.
If Te£f(E, E) commutes with j ^ , then Tσ : Eσ-^Eσ may be defined
by Tσx = Tx for all x e Eσ. An element T of Sf(E, E) is said to be
a spectral operator if there is a spectral family ^ ~ ( = ̂ "τ, if neces-
sary) on C such that T commutes with J^ and sp Tσ c σ for every
compact subset σ of C. An element Q of Sf{E, E) is said to be
quasi-nilpotent if limits | <Q% x*> \1/n = 0 for all x e E, xf e E'. An
element S of ^^(£7, £/) is said to be scalar relative to a spectral
family ^ if the function/:/(2) = z is μx,^-measurable for all μx,x> e J^
and <S^, xfS> =\ fdμX)X, for all xeE, xr eEf. Finally we mention con-
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dition P^ 7 ), which is described in [5] and [6]. The central decom-
position theorem of spectral theory then is that if T is a spectral
operator whose associated spectral family j^~τ satisfies condition Pcέ?),
there is a unique decomposition T = S + Q where S is scalar relative
to ^ T and Q is quasi-nilpotent.

One last tool will be needed below, namely an "operational cal-
culus" for regular operators. Suppose T is regular. Let &(T) be
the class of all complex-valued functions /, analytic on an open set
D(f) which contains sp T. Let D be any Cauchy domain satisfying
s p Γ c ΰ c ΰ c ΰ ( / ) . Then for each fe Sf(Γ), define /(Γ) =
l/2πi\ f(z)Rτ(z)dz, where Γ is the boundary of D. We then have the
following theorem.

THEOREM 1. For any fe&(T), f(T) is a well-defined element
of Sf{E, E) independent of the choice of D (provided it satisfies the
above conditions). Moreover, if f and g are both in &(T), then
(f + g) (T) = f(T) + g(T) and (fg)(T) = f(T)g(T). If Γ is a
circle of sufficiently large radius to contain sp T in its interior,

then T = l/2πi\ zRτ(z)dz and I = l\2πi\ Rτ(z)dz. Finally,

x, x'\ =

for every xeE, x'eE', and fe%?(T), ΓczD(f).

The definition of Cauchy domain is to be found in Taylor's paper
[9], which also contains a proof of a theorem very similar to the above
which may easily be adjusted to fit the present situation. The theo-
rem might also be considered a special case of some of the work of
H. Cartan [3]. With this background we are prepared to discuss con-
ditions under which Qk = 0 for some positive integer k.

2+ The general case* Let E be a separated, locally convex space
which is barrelled and quasi-complete. Let T be a spectral operator
on E whose spectral family ^ satisfies condition Pcέ?) so that we
may write T = S + Q. We now state our rate of growth condition:

DEFINITION. With E and T as described, we say that Rτ satisfies
an mth-order rate of growth condition (m being a positive integer) if
t h e s e t {d(z, σ)mRTσ{z)P^(σ): z£σ,σ compact} is b o u n d e d in (-£f(E, E),
^ 6 ) . Here d(z, σ) is the distance from z to σ.

For the rest of this section we assume that Rτ satisfies an mth-
order rate of growth of condition.
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LEMMA 1. Let n be a fixed positive integer, σ a compact subset
of C, V a neighborhood of zero in £f(E, E). Then there is a finite
partition of σ by Borel sets {σj:j = lf29 •••,&} with the property
that if {λ/. j = 1,2, , k} is any choice of k complex numbers with
each Xj e σjf then

( 1 ) QnP#(σ) ~ Σy (Γ - ^YP^σj) 6 V .

Proof. Denoting by f{ the function f^z) — zψ^z), for i — 1, 2, ,,
n, we observe that for every ε > 0 there is a partition {σd: j —
1, 2, •••, k} of σ such that IΣiMSV, —/<|« < ε for all i = 1, 2, , ^,.
where the λ, are arbitrary in σό. Next, since the mapping f—*Uf ia
continuous, it follows that S{P^(σ) = Ufί may be approximated in the
topology of J2f(E, E) by operators of the form Σ i ̂ P$(σj)> uniformly
for i = 1, 2, •••,%, and for λy e σi# The theorem may now be proved
by considering

Given V, choose U, an equilibrated neighborhood of zero in ^f(E, E)r

such that Σi=o\l)Ucz V. For each i = 0, 1, , n, choose a neighbor-

hood Wi of zero in j£?(E,E) such that Ae W{ implies Tn~ιAe U.
Finally, choose {σά} so that Σ i ̂ P^s) — SίP^(σ)e f] iW{. Then,

But the first term in this last expression is just Σ i ( ^ ~ ^ό)nP&(σό)'
so that (1) is proved.

LEMMA 2. .For every bounded subset B of E, every equicontinuous
subset B' of E', and every positive integer n, there is a positive real
number M = M(B, Bf, n) such that

for all x e B, xf e Bf, provided 0 < ε <* 1 and σ is a Borel set of dia-
meter ^ ε.

Proof. If σ is empty there is no problem. Next consider the
case where σ is a nonvoid compact subset of C, and fix η > 0. By
Lemma 1 there is a partition {σd} of σ such that

(3 ) | <Q"P^(σ)x, x'> - <Σy (Γ - XiTPgfiσ^x, x'>\<V

for all xeB, xfeBf. Using any point in # as center, construct a
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circle, Γ, of radius 2ε. Then | z — λ | ^ e for all ze Γ, Xeσ. Then,
for all xeB, x' e 5',

1
2ττ

2εsup
zer

ί < Σ J
J Γ

sup

, x

Let gz(X) = Y,j{z — Xj)nφσ (X) be the integrand function in the spectral
integral in this last expression. Then the above computation implies

Since sup, e r |#*L ^ (3ε)Λ and the set {£/}:!/1* g 1} is equicontinuous,

corresponding to Bf we may find a neighborhood W of zero in E

such that

< 5 ) \<Ugzy,x'>\ ^ (3e)

for all yeW, and x'eB'. It is apparent that W is independent of
ε, of σ, of the choice of {0̂ }, and of z e Γ. But B and W determine
a neighborhood of zero in Sf{E, E). Consequently, from the rate of
growth condition, there is a > 0 such that

( 6 ) d(z, W

for all xeB, a being dependent only on B and B' (by way of
Substituting (6) in (5) gives, for all ze Γ,

(7) \<UgzRTσ{z)P^{σ)x, O I ^ α(3ε) d(s, ί7)-w ^ α3wεTC— .

Letting M = 2 3wα and substituting (7) in (4) and (3) we have

^ Mεn-m+1 + η

for all xeB, xf e B', with ikf dependent only on B, Br, and n. Since
^ is arbitrary, the theorem is proved under the additional assumption
that σ be compact. However, the general case may be readily deduced
from this one.

THEOREM 2. Let σ be a Borel set in C whose Hausdorff p-mea-
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sure is zero for some p. Then, for all k ̂  p + m — 1, QkP^(σ) = 0.

Proof. The hypothesis asserts that for every ε > 0 there is a
partition {σά} of σ by finitely or countably many Borel sets of dia-
meters βj respectivly such that εy ̂  1 for all j and Σ ; ε ; < ε Let
k = p + m — 1. Then

where Λf depends on x, xf, and &. Since ε, x, and OJ' are arbitrary, we
are done.

THEOREM 3. Qm+2 = 0.

Proof. Let p = 3, σ = sup ̂ , and fc = 3 + m — l = m + 2 in
the previous theorem.

3. Variations on the theme* In the case where £ is a Banach
space, McCarthy has pointed out a number of variations on Theorem 3.
The simplest of these, equally valid in our locally convex setting,
flow directly from Theorem 2 when the p-measure of sp T or of
sup ̂  is 0 for p = 1 or 2. An entirely different type of variation
(also considered in [7]) may be discovered by observing that certain
well-known Banach spaces may be embedded in E or E'. As in part
2 we assume that T = S + Q is a spectral operator whose resolvent
satisfies an mth-order rate of growth condition.

THEOREM 4. For every x e E, and x' e E', the measure f£Qm+ix,x,
has base Lebesgue planar measure, λ. In fact, for every bounded
set B in E, and equicontinuous set Br in Ef, there is N = N(B, Bf)
such that for all Borel sets σ, all xe B, and all x' e B', we have

/V+i«.,'(tf) ^ N\(σ) .

Proof. Actually we prove this for μ2f Hausdorff 2-measure in
the plane, but this is equivalent to proving it for λ. Let (J be a
Borel set in the plane of finite μ2 measure, and ε > 0. Partition σ
by Borel sets {σj such that the diameter of σ̂  is less than ε̂ , with
0 < 6i ̂  1, and Σ< ε? < /^(tf) + e. Letting n = m + 1 in Lemma 2,
we find that for each B, Bf as described in the Theorem, there is
M > 0 such that | ̂ Qm+1P^{σ%)x, x'> | ^ Mel for all x e B, xf e B', and i.
Consequently, | <^Qm+1P^{σ)x, xfy \ ̂  Σ i Mε\ ̂  M(μ2(σ) + ε) for all xeBt

and x'eB'. Since ε is arbitrary, we are done.
We now denote by gXyX> the Radon-Nikodym derivative of μQm+ix,xr

with respect to λ. I f / a n d g are two elements of B°°(C) which agree
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λ-almost everywhere, then for all x e E, x' e E\ we have

- g)gXfXdx = 0 .

Hence UfQ
m+1 = UgQ

m+1. Moreover, if {fn} is a sequence of simple
functions which converges to / in Li(C), then UfnQ

m+1 is a sequence
which converges in J2f(E, E) to an operator which we denote by

UfQ
m+1. In this case <UfQ

m+1x, xf> = \ fdμQm+ix>x,.
JO

We have already seen that Qm+2 = 0. If we now assume Qm+1 Φ 0,
by letting σ = supj^, we see that for some x, x', μQm+iX)X>(σ) Φ 0.
Consequently there is a set τ, compact if necessary, with nonvoid
interior and a number a > 0, such that λ(r) Φ 0 and | gx>x>(z) I > a for
all zeτ.

These two constructions are the basis for the embedding proce-
dures mentioned above. The basic idea is to assume E has some
property which is inherited by all of its closed linear subspaces. Then,
if Qm+1 Φ 0, we may embed a suitable space (perhaps an L^-space) in
E or Er which does not have the property, thus obtaining a contra-
diction. In a written communication, McCarthy has suggested that
C(τ) would be better than the L^τ) used in his paper for the case
where E is assumed weakly complete. As an indication of some
of the details involved in such a construction, we prove here the
following:

THEOREM 5. // E is semi-reflexive, then Qm+1 = 0.

Proof. As indicated, we assume Qm+1 Φ 0 and construct τ and a
corresponding to some xOf x'o. Define Φ: L^τ) —> E by the formula

Φ(f) = U,φτQ~+1x0 .

Fix ε > 0 and let B' be an arbitrary equicontinuous subset of E'.
Then for any x'eB',

where N is chosen according to Theorem 4 with B — {x0}. Thus
\<Φ(f)fx

fy\<ε for all x'e B' whenever | / | Z l < ε/N. Since B' is
arbitrary, Φ is continuous. To see that Φ is one-to-one, first define
/* for each / in L%τ) by

)' when f{z) ψ ° '
when f(z) = 0 .
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Then /* is in JB°°(C) SO that we may define y' = *([ j
Then <Φ(f), y'y = J ff*d\ = J Jf\ dx = | / | I l ( r ) . Thus the kerne/ of
0 is zero. To show that Φ~x is continuous on the range of Φ it is
sufficient to find, for each ε > 0, an equicontinuous set B' in Ef such
that | / | X l < ε whenever \<Φ(f),x*y\ ̂  ε for all x'eB'. The set

is an equicontinuous subset of j£f(E9 E). Consequently the set B'
{1AXQ : Ae B} is equicontinuous in Ef. Finally,

(r, = j

S sup | <Φ(f), <Axo> | = sup
A€B %'GB'

Consequently, ΦiL^τ)) is a closed linear subspace of E which is iso-
morphic in both algebraic and topological sense to L^τ). This contra-
dicts the assumption that E is semi-reflexive, hence the Theorem is
proved.
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