
TRANSFORMATIONS OF DOMAINS IN THE PLANE AND
APPLICATIONS IN THE THEORY OF FUNCTIONS

MOSHE MARCUS

In this paper we shall consider a family of transformations Sn

(n = 1, 2, •) operating on open or closed sets in the complex plane s
Sn is defined relatively to a fixed point called the center of transfor-
mation, and it transforms an open set into a starlike domain which,
for n > 1, is also %-fold symmetric with respect to this point. There-
fore, for n > 1, Sn may be classified as a method of symmetrization.
This method of symmetrization was already defined by Szego [4] for
domains which are starlike with respect to the center of transformation.

The definition of Sn will be extended (in the way usually used
for symmetrizations) so that Sn will operate also on a certain class of
functions and a family of condensers, in the plane. It will be proved
that Sn diminishes the capacity of a condenser and this result will be
used in order to obtain certain theorems in the theory of functions.

1. Definitions and notations. The transformations Sn are defined
as follows.

DEFINITION 1. Let Ω be an open set in the plane z, which does
not contain the point at infinity, and let z0 be a point of Ω. If
I z — so| < p, (0 < p), is a circle contained in Ω, we define:

p(φ) = \2 ^ ) = ' d ΐ

r

where \z — zo\ = r and

E = {z\zeΩ,\z - s01 > />, arg (s - s0) = ^}

( 2 ) ^ P % ) ( ^ ) = — ΣsLlφ +
n fc=o \ ^

Evidently, R{n)(φ) does not depend on p.
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614 MOSHE MARCUS

Now, the set obtained from Ω by the transformation Sn = Sn(z0),
with center z0 is defined as follows:

( 4) SnΩ = {z | z - z0 = reiφ

y 0 ^ r < R{n)(φ), 0 ^ φ < 2π} .

If instead of Ω we have a compact set H, which has an interior
point z0, we define:

(4') SnH ={z\z-zo = reiφ, 0 ^ r ^ R{n\φ), 0 :S Ψ < 2π} .

It is easily verified that SnΩ is a simply-connected domain and
that SnH is a connected compact set. Both sets are starlike with
respect to z0.

We shall extend the definition of Sn over a family of functions
& which will now be defined. A non-constant real function g(z)
belongs to ^ if it is continuous over the extended plane z, if it takes
its maximum value at infinity and if its minimum is assumed on a
set of points, the interior of which is not empty. Let g(z) be a
function of *& and let m and M be its minimum and maximum values,
respectively. We define the following sets:

(Gc = {z | g(z) < c} , for m < c ^ M .

Gc (for m < c < M) is an open bounded set while Gm is a compact
set. Let z0 be an interior point of Gm and suppose that the circle
| z — zQ | g p, (0 < p), is contained in Gm. Denote by Lp(c, φ), L{

p

n)(c, φ),
R{n){c,φ) the functions defined by (1), (2), (3) with Gc replacing Ω.
Clearly, for a fixed φ, Lp(c, φ) is strictly monotonic increasing, for
m ^ c gΞ M. We also have:

Km Lp(c, φ) = Lp(d, φ), for m < d ^ M
( 6 )

lim Lp(c, 9) = Lp(m, p) .
c—>m

Let S« = Sn(z0). From these properties of Lp(c, φ), it follows that:

( 7 )

( 8 )

( 9 )

Since Gc S

(10)

l\c<d<M '

SnGc

SnGm

τd w e

sβc

= J J ίb̂ Grrf ,

— 1 1 O.>,VJΓΛ

also have:

, s n snGd,
c<d<M

for m tί c < d

for m < c

<M.

DEFINITION 2. Let g(z)e^. Using the notations introduced
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above, we define the function g{n\z) obtained from g(z) by the trans-
formation Sn = Sn(z0), as follows:

(11) Sj, = g«(z) = \ i D t {

[M, otherwise .

From (8) and (9) we now conclude:

SnGc = {z | g{n\z) < c} , for m < c ^ M ,
(12)

2. A lemma concerning the function g{n)(z).

LEMMA 1. The function g{n)(z) is continuous over the extended
plane z. If moreover g(z) is Lip on every compact subset of GM

λ then
g{n)(z) is Lip on every compact subset of SnGM.

Proof. We begin by proving the continuity of g{n)(z). If z* e SJ2m

and g{n)(z*) = d>m then by (10) and (12), the set SnG%+s - SnGU
(where m < d* — ε < c £ * + ε < M ) i s an open neighbourhood of z* in
which | g{n)(z) - g{n)(z*) | ^ ε. If z* belongs to SnGm or z* belongs to
the complement of SnGM, then the set SnGm+s(m < m + ε < M), and
the complement of SnGM-s(m < M — ε < M) respectively, are open
neighbourhoods of z* in which | g[n\z) — g{n)(z*) | ^ ε.

In order to prove the second assertion of the lemma it is sufficient
to show that g{n)(z) is Lip on every set SnGc(m < c < M). Without
loss of generality we may suppose that z0 = 0 and that p = 1. (And
in this case we shall write L{n)(c, φ) instead of L[n){c, φ).) We now
map the z plane, cut along the positive real axis from zero to infinity,
by a branch of w = log z, (w = u+iv), onto the strip 0 < v < 2π. (The
points of the positive real axis will be mapped both on v = 0 and
v = 2π). We denote by He and H? the images of Ge and SnGc by this
mapping, and we put h(w) = g(ew) and h{n)(w) = g{n)(ew).

Let c be a fixed number in the open interval (m, M). Since g(z) is
Lip on Ge, the function h(w) is Lip on Hc, and if it is shown that
h{n)(w) is Lip on ίZ?, the required result follows.

Since h(w) is Lip on Hc, there exists a number p > 0 such that:
I h(wύ — h(w2) | ^ p | wx — w21, for any wl9 w2 e Hc.

We need the following assertion:
If δ is a positive number and vlf v2y clf c2 are real numbers such that:

(13) | vλ — v21 < δ, m < cλ < c2 — pδ < c — pδ ,

1 A function g(z) is Lip on a set E if there exists a constant p, such that for any
t w o p o i n t s zi, ziG E, w e h a v e | g(zί) — g(zz) \ ^kp\zχ — Zι\.
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then

(14) L™(c2, v2) 2: L™(cu vj + [δ2 - (vx - O 2 ] 1 / 2 .

Because of the definition of L{n)(c, v), it is enough to prove (14) for
n = 1. Without loss of generality we may suppose that 0 ^ vk < 2π,
(fc - 1, 2).

Denote by Jk the intersection of the half line Imw = vk, Rew^O,
with the set HCk, for k = l,2. The Lebesgue measure of Jk is L{ck,vk).
Using (5) and (13) the following is easily verified:

Let wxe Jλ. If w2 — u2 + iv2, u2 ^ 0 and \w1 — w2\ ^ <?, then
^ 2 e J 2 From this and the fact that Jλ is bounded on the right, (14)
follows for n = 1.

It will now be shown that

| h{n){w') - h{n){w") | g p | w' - w/f | , for any w', w" e fl? .

Suppose that there are two points w19 w2 in ίίc

w for which this ine-
quality does not hold, and let δ be a number such that:

(15) | h™(wj - h{n)(w2) | > pδ > p \ wλ - w2 \ .

Let h[n){w~) < h{n)(w2). Then we can find numbers c19 c2 such t h a t :

(16) m S h^iwj < cx < c2 - pδ < h{n)(w2) - pδ < c - pδ .

Now the numbers cl9 c2, vx = /mtϋi, ^2 = / m ^ satisfy (13), and therefore
inequality (14) holds. Since, for m < c < M,

Hc

n = {w | 0 S Imw ^ 2ττ, fc(w)(^) < c} = {w \ 0 ^ v ^ 2ττ, w < L(w)(c, v)} ,

it follows (by (16)) that wλ e H^ and w2 ί JEί*; hence u^
and ^ 2 = Rew2^ L{n)(c2, v2). These inequalities together with (14) yield
| w1 — w21 > δ, which is in contradiction to (15). This completes the
proof of the lemma.

REMARK. The following is a consequence of the second part of the
lemma: If g(z) is Lip on every compact subset of GM — Gm, then g{n\z)
is Lip on every compact subset of SnGM — SnGm.

3* On a class of functions (C, so) Let C = (D, Eo, E±) be a con-
denser in the complex plane z, i.e. a system consisting of a domain
D and two disjoint closed sets Eo and £Ί, such that D does not contain
the point at infinity, Eo is bounded, Eλ is unbounded and the union
of EQ and Eλ is equal to the complement of D.

Suppose that Eo contains an interior point z0, let z — z0 = rβ^ and
denote by Sφ the ray arg (z — z0) = φ. Then a subclass (C, s0) of ^ is
defined as follows.
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A real function g(z), continuous over the extended plane z, belongs
to (C, zQ) if:

( i ) Q(z) possesses continuous first partial derivatives, in D.
(ii) g(z) Ξ 0 in Eo, g(z) = 1 in JSί and 0 < g(z) < 1 in D.
(iii) The set of points on the ray Sφ, at which g(z) assumes a

given value c (0 < c < 1), is finite.
(iv) Any compact set of points on Sφ, which is contained in D,

contains only a finite number of points (possibly zero) at which
9g(r9 φ)\dr = 0.

Suppose that the Dirichlet problem of the equation Δu = 0, with
continuous boundary values, always has a solution in D. Then there
exists a real function ω(z), continuous over the extended plane z, which
is harmonic in D, vanishes on Eo and assumes the value 1 on Ex. This
function is the potential functions of C. Evidently, it belongs to

( C , So).

Let g(z) e (C, z0). Using property (iii) we find that (6) may be
replaced by

(17) lim Lp(c, φ) = Lβ(c0, ψ\ for 0 ^ c0 ^ 1 .
c-*c0

Therefore in this case, the function g{n)(z) = Sn(z0)g may be defined in
the following way:

|Ό, for r ^ JB(Λ)(0,9>),

(18) g{n)(z) = g{n)(r, <p) = \c, f o r r = R{n)(c, <p),0<c<l,

( l , for r ^ R{n)(l,φ) .

Since, for a fixed φ, g{n){τ, φ) is a strictly monotonic increasing function
of r in the interval i?(w)(0, φ) < r < R{n)(l, φ) and since g{n)(r, φ) is
continuous over the entire plane, it follows that R{n)(c, φ) is continuous
in both variables for 0 < c < 1, 0 ^ φ < 2π.

The following definition extends the transformation Sn over a
family of condensers {C}.

DEFINITION 3. Let C = {D, EQ, Ex) be a condenser in the complex
plane z, such that Eo contains an interior point z0. Put Gx = D U Eo

and suppose that SA (with Sn = Sn(zQ)) does not contain the entire
open plane. Then, the condenser C{n) obtained from C by the trans-
formation Sn -== Sn(z0) is defined as follows:

where D(n) = SA - SnE0, Ejn) = SnE0 and Eln) = the complement of
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4«. A theorem, concerning the Dirichlet integral of functions be*
longing to (C, z0).

THEOREM 1. Let C = {D, Eo, E^ be a condenser in the complex
plane z, such that Eo contains an interior point z0. Suppose that
g(z) belongs to (C, z0) and that its Dirichlet integral over D is finite.
If Sn = Sn(z0), (n = 1, 2, 3, •), 9{n)(z) = Sng, and D{n) is the domain
mentioned in Definition 3, then:

(19) ( [ (Fg{n))2dxdy ^\\ (Fgfdxdy .

REMARK. This theorem was proved by Szego [4], for n = 2, 3, ,
in the special case where, D is a doubly-connected domain bounded by
two smooth curves which are starlike with respect to zo; Eo and Eλ

are connected sets; and the function g(z) is the potential function of
the condenser C.

Proof. By property (i) of g(z) and by the remark at the end of
Lemma 1 it follows that g{n)(z) is Lip on every compact subset of D{n).
Therefore the first partial derivatives of g{n)(x, y) exist almost every-
where in D{n) and are bounded in every compact subset of D{n).

Without loss of generality we may suppose that z0 = 0 and that
the circle | z | ^ p — 1 is contained in Eo. Again we shall write L{n)(c, φ)
instead of L{

p

n)(c, φ). We also introduce the following notations:

D(a, b) = {z\a< g(z) < b} ,

D{n)(a, b) = {z\a < g{n)(z) < b} , for 0 < a < b < 1 .

The sets D(a, b) and D{n)(a, b) will be mapped by w = log z
on two sets which we denote by H(a, b) and H{n)(a, b), respectively.
Finally we define: h(w) = g(ew), h{n){w) = g{n)(ew) and

7C = {w | 0 < Imw < 2π, h(w) = c} , for 0 < c < 1 .

The proof of the theorem rests on the following inequality:

(20) (( [1 + ε\Fh{n))ψ2dudv ^ (( [1 + ε\Fh)ψ"dudv ,
J Jff(*) (a,b) J jH(a,b)

where w = u + iv, 0 < a < b < 1 and ε > 0.
Inequality (19) is derived from (20) by a standard argument which

we shall briefly describe.
The closures of the sets D(a, b) and D{n){a, b) are compact sets

contained in D and D{n\ respectively. Therefore the first partial
derivatives of h{u, v) (h{n)(u, v)) are bounded in H(a, b) (H{n)(a, 6)). It
is evident from the definitions that the area of H(a, b) equals that
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of H{n)(a, b). Taking into account these facts and using the binomial
expansion of the integrands in (20), (for ε small enough), we obtain:

— (( (Fh{n)γdudv + O(ε4) ^ — (( {Vhfdudv + O(ε4) .
2 JJE'nHa,b) 2 JJH(a,b)

Dividing by ε2 and letting ε tend to zero we find that

[( (Fh{n)γdudv ^ [( {Fhfdudv .

Since the Dirichlet integral is invariant under a simple conformal
mapping, it follows that

(( (Fg{n))2dxdy ^ (( {Fgfdxdy .
JjD^nUa,b) JJD(a,b)

Hence, letting a tend to zero and b tend to one, we obtain the required
inequality.

In the proof of (20) we may suppose that ε = 1.
The first step is the following assertion. Suppose that w* =

u* + iv* e H{n)(a, b) and 0 < v* < (2π/n). Put h{n)(u*, v*) = c*. If
dh/du Φ 0 at all the points of intersection of the set τc* and the lines
Im w — v* + (2πm/n) (m = 0, , n — 1), then there exists a neighbour-
hood of w* in which h{n)(u, v) e C1.

In order to prove this assertion we shall show first that L(c, v) eC1

in a neighbourhood of (c*, v*). By property (iii) the set 7C* intersects
the line Imw = v* in a finite number of points, which we denote by
Wi, , wp, where Rew1<Rew2< < Rewp. By hypothesis, dh/duΦ 0
at these points. Let q be a positive number such that the circles
Kj: | w — Wj | <£ q9 (j = 1, , p), are contained in H(a, b) and dh/du Φ 0
in them. Then the following is easily verified:

There exists a rectangle

P = {(c, v)\\c-c*\^δ,\v-v*\^δ},

(where α < c * - δ < c * + <5<δ, 0 < v* - δ < v* + δ < (2π/n)), such
that:

(a) If (c,v)eP then τ c intersects the line Imw — v in exactly p
points, one point in each circles K3.

(b) The set H(c* - δ, c* + δ) intersects the strip v* - δ < Imw <v* + δ
in exactly p domains Qjf where Q3c:Kjf (j = 1, •••, p).
Solving c = h(u, v) for u in Q3 we obtain a function u = Uj(c, v). This
function belongs to C1 in the rectangle P where

^L = (JILY1 ^L = -f.^^ X / ^ V1

dc \ du / ' dv \ dv J \ du J '
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Since by definition:

(22) ±
3 = 1

it follows that L(c, v) e C^P], We observe that in
(-l)i+1 x \dh/du\ so that

(23) ΘL
dc dc

j we have dh/du =

in P .

Evidently, similar results hold for any of the points c — c*, v =
v* + (2πmln), for m = 0, , n — 1. Therefore it is possible to find
a positive number r]{η ^ 8) such that L{n](c, v) e C1 and (0L{n)ldc) > 0

in the rectangle | c — c* | < η, \ v v* < rj. By (18), for any fixed
v,c = h{n)(u, v) is the inverse function of u = LU)(c, v) in the interval
0 < c < 1. Hence it follows that in a certain neighbourhood of (u*, v*)p

h{n\u, v) e C1 and

(24)
du dc dv \ dv V dc

Denote by A(v) and -Aw(̂ ) the intersections of the line Im w — v
with the sets ϋ ( α , b) and H{n)(a, b) respectively. Let w e A(v) and
h(w) = c, (0 < v < 2π). If at one of the points of intersection of 7C

with the line Imw = v, dh/du vanishes then we shall say that w is a
critical point of A(v). Let w e An(v) and h{n)(w) = c. If the intersection
of 7C with one of the sets A(v + 2πmln), (m = 0, , w — 1), contains,
a crititical point of that set, we shall say that w is a critical point
of An(v). By properties (iii) and (iv) the set of critical points of A(v)
is finite, and consequently, the set of critical points of An(v) is finite..

We shall prove now that

(25) ( [1 + (Fh{1))2]ll2du ^ ( [1 + {Vh)ψ2du ,

for 0 < v < 2π. Inequality (20) for n = 1, follows from (25).
Let vQ be a fixed point in the interval (0, 2π) and let {c19 , ck-^

be the set of values (possibly void) taken by h(w) at the critical points,
of A(v0). We assume that these values are ordered as follows:

a = c0 < cλ < < ck-λ < ck = b .

Denote by Bι that subset of A(v0) which consists of open segments,
free from critical points, such that at the endpoints of each segment.
h(w) assumes the values cL and cι+1. Evidently, for any I (I = 0, , k — 1)
the set Bt is not void and A(v0) = \Jϊlo Bt.

Now let m be a fixed integer, 0 ^ m ^ fc — 1, and denote by al9 , αp,
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the segments contained in Bm, which were described above. We shall
assume that ad is at the left of aj+1, (j = 1, •••, p — 1). In some
neighbourhood of a3- it is possible to solve c = h(u, v) for u and thereby
obtain a function u = u3 (c, v). By (21) we obtain:

(26) ( [1 + (Fh(uf v

for j = 1, ••., p.
Denote: u) = L(c3, v0) and w) = ^ ' + iv0l ( i = 0, , k). Then wf

0

and wj; are the endpoints of Aλ{v^) while ^J, •• ,w'k-1 are the critical
points of Aλ{vQ). Denote by B'm the open segment with endpoints w'mί

w'm+1. By (22) and (24) (with n = 1) we get:

• [i + (FL(C, vo)γγ

(27) JBm JCm

= " h + k Σ (-l)ί+X (c, v0) \\ do .

By (26), (27) and the well known inequality

(/ P \2 / p \2 /p \ 2̂ | 1/2 p

(28) \ Σ *y) + ( Σ 2/i) + ( Σ ίj) ^ ^ Σ (*; + iί} + ί?)1-

(xu y,; tj being real numbers) we finally obtain:

ί [1 + (Phw(u, vo)yγ'2du ^ ί [1 + (Ph(u, vo))ψ'du
(29) J β ; ι Um

v̂
Σ
j = l Jcύj

Since (29) holds for any m, (m = 0, •••,& — 1) inequality (25) follows.
It remains to prove inequality (20) for n = 2, 3, . Since this

inequality is proved for n = 1, it is enough to show that

(30) n x [ [1 + (Fh{n)(u, vo))ψ2du ^ Σ ( [1 +

where 0 < v0 < (2τr/%) and vd = v0 + (2πj/n).
Let {(??, •• ,c?_1} be the set of values (possibly void) assumed by

h{n){w) at the critical points of An(v0), these values being ordered as
follows:

a = c0* < cf < < c*-! < cr* = 6 .

Put < = L(w)(c^, v0) and w*fi = L(c*, vs). By (24) we get:
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+ I[l/+ (Fh{n)(u, vo))ψ2du =

(31) = -i- Π n* + (Σ Flfo ^

i[l + (Fhw(u, v^ψ'du = Γm+1[l + (FL(c, v

for m = 0, , r — 1 and i = 0, , n — 1. From (31) and (28), ine-
quality (30) follows. This completes the proof of the theorem.

5* The transformation Sn diminishes the capacity of a condenser*
Let C = (D, Eo, Ej) be a condenser in the complex plane z, satisfying
the conditions of Definition 3. It will be assumed that the Dirichlet
problem for Fu = 0, with continuous boundary values, always has a
solution in D. (Sufficient conditions for the validity of this assumption
are given, for example, in Hayman [2], Th. 4.2, pp. 63-64. Following
Hayman's terminology we shall say that a domain is admissible if it
satisfies these conditions.) The capacity of the condenser C is defined
as the Dirichlet integral over D, of the potential function ω(z) of Cf

(see §3).
Let CU ) - SnC - (D^\ £ T , E^), (where Sn - Sn(z0)). The domain

DM is admissible so that the capacity of C{n) is defined. We now
prove the following:

THEOREM 2. Let C and C{n) be the condensers mentioned above
and denote their capacities by I and In respectively. Then we have

Proof. Let ω{n)(z) = Snω{*), (Sn = Sn(z0)). Since ω(z) e (C, z0), by
Theorem 1 we have

(32) ( (Fω{n)fdxdy ^ ( {Fωfdxdy - / .

The function ω{n)(z) is continuous over the extended plane z and Lip
in every compact subset of D{n); it vanishes on Eo and assumes the
value 1 on Eλ. Hence, by the Dirichlet minimum principle (see,
Hayman [2], Th. 4.3, pp. 65-67) we have

(33) In SL [ (Fύ){n)fdxdy .

The required result follows from (32) and (33).

We shall apply Theorem 2 in order to obtain a result about the
inner radius. Let D be a domain in the complex plane z, zQ a point
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of D, and r{D, z0) the inner radius of D at z0. (We refer here to the
definition given, for example, in Hayman [2] pp. 78-80, where the
inner radius is defined without any assumptions on D.) The domain
D can be approximated from within by a series of bounded analytic
domains {Dn}, which contain the point z0, such that limΛ_«> r(Dn, z0) =
r(D, z0). (An analytic domain is a domain bounded by a finite number
of disjoint, simple closed, analytic curves.) By a well known method
of Pόlya and Szego (see Pόlya-Szego [3] pp. 44-45; also Hayman [2]
pp. 81-84) the following theorem is obtained as a consequence of
Theorem 2.

THEOREM 3. Let D be a domain in the complex plane z and let
z0 e D. If Sn = Sn(z0), then

(34) r(D, *o) £ r(SnD, z0) .

6 Applications in the theory of functions* In this section we
denote by w = f(z) a function which is regular in | z | < 1 and by D
the domain of all values w assumed by this function at least once in
\z\ < 1. It is known that

(35) | / ' ( 0 ) | g r ( A / ( 0 ) ) ,

equality holding if and only if f(z) is a (1,1) mapping, (see Hayman
[2], Th. 4.5, p. 80).

As a consequence of Theorem 3 we obtain the following:

THEOREM 4. Let Sn — Sn(f(0)) and suppose that SnD does not
contain the entire open plane. Let w = F(z) be a (1,1) conformal
mapping of \ z \ < 1 onto SnD, such that F(0) = /(0). Then we have

Proof. By (35) we get: | /'(0) | ^ r(D, /(0)) and | F'(0) \ -
r(SnD, F(0)). From these relations together with (34), the required
inequality follows.

The following results are based on Theorem 4,

THEOREM 5. Let f(z) = aλz + a2z
2+ •••. Define R[n\φ) as in

Definition 1, for the domain D and the point w — 0. Then,

(36) | a, | ^ $/~jR™{φ) , (0 ^ φ < 2π)

and equality holds for the function

w = ψn(z) = tei{φ+θ)zl(l + einθzn)2ln , (t and θ real numbers) .
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Proof. Let φ0 be a fixed real number and suppose that R{n)(φ0) =
d < co. Denote by Do the domain containing the entire w plane, with
the exception of n rays: arg w = φ0 + (2πk/n), d ̂  | w\, (k = 0, ,π—1).
The domain SnD(Sn = Sn(0)) is contained in Z>0. The function w =
^ΊΓdei<P0/w(s) where

(37) fn(z) = 2/(1 +

maps | z | < 1 conformally, (1,1) onto Do. Therefore, by the principle
of subordination and Theorem 4 it follows that \aλ\ ^ {V £d, and
inequality (36) is proved. The assertion concerning the function w =
ψn(z) is evident.

The following theorem may be proved by the same method.

THEOREM 6. Let f{z) = aλz + a2z
2 + . Suppose that R{n)(φ) ^

M < oo for 0 ^ φ < 2π and that R{n)(φ0) = βM(0 < β S 1). Then

(38) | a, |

equality holds for the function

W =

fn(z) is defined by (37), 0 ^ ^ < 2ττ

We now prove

THEOREM 7. Lei /(s) = aλz + α2a;2 +

(39) Eo = exp

+

define:

27Γ Jo L2
= exp Γ-i- f log

L27Γ Jo

Then \a1\ ̂  RQ, and equality holds for w = aλz.2

Proof. First suppose that w = f(z) is regular in | z \ ̂ 1 and that
f'(z) ψ 0 on
we have

(40) Km

= 1. Then

= lim exp

is a continuous function of 9?, and

P- Σ log
L n =̂0

- Ro ,

for any real φ. Therefore, if a positive ε is given and n is sufficiently
large, the domain SnD (where Sn = Sn(0)) is contained in the circle
I z I < Ro + ε. Hence, by Theorem 4 and the principle of subordi-

_ I C2π
2 The author obtained this result in a weaker form, with rn — — I BίnXφ)dφ instead

ZπJ0

of Ro. (By the geometric-arithmetic mean theorem RQ ̂  rn for every n). The stronger
form written above was suggested by the referee, to whom our thanks are due.
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nation, we get | aλ | g Ro + ε. In order to prove the theorem in the
general case, we approximate the function w=f(z) by functions w =
f(ρz), with 0<p<l.

Let Ω be an open set in the plane z and let zoe Ω. Denote by
m(φ) the linear (Lebesgue) measure of the set E(φ) = {z\aτg(z — z0) =
φ,ze Ω}, and define

(41) m{n)(φ) = — Σ ™{φ +
n k=o \

We shall show that Theorems 5, 6, 7, remain true if R(φ) is replaced
by m(φ), and R{n)(φ) by m{n)(φ). This is a consequence of the follow-
ing inequalities:

(42) R(φ) ^ m(ζP) ,

(42') i?U)(φ) ^ m(%)(^) , for 0 ̂  ^ < 2ττ .

If R(φ) is finite, equality holds in (42) if and only if the set E(φ) is
contained in a segment E* such that E* — E(φ) is a set of measure
zero. (We shall refer to this condition as the MR condition.) Ine-
quality (42') follows from (42) by the geometric-arithmetic mean theo-
rem. Hence, if R{n){φ) is finite, equality holds in (42') if and only if

R{φ) = R(φ + J*fc\ = m{φ) = m(φ + ̂ - ) , (k = 1, , U - 1) .

From this it follows that when we replace R{φ) by m(φ) and R{n){φ)
by m{n)(φ), the functions mentioned at the end of Theorems 5, 6, 7,
are in each case, the only functions for which equality holds.

In order to prove (42) we may suppose that m(φ) is finite. In
this case, for any ε > 0 we can find a subset F of E{φ), consisting
of a finite number of segments, such that the linear measure of
E{φ) — F is smaller than ε. Therefore it is enough to prove (42) in
the case that E(φ) consists of a finite number of segments. Suppose
that these segments are not adjacent. Then, by shifting them toward
zQ (SO that they do not overlap), we increase R{φ), while m(φ) is
invariant. But if the segments are adjacent we have R{φ) = m(φ).
Therefore (42) is proved.

Evidently, the MR condition for E(φ) is sufficient in order that
R(φ) = m(φ). Suppose now that R(φ) is finite and that E(φ) does
not satisfy the MR condition. Then it is possible to find a subset Ft

of E(φ) and a subset F2 of the complement of E(φ) on the ray
arg (z — zQ) = φ, such that the two subsets have equal, positive measures
and F2 separates F1 from zQ. Replacing F± by F2 we increase R(φ),
but not m{φ). Therefore we must have R(φ) < m{φ).
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