
B* ALGEBRA UNIT BALL EXTREMAL POINTS

PHILIP MILES

Results of Kadison [3] and Jacobson [2] are combined to show
that the points described by the title are unitaries, left shifts, right
shifts, or sums of these. The extremality property is preserved by
homomorphisms; conversely, when range and domain are AW* algebras,
every extremal point of the range has an extremal point in its pre-
image. Exact formulations of these results and of a few simple
consequences are given in section one; proofs follow in section two.

In what follows, A will be a self-ad joint subalgebra of some B*
algebra; "x is extremal (A)" will mean that x is an extremal point
of the unit ball of A with respect to the B* norm indicated by the
context; "weak topology" will mean the weak operator topology with
respect to the representation of A by bounded operators on a Hubert
space which is indicated by the context.

1. Theorems. Our starting point is a formula due to Kadison
([3], Theorem 1). In a mildly generalized form, his result is:

THEOREM 1. Let A be a self-adjoint subalgebra of some B*
algebra B. Then x is extremal (A) if and only if

(1 - x*x)A(l - xx*) = {0} .

Here " 1 " stands for the identity of A if there is one; otherwise
the meaning of the equation is to be found by performing the indi-
cated multiplications for each y e A. It turns out (Theorem 2) that
the existence of any element extremal (A) implies that A has an
identity.1

An obvious consequence of this formula is the perseverance of
extremality. Calling "reasonable" any linear topology making involu-
tion continuous, and multiplication continuous in each variable
separately, we have:

COROLLARY ( i ) // A is the closure of A in B with respect to
a reasonable topology, and if x is in A, then x is extremal (A) if
and only if x is extremal (A).

(ii) If φ is a *-homomorphism of A into a B* algebra Blf then
x extremal (A) implies that φx is extremal (ΦA).

Using the methods of [2], one can draw substantial information
about the form of an individual extremal element from Theorem 1.

Received February 14, 1963. Supported by NSF Grants G-14362 and G 19050.
1 This has already been proved by Sakai [5, p. 1.3]
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THEOREM 2. Let A be a self-adjoint subalgebra of the algebra
&(H) of all bounded operators on the Hilbert space H. Let x be
extremal (A). Then

( i ) A has an identity1, which we now take to be the identity
operator on H—thus possibly changing the meaning of H.

(ii) x satisfies one of the following
(a) x is unitary
(b) x is semi-unitary—i.e., exactly one of xx*, x*x is the

identity
(c) There is a projection p such that px and (1 — p)x are

semi-unitary on pH and (1 — p)H respectively. Further,
p can be taken from the center of the weak closure of A
or, if A is AW*, from the center of A.

(iii) If x is a semi-unitary with xx* = 1, then
(a) H = 2o° Θ Hi where x is an isometry of Ho onto HQ and

of Hi+1 onto Hi (i ^ 1), and maps Hx onto zero.
(b) Let X be the left shift on unilateral l2. The map taking

a polynomial in x and x* into the same polynomial in
X and X* induces a *-isomorphism from the uniformly
closed subalgebra of ^(H) generated by x and x* onto
the uniformly closed subalgebra of &(l2) generated by X
and X*.

(c) The weakly closed subalgebra W of &(H) generated by
x and x* is naturally *-isomorphic to &(l2) © Z, where
Z is the weakly closed subalgebra of ^?(H) generated by
x and x* restricted to Ho. Z + 1 is the center of W.

Clearly there is a restatement of (iii) applying to semi-unitary
operators with x*x = 1; in it X is the right shift on l2, and x maps
Hi onto Hi+1 for all i ^ 1. It is also clear that (iii) can be applied
separately to the components px and (1 — p)x of an element satisfying
(iic). For example, the uniformly closed algebra generated by such
an element is *-isomorphic with the uniformly closed subalgebra of
&(l* Θ h) generated by ux + u*, where ux is the left shift on the
first l2, zero on the second, and u2 is zero on the first l2, the left
shift on the second.

Part (iii) gives us three ways of looking at a semi-unitary
element. With regard to the uniformly closed, self-adjoint subalgebras
they generate, all semi-unitaries are the same. From the standpoint
of weakly closed algebras, semi-unitaries differ only in their unitary
parts. Viewed spatially—i.e., as representing a similarity class—a
semi-unitary is determined by its unitary part and the dimension of
its (or its adjoint's) null space. In the light of (iiia), Putnam's
result that similar normal operators are unitarily equivalent is easily
seen to imply that similar semi-unitary operators are unitarily equiva-
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lent. Another method of classifying extremal elements is considered
in [3].

Calling a projection p infinite (A) if there is a partial isometry u
in A with uu* = p9 u*u φ p, u*u g, V, we see that each projection p
which is infinite (A) gives rise to at least one semi-unitary, viz.
u + (1 — p). Conversely, the existence of a semi-unitary implies the
existence of a projection infinite (A), viz 1. Elements of type (iic)
are similarly related to projections p in the weak closure of A having
the property that p and 1 — p are both infinite (weak closure A).

Clearly the study of extremal points will be most rewarding
when they exist in substantial number. We have seen that when an
identity is lacking, there are no extremal elements. It is well known
that iΐ A is a B* algebra with identity, there are enough unitaries
so that every element of A is a linear combination of four of them.
But much more can be asked—namely, that the unit ball be the
(somehow) closed convex hull of its extremal points. This fails to
happen for the general B*-algebra. An exercise in Bourbaki shows
that if A is a weakly closed subalgebra of 3?{H), then A is the
weakly closed convex hull of its extremal points; the proof may be
written "Alaoglu: Krein-Milman."

The weakly-closed, or similar, situation has another useful fea-
ture; restating an argument of Calkin ([1], proofs of Theorems 2.4
and 2.5) we obtain:

THEOREM 3. // A is an AW* algebra, Φ a*-homomorphίsm of A
into a B* algebra, and y a point extremal (ΦA), then there exists
an x extremal (A) with φx = y.

As an application of this theorem, we consider how the type (in
the sense of [4]) of an AW* algebra determines the type of an A"FF*
homomorphic image.

THEOREM 4. Let A, B be AW* algebras, with B the image of
A under some non-trivial *-homomorphism. Then

( i ) A of type In implies B of type In

(ii) A of type Πx implies B of type IIX

(iii) A of type 11^ implies B of type 11^ or III
(iv) A of type III implies B of type III
(v) A of type 1^ implies B of type .L, 1/ ,̂ or III.
It is likely that another attack would produce a substantially

improved theorem in this direction.

2. Proofs*

Proof of Theorem !• The proof of [3] may be modified to apply
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in the case where A is not closed, nor known to have identity. In
fact, let x be extremal (A). Letting h = x*x, we observe that
0 ^ σ(h) ^ 1, where σ(h) is the spectrum of h in the closure of A.
Let C be the intersection with A of the uniformly closed subalgebra
generated by h. Then C is isometrically*-isomorphic with an algebra
of continuous, complex valued functions on σ(h). Further, C contains
8 = h(l - h)\

We desire to show the inequality

In view of the identification of C with a function algebra, this reduces
to showing that for real t between zero and one,

o ^ «[i + ί(i - tyγ ^ i .

This is obvious when the ambiguous sign is minus; when it is plus,
the expression in t may be expanded as a convex combination of
points obviously in [0,1],

We thus have || x(l ± s) || ^ 1. Writing x = (l/2)[(cc + xs) + (x- xs)]
and using the extremality of x, we have xs — 0 and so sx*xs = 0—
i.e., h\l — hy = 0. Again viewing C as a function algebra, we con-
clude from the last equation that the function h assumes only the
values zero and one, so h is a projection and x a partial isometry.

Thus if y e (1 — x*x)A(l — xx*), then y = (1 — x*x)y(l — xx*)
and so xy — yx — 0. It follows that || x ± y* ||2 = || x*x + yy* \\ =
max (|| x*x\\, \\yy* | | ) . Assuming that \\y\\ ^ 1, we have || x ± y* \\ = 1
and so, by the extremality of x, y* = 0.

The converse, that an x giving (1 — x*x)A(l — xx*) = 0 is extremal
(A), is proved in [3]; it also follows from Theorem 2, which is based
entirely on the equation (1 — x*x)A(l — xx*) = 0.

Proof of Theorem 2. Suppose x satisfies

( 1 ) (1 - x*x)A(l - xx*) - 0

then, since A is self-adjoint, x also satisfies

( 2 ) (1 - xx*)A(l - x*x) = 0 .

For each y in A we have, by (1),

(1 - x*x)(l - xx*)yy*(l - xx*)(l - x*x) = 0 ,

and so (1 — x*x)(l — xx*)y = 0. Performing the indicated multiplica-
tions, we obtain

(x*x + xx* — x*x2x*)y — y .
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The same argument may be made with x permuted with x* and y
permuted with y*; the result is that x*x + xx* — x*x2x* is also a
right identity for A. As previously agreed, we consider this element
to be the identity operator on H, and denote it by " 1 " .

We must now show that (1) implies part (ii) of the theorem.
Observe first that (1) implies

0 — (1 — x*x)x*(l — xx*)x = (x* — x*xx*)(x — xx*x) ,

and so, that x is a partial isometry.
We next show:

xkχ*m(l - χ*x) = x*m-k(l - x*x)
( 3 ) 0 < k < m .
V ' x*kχm(l - xx*) = x™~k(l - xx*) - -

The first line of (3) may be rewritten as

(1 - xkx*k)x*n(l - x*x) = 0 k^O, n^O

and this equation established by induction on k. It clearly holds for k = 0
and, by (2) for k = l. Writing l-xk+1x*k+1 as (1 - xkx*k) + xk(l - xx*)x*k,
we see that the induction hypothesis reduces the previous equation
to:

xk(l - xx*)x*k+n(l - x*x) = 0

but this is already true by (2). The second line of (3) is proved in
the same way, using (1) in place of (2).

That x is a partial isometry, together with (3), gives

< 4) xkx*m(l - x*x) = x*kxm(l - xx*) = 0 0 ̂  m ̂  k .

We can now copy the argument of [2]. Define ei9fi by

ei - α?**-1^"1 - x^x*

fi = x^x**-1 - xW* i ^ 1 .

It follows that, for all i, j ^ 1,

e^i = δifis i fifj = δijfj

βi = 0 if and only if βx = 0 , /* = 0 if and only if / x = 0
βifj = 0 .

These relations are immediate consequences of (2), (3), (4), and the
fact that x is a partial isometry. We suppose for a moment that A
is an AW* algebra. Let

? = V Γβ4 , r = V Γ/4 ,
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the supremum being that given by the AW* character of A. Then
for any y in A, ye{ = 0 for all i implies yq = 0, and similarly for yfi

and yp. For any i and j ,

fiAβj = x^O- - xx^x^^Ax*3'-1^ - x*x)xj~1 = 0

by (2). From what we have just said, this implies rAq = 0.
Now consider the left annihilator of Aq. Since A is AW*, the

annihilator can be written as Ap for some projection p in A. It is
easily shown that, since Aq is a left ideal, p is central in A. We
thus have

(1 - p)q = q(l - p) = q

and, since rAq = 0, r is in Ap—i.e.,

pr = rp = r .

By definition, r/x = f,r = Λ; thus, pΛ = 2>(r/x) = (pr)/! = flf and

so,

p( l — xx*) = 1 — a%e* = (1 — ##*)p .

Rearranging terms,

xx*(1 — p) = (1 — p)a%c* = 1 — p .

On the other hand, βi = qeu so (1 — p)e1 = (1 — j>)?βi = βlf and

(1 — p)x*x = (1 — p) — βx .

Thus (1 — p)x is semi-unitary in (1 — p)A, and unitary just in case

eλ = 0.

In the same way, we show

x*xp = pα?*α; = p

p - ra*p = fτ,

so p^ is semi-unitary in pA, unitary just in case fλ = 0.
This proves (ii) when A is AW*; the statements about the case

where A is a self-adjoint subalgebra of &(H) follow on observing
that the weak closure of A is A IF*.

To obtain (iii), observe that if x is semi-unitary with xx* = 1,
then x satisfies (1), and we may define elements et in terms of x as
above (the /; are of course all zero in this case). Define the spaces
B* of (a) by

ί(l - q)H ί = 0
1
 UH ί > o .
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We observe from (3) t h a t xeτ = 0, xe{ = e^x for i > 1—so

x*xe{ = e{ for i > 1. Consequently for any ξ,ηe H, i > 1

Since H= xx*HS-xH, x{e,U) = e^
Further,

= (eg, efl) .

- q)ξ, x(l - g)i?) - ((1 - ei)(l - ί)f, (1 - q)η) = ((1 - q)ξ, (1 -

and

(x(l - q)ξ, e{η) - (x*(l - q)ξ, ety) = 0 ,

so x and x* take iίo into itself—and so, since x* is never zero, x
takes Ho onto itself. Part (a) is now established.

To show (δ), identify l2 with a subspace of if by picking
some ξ in ίζ. with \\ξ\\ = 1 and identifying the sequence {̂ } in Z2

with ΣΎjiX*^. The restriction map is now clearly a*-isomorphism,
from the algebra of polynomials in x and x* onto the algebra of
polynomials in X and X*; it remains only to prove that this map is an
isometry. We know from [7] §2, that certain algebras with involution
have a unique .B* norm: a sufficient condition is that the algebra
have a faithful *-representation on some Hubert space, and that for
each z in the algebra there is a real k such that f(z*z) ^ kf(l) for
each functional / on the algebra which is positive on all y*y.

The algebra of polynomials in X and X* has been defined as
being represented on l2, and so satisfies the first part of this condition.
Further, X*kXk - χ**+ijp+i is a projection for each k ^ 0. Thus
if / is any positive functional,

/(I) ^ f(X*X) ^ /(X*2X2) ^ .

It is readily shown that any Y*Y in the polynomial algebra can be
written as ΣakX*kXk—so

f(Y* Y) = Σakf(X*kXk) ^(Σ\ak |)/(1)

for any positive functional /, and the second part of the condition is
also satisfied. Thus there is only one B* norm on the algebra
generated by X and X*, and the norm this algebra inherits from
^?(l2) is the same it gets from ^?(H) via the restriction map.

The isomorphism between the polynomial algebras can be obtained
without considering x to be represented on any space; this is done in
[2]. The isomorphism can be shown isometric by showing that a
polynomial in X and X* has the same norm as the same polynomial
in U and Ϊ7*, U being the (unitary) left shift on bi-lateral l2.
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To prove (c), let {ξl} be an ortho-normal basis for Hlf and let
ξI = χ*kξl; then {ξa} is an ortho-normal basis for Hk. Let pa be the
projection on the closed linear span of {£*: k = 1, 2, 3, •••}, and τα,β

the isometry of pωH onto p β i ϊ which, for each k takes f* onto ξk

β.
Observe that p* and τa>β commute with x and x*. Consequently, if
w e W, then w commutes with all τΛ,β. It follows that there exist
scalars vitj such that, for any a,

Suppose z commutes with x and x*. The equations

(zξi, H) = (^*i"1ft, x*3'-1^) = (^i-1»*<-1fi, ft) = (*S, ^-^^'^ft)

show that

0 i Φ j

a,ft) * = 3.

In other words, there exist scalars XΛtβ such that for each i,

( 6 ) zξi = Σβk^ξl .

Further, if p0 is the projection on Ho, then z commutes with p0.

Now, given any w commuting with p0 and satisfying (5), it
follows from (6) and the fact that the ξi span Ht that (1 — po)w
commutes with every z which commutes with x and x*. Since every
element of W commutes with p0, we have (1 — p0) W isomorphic to
&(l2) under the correspondence obtained naturally via (5). Clearly
p0W is isomorphic to Z, and the proof of (c) complete.

Proof of Theorem 3. The first step is to show that, under the
conditions of the hypothesis, the pre-image of a partial isometry
contains a partial isometry. The proof follows an argument of
Calkin [1, Theorems 2.4 and 2.5].

Let y be a partial isometry of B, and let v be any element of
Φ~~\y) Since A is AW*, v has a polar decomposition in A—i.e.,
there are elements u and h in A such that

u is a partial isometry

h = (v*v)112 = u*uh = hu*u

v = uh

(see [6], Lemma 2.1).
Since Φ(h2) is a projection, zero and one are in the spectrum of

Φ(h2). Since Φ is a homomorphism, the spectrum of Φ(h2) is contained
in the spectrum of h2. Since h ^ 0, this implies that zero and one
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are in the spectrum of h. Let pλ be the resolution of the identity
for h given by the spectral theorem, let 0 < a < 1, and let q = 1 — pΛ.
Then 0 Φ q Φ 1.

Let C be some maximal commutative, self-adjoint subalgebra of
A containing 1 and h—and so q as well. Let x —» x be the Gelfand
representation of C on C{Ω), the algebra of all continuous, complex-
valued functions on Ω, the (compact, Hausdorff) maximal ideal space
of C. By definition,

q(ω) = 0 implies (1 — h)(co) ̂  1 — a

q(ω) — 1 implies (1 — h){ω) ^ 1 — a .

We now assert that there exist self-adjoint r, s, and ί in C such
that

q , /&(1 + /φg = q

(1 - /*2)£(1 - q) = 1 - q .

Since the Gelfand representation is a *-isomorphism, this is equivalent
to asserting that there are real valued functions r, s, and t in C(Ω)
such that

f (ω) = h~ι(ω) when ^(ω) Φ 0 ,

s(ω) = [h(l + Λ;)]-1 when g(ω) Φ 0 ,

?(α>) - [1 - h2Y\ω) when (1 - q)(ω) Φ 0 .

But h~x and [A(l + h)\~λ are bounded and continuous on the
closed set {ω : h(ω) ^ α}, which contains the set (ω : q(ω) Φ 0}, and
[1 — fe2]"1 is bounded and continuous on {ω : (1 — h)(ω) ^ 1 — a}, which
contains the set {ω : (1 — q){ω) Φ 0}. The existence of f, s, and t is
therefore guaranteed by the Tietze extension theorem.

qu*uq = qrhu*uhrq = qrh2rq = g ,

so t̂ g is a partial isometry. Since ^v is a partial isometry, %/& — uh?

is in kernel Φ. Therefore

uh(l - g) = w(l - ft)Λ(l + Λ)ί(l - q)

= u(h - hηt(l - q) ,

which is in kernel φ. Also,

- h)q = ^(1 - h)h(l + h)sq

which is in kernel Φ. Therefore uh — uq = uh(l — q) — u(l — h)q is
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in kernel Φ, which gives the desired result.
We can now show that if y is extremal (B), then Φ"\y) contains

an element extremal (A). For let v be any partial isometry in Φ~\y).
The fundamental comparability theorem for AW* algebras—e.g., [4],
Theorem 5.6—says that there exist central projections el9 e2 in A
such that

ex(l — v*v) ^ e-SX — vv*)

e2(l — v*v) ^ e2(l — vv*)

eλ + e2 = 1 .

In other words, there are partial isometries w and z in A such that

w*w = eλ(l — v*v) , ww* ^ βx(l — vv*)

z*z = e2(l — vv*) , zz* ^ e2(l — v*v) .

The first equation implies 0 = vw*w, and so vw* — wv* = 0; it also
gives w*w(l — eλ) = 0, and so we1 = eλw — w. The first inequality
gives 0 = e±v*(l — vv*)ww* = v*ww*, and so v*w — w*v = 0. Similarly,.

vz = zv — 0 and e2z — ze2 — z. Define uλ and u2 by

ux — exv + w , u2 = e2v + z* .

We have at once from the preceding equations that

u*ux — eλ , u-βγ = e1n1 — e1

iλj2ιΛι2 — XJ2 , fΛ/2C>2 — \J2IΛJ2 — \J2 .

Since Φ(v) is extremal (Φ(A)), (1 — v*v)A(l ~ vv*) is contained in
kernel Φ; in particular, (1 — v*v)w(l — vv*) is in kernel Φ, but
(1 — v*v)w(l — vv*) — w = uλ — βLv. Thus uλ ~ eλv is in kernel Φ.

Similarly u2 — e2v is in kernel Φ. Consequently (uλ + u2) — v is in
kernel Φ. We have already seen that ux + u2 is an extremal point
of A.

Proof of Theorem 4. All algebras mentioned are assumed to be
AW*. The terminology is taken from [4],

The case where A is of type In follows at once from the defini-
tions—i.e., A is of type In if and only if it has matrix units eijf

1 ^ if j ^ n, with all eu being Abelian projections. But the properties
of being a set of matrix units, or an Abelian projection are both
preserved by homomorphisms.

Note that if p is a projection infinite (A), and φ a, * homomorphism
of A into a B* algebra, then φ(p) is either zero or infinite φ{A).
For if p — p1 + p2 with p ^ pλ — p2 and φ(p) Φ 0, we have one of
<P(Pi)f <P{ί>ύ Φ 0; say φ(pλ). Then φ(p2) < <p(p), φ(p2) - <p(p), and so
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φ(p) is infinite. (We thank the referee for supplying this argument
to replace one which was somewhat grandiose.) In consequence, the
homomorphic image of an algebra of infinite type is again of infinite
type or else zero. An easy consequence of the first part of the proof
of Theorem 3 is that each projection in the image algebra comes
from a projection in the pre-image. This, with the previous remark,
shows that the image of an algebra of Type III is again of Type III.

Conversely, the image of an algebra of finite type is again of
finite type; for an AW* algebra is of finite type if and only if all
its extremal elements are unitary. By Theorem 3, the latter property
must be inherited by any homomorphic image.

LEMMA. If q is an abelian projection of B, there is an abelian
projection p of A with Φp = q.

Proof. As we have noted, the proof of Theorem 3 can be used
to find a projection p0 of A with ΦpQ — q. Consider the AW* algebra
p0Ap0. We know from [4], that any AW* algebra can be written as
a direct sum of two ideals, the first of which is a 2 x 2 matrix
algebra, and the second of which is commutative. Thus we have

p0Ap0 =- AX®A2

Λ a 2 x 2 matrix algebra, A2 commutative. Thus p0 = pλ + p2, p{ e Aim

Since p2Ap2 is contained in A2f it is commutative—i.e., p2 is an
abelian projection.

We observe that a homomorphism of a n x n matrix algebra
(n ^ 2) into a commutative ring must be zero; for if eiά are matrix
units, φβa = Φeiiβifiji = φe^φe^φe^ — 0. Since Φ is a homomorphism
from p0Ap0 to qBq, this means that Φp0 — Φp2t as desired.

With these observations, the implications of Theorem 4 may be
read on at once.
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