TRANSFORMATIONS OF DOMAINS IN THE PLANE AND APPLICATIONS IN THE THEORY OF FUNCTIONS

Moshe Marcus

In this paper we shall consider a family of transformations S_n $(n = 1, 2, \dots)$ operating on open or closed sets in the complex plane z. S_n is defined relatively to a fixed point called the center of transformation, and it transforms an open set into a starlike domain which, for n > 1, is also *n*-fold symmetric with respect to this point. Therefore, for n > 1, S_n may be classified as a method of symmetrization. This method of symmetrization was already defined by Szegö [4] for domains which are starlike with respect to the center of transformation.

The definition of S_n will be extended (in the way usually used for symmetrizations) so that S_n will operate also on a certain class of functions and a family of condensers, in the plane. It will be proved that S_n diminishes the capacity of a condenser and this result will be used in order to obtain certain theorems in the theory of functions.

1. Definitions and notations. The transformations S_n are defined as follows.

DEFINITION 1. Let Ω be an open set in the plane z, which does not contain the point at infinity, and let z_0 be a point of Ω . If $|z - z_0| < \rho$, $(0 < \rho)$, is a circle contained in Ω , we define:

$$(1) \qquad \qquad L_{
ho}(arphi) = \int_{E} rac{dr}{r} \; ,$$

where $|z - z_0| = r$ and

$$E = \{ z \, | \, z \in arDelta, \, | \, z - z_{\scriptscriptstyle 0} \, | >
ho, \, \mathrm{arg} \, (z - z_{\scriptscriptstyle 0}) = arphi \} \; ;$$

$$(\ 3\) \qquad egin{cases} R(arphi) &=
ho \exp\left\{L_{
ho}(arphi)
ight\} \ R^{(n)}(arphi) &= \left[\prod_{k=0}^{n-1}R\Big(arphi+rac{2\pi k}{n}\Big)
ight]^{1/n} =
ho \exp\left\{L_{
ho}^{(n)}(arphi)
ight\} \,.$$

Evidently, $R^{(n)}(\varphi)$ does not depend on ρ .

Received March 28, 1963. This paper represents part of a thesis submitted to the Senate of the Technion, Israel Institute of Technology, in partial fulfillment of the requirements for the degree of Master of Science. The author wishes to thank Professor E. Netanyahu for his guidance and help in the preparation of this work.

Now, the set obtained from Ω by the transformation $S_n = S_n(z_0)$, with center z_0 is defined as follows:

$$(\,4\,) \hspace{1cm} S_n \varOmega = \{ z \, | \, z - z_{\scriptscriptstyle 0} = r e^{i arphi}, \, 0 \leq r < R^{\, {\scriptscriptstyle (n)}}(arphi), \, 0 \leq arphi < 2 \pi \}$$
 .

If instead of Ω we have a compact set H, which has an interior point z_0 , we define:

$$(4') S_n H = \{ z \, | \, z - z_0 = r e^{i\varphi}, \, 0 \leq r \leq R^{(n)}(\varphi), \, 0 \leq \varphi < 2\pi \}$$

It is easily verified that $S_n\Omega$ is a simply-connected domain and that S_nH is a connected compact set. Both sets are starlike with respect to z_0 .

We shall extend the definition of S_n over a family of functions \mathcal{G} which will now be defined. A non-constant real function g(z) belongs to \mathcal{G} if it is continuous over the extended plane z, if it takes its maximum value at infinity and if its minimum is assumed on a set of points, the interior of which is not empty. Let g(z) be a function of \mathcal{G} and let m and M be its minimum and maximum values, respectively. We define the following sets:

(5)
$$\begin{cases} G_m = \{z \mid g(z) = m\} \ , \ G_c = \{z \mid g(z) < c\} \ , \end{cases}$$
 for $m < c \leq M$.

 G_c (for m < c < M) is an open bounded set while G_m is a compact set. Let z_0 be an interior point of G_m and suppose that the circle $|z - z_0| \leq \rho$, $(0 < \rho)$, is contained in G_m . Denote by $L_{\rho}(c, \varphi)$, $L_{\rho}^{(n)}(c, \varphi)$, $R^{(n)}(c, \varphi)$ the functions defined by (1), (2), (3) with G_c replacing Ω . Clearly, for a fixed φ , $L_{\rho}(c, \varphi)$ is strictly monotonic increasing, for $m \leq c \leq M$. We also have:

$$(\ 6\) \qquad \qquad \left\{ egin{aligned} \lim_{c o d^-} L_{
ho}(c,\,arphi) &= L_{
ho}(d,\,arphi), & ext{ for } m < d \leq M\ ; \ \lim_{c o m} L_{
ho}(c,\,arphi) &= L_{
ho}(m,\,
ho) \;. \end{aligned}
ight.$$

Let $S_n = S_n(z_0)$. From these properties of $L_{\rho}(c, \varphi)$, it follows that:

(7)
$$S_n G_c \subset S_n G_d$$
, for $m \leq c < d \leq M$;

(8)
$$S_n G_c = igcup_{m \leq d < c} S_n G_d$$
, for $m < c \leq M$;

$$(9)$$
 $S_n G_m = \bigcap_{m < d < M} S_n G_d$.

Since $\overline{G}_c \subseteq \bigcap_{c < d < M} G_d$ we also have:

(10)
$$S_n \overline{G}_c \subseteq \bigcap_{c < d < M} S_n G_d$$
, $m \leq c < M$.

DEFINITION 2. Let $g(z) \in \mathcal{G}$. Using the notations introduced

above, we define the function $g^{(n)}(z)$ obtained from g(z) by the transformation $S_n = S_n(z_0)$, as follows:

(11)
$$S_n g \equiv g^{(n)}(z) = \begin{cases} \inf \{c \mid z \in S_n G_c\}, & \text{for } z \in S_n G_{\mathcal{U}}, \\ M, & \text{otherwise }. \end{cases}$$

From (8) and (9) we now conclude:

(12)
$$\begin{cases} S_n G_c = \{ z \, | \, g^{(n)}(z) < c \} \;, & ext{for } m < c \leq M \;, \\ S_n G_m = \{ z \, | \, g^{(n)}(z) = m \} \;. \end{cases}$$

2. A lemma concerning the function $g^{(n)}(z)$.

LEMMA 1. The function $g^{(n)}(z)$ is continuous over the extended plane z. If moreover g(z) is Lip on every compact subset of $G_{\mathfrak{M}}^{1}$ then $g^{(n)}(z)$ is Lip on every compact subset of $S_nG_{\mathfrak{M}}$.

Proof. We begin by proving the continuity of $g^{(n)}(z)$. If $z^* \in S_n G_m$ and $g^{(n)}(z^*) = d > m$ then by (10) and (12), the set $S_n G_{d+\varepsilon}^* - S_n \overline{G}_{d-\varepsilon}^*$ (where $m < d^* - \varepsilon < d^* + \varepsilon < M$) is an open neighbourhood of z^* in which $|g^{(n)}(z) - g^{(n)}(z^*)| \leq \varepsilon$. If z^* belongs to $S_n G_m$ or z^* belongs to the complement of $S_n G_M$, then the set $S_n G_{m+\varepsilon}(m < m + \varepsilon < M)$, and the complement of $S_n \overline{G}_{M-\varepsilon}(m < M - \varepsilon < M)$ respectively, are open neighbourhoods of z^* in which $|g^{(n)}(z) - g^{(n)}(z^*)| \leq \varepsilon$.

In order to prove the second assertion of the lemma it is sufficient to show that $g^{(n)}(z)$ is Lip on every set $S_nG_c(m < c < M)$. Without loss of generality we may suppose that $z_0 = 0$ and that $\rho = 1$. (And in this case we shall write $L^{(n)}(c, \varphi)$ instead of $L_1^{(n)}(c, \varphi)$.) We now map the z plane, cut along the positive real axis from zero to infinity, by a branch of $w = \log z$, $(w = u^+iv)$, onto the strip $0 < v < 2\pi$. (The points of the positive real axis will be mapped both on v = 0 and $v = 2\pi$). We denote by H_c and H_c^n the images of G_c and S_nG_c by this mapping, and we put $h(w) = g(e^w)$ and $h^{(n)}(w) = g^{(n)}(e^w)$.

Let c be a fixed number in the open interval (m, M). Since g(z) is Lip on G_c , the function h(w) is Lip on H_c , and if it is shown that $h^{(n)}(w)$ is Lip on H_c^n , the required result follows.

Since h(w) is Lip on H_c , there exists a number p > 0 such that: $|h(w_1) - h(w_2)| \leq p |w_1 - w_2|$, for any $w_1, w_2 \in H_c$.

We need the following assertion:

If δ is a positive number and v_1 , v_2 , c_1 , c_2 are real numbers such that:

(13)
$$|v_1 - v_2| < \delta, \, m < c_1 < c_2 - p\delta < c - p\delta$$
 ,

¹ A function g(z) is Lip on a set E if there exists a constant p, such that for any two points $z_1, z_2 \in E$, we have $|g(z_1) - g(z_2)| \leq p |z_1 - z_2|$.

then

(14)
$$L^{(n)}(c_2, v_2) \ge L^{(n)}(c_1, v_1) + [\delta^2 - (v_1 - v_2)^2]^{1/2}$$
.

Because of the definition of $L^{(n)}(c, v)$, it is enough to prove (14) for n = 1. Without loss of generality we may suppose that $0 \leq v_k < 2\pi$, (k = 1, 2).

Denote by J_k the intersection of the half line $Imw = v_k$, $Rew \ge 0$, with the set H_{c_k} , for k = 1, 2. The Lebesgue measure of J_k is $L(c_k, v_k)$. Using (5) and (13) the following is easily verified:

Let $w_1 \in J_1$. If $w_2 = u_2 + iv_2$, $u_2 \ge 0$ and $|w_1 - w_2| \le \delta$, then $w_2 \in J_2$. From this and the fact that J_1 is bounded on the right, (14) follows for n = 1.

It will now be shown that

$$|h^{(n)}(w') - h^{(n)}(w'')| \leq p |w' - w''|$$
, for any $w', w'' \in H^n_c$.

Suppose that there are two points w_1 , w_2 in H_c^n for which this inequality does not hold, and let δ be a number such that:

(15)
$$|h^{\scriptscriptstyle(n)}(w_{\scriptscriptstyle 1})-h^{\scriptscriptstyle(n)}(w_{\scriptscriptstyle 2})|>p\delta>p\,|\,w_{\scriptscriptstyle 1}-w_{\scriptscriptstyle 2}|$$
 .

Let $h^{\scriptscriptstyle(n)}(w_{\scriptscriptstyle 1}) < h^{\scriptscriptstyle(n)}(w_{\scriptscriptstyle 2})$. Then we can find numbers $c_{\scriptscriptstyle 1},\,c_{\scriptscriptstyle 2}$ such that:

(16)
$$m \leq h^{(n)}(w_1) < c_1 < c_2 - p\delta < h^{(n)}(w_2) - p\delta < c - p\delta$$
 .

Now the numbers c_1 , c_2 , $v_1 = Imw_1$, $v_2 = Imw_2$ satisfy (13), and therefore inequality (14) holds. Since, for m < c < M,

$$H^n_c = \{w \, | \, 0 \leq Imw \leq 2\pi, \, h^{\scriptscriptstyle(n)}(w) < c\} = \{w \, | \, 0 \leq v \leq 2\pi, \, u < L^{\scriptscriptstyle(n)}(c, v)\}$$
 ,

it follows (by (16)) that $w_1 \in H_{c_1}^n$ and $w_2 \notin H_{c_2}^n$; hence $u_1 = \operatorname{Re} w_1 < L^{(n)}(c_1, v_1)$ and $u_2 = \operatorname{Re} w_2 \geq L^{(n)}(c_2, v_2)$. These inequalities together with (14) yield $|w_1 - w_2| > \delta$, which is in contradiction to (15). This completes the proof of the lemma.

REMARK. The following is a consequence of the second part of the lemma: If g(z) is Lip on every compact subset of $G_M - G_m$, then $g^{(n)}(z)$ is Lip on every compact subset of $S_n G_M - S_n G_m$.

3. On a class of functions (C, z_0) . Let $C = (D, E_0, E_1)$ be a condenser in the complex plane z, i.e. a system consisting of a domain D and two disjoint closed sets E_0 and E_1 , such that D does not contain the point at infinity, E_0 is bounded, E_1 is unbounded and the union of E_0 and E_1 is equal to the complement of D.

Suppose that E_0 contains an interior point z_0 , let $z - z_0 = re^{i\varphi}$ and denote by S_{φ} the ray arg $(z - z_0) = \varphi$. Then a subclass (C, z_0) of \mathscr{G} is defined as follows.

616

A real function g(z), continuous over the extended plane z, belongs to (C, z_0) if:

(i) g(z) possesses continuous first partial derivatives, in D.

(ii) $g(z) \equiv 0$ in E_0 , $g(z) \equiv 1$ in E_1 and 0 < g(z) < 1 in D.

(iii) The set of points on the ray S_{φ} , at which g(z) assumes a given value $c \ (0 < c < 1)$, is finite.

(iv) Any compact set of points on S_{φ} , which is contained in D, contains only a finite number of points (possibly zero) at which $\partial g(r, \varphi)/\partial r = 0$.

Suppose that the Dirichlet problem of the equation $\Delta u = 0$, with continuous boundary values, always has a solution in D. Then there exists a real function $\omega(z)$, continuous over the extended plane z, which is harmonic in D, vanishes on E_0 and assumes the value 1 on E_1 . This function is the potential functions of C. Evidently, it belongs to (C, z_0) .

Let $g(z) \in (C, z_0)$. Using property (iii) we find that (6) may be replaced by

(17)
$$\lim_{c \to c_0} L_{\rho}(c, \varphi) = L_{\rho}(c_0, \varphi), \qquad \text{for } 0 \leq c_0 \leq 1.$$

Therefore in this case, the function $g^{(n)}(z) \equiv S_n(z_0)g$ may be defined in the following way:

$$(18) \qquad g^{(n)}(z) = g^{(n)}(r, arphi) = egin{cases} 0, & ext{ for } r \leq R^{(n)}(0, arphi), \ c, & ext{ for } r = R^{(n)}(c, arphi), 0 < c < 1 \ 1, & ext{ for } r \geq R^{(n)}(1, arphi) \ . \end{cases}$$

Since, for a fixed φ , $g^{(n)}(r, \varphi)$ is a strictly monotonic increasing function of r in the interval $R^{(n)}(0, \varphi) < r < R^{(n)}(1, \varphi)$ and since $g^{(n)}(r, \varphi)$ is continuous over the entire plane, it follows that $R^{(n)}(c, \varphi)$ is continuous in both variables for 0 < c < 1, $0 \leq \varphi < 2\pi$.

The following definition extends the transformation S_n over a family of condensers $\{C\}$.

DEFINITION 3. Let $C = (D, E_0, E_1)$ be a condenser in the complex plane z, such that E_0 contains an interior point z_0 . Put $G_1 = D \cup E_0$ and suppose that S_nG_1 (with $S_n = S_n(z_0)$) does not contain the entire open plane. Then, the condenser $C^{(n)}$ obtained from C by the transformation $S_n = S_n(z_0)$ is defined as follows:

$$C^{(n)} = (D^{(n)}, E_0^{(n)}, E_1^{(n)})$$
 ,

where $D^{(n)}=S_nG_1-S_nE_0$, $E_0^{(n)}=S_nE_0$ and $E_1^{(n)}=$ the complement of S_nG_1 .

4. A theorem concerning the Dirichlet integral of functions belonging to (C, z_0) .

THEOREM 1. Let $C = (D, E_0, E_1)$ be a condenser in the complex plane z, such that E_0 contains an interior point z_0 . Suppose that g(z) belongs to (C, z_0) and that its Dirichlet integral over D is finite. If $S_n = S_n(z_0)$, $(n = 1, 2, 3, \dots)$, $g^{(n)}(z) = S_n g$, and $D^{(n)}$ is the domain mentioned in Definition 3, then:

(19)
$$\iint_{D^{(n)}} (\nabla g^{(n)})^2 dx dy \leq \iint_D (\nabla g)^2 dx dy .$$

REMARK. This theorem was proved by Szegö [4], for $n = 2, 3, \dots$, in the special case where, D is a doubly-connected domain bounded by two smooth curves which are starlike with respect to z_0 ; E_0 and E_1 are connected sets; and the function g(z) is the potential function of the condenser C.

Proof. By property (i) of g(z) and by the remark at the end of Lemma 1 it follows that $g^{(n)}(z)$ is Lip on every compact subset of $D^{(n)}$. Therefore the first partial derivatives of $g^{(n)}(x, y)$ exist almost everywhere in $D^{(n)}$ and are bounded in every compact subset of $D^{(n)}$.

Without loss of generality we may suppose that $z_0 = 0$ and that the circle $|z| \leq \rho = 1$ is contained in E_0 . Again we shall write $L^{(n)}(c, \varphi)$ instead of $L_{\rho}^{(n)}(c, \varphi)$. We also introduce the following notations:

$$egin{array}{ll} D(a,\,b) = \{ z \, | \, a < g(z) < b \} \; , \ D^{\, {(n)}}(a,\,b) = \{ z \, | \, a < g^{\, {(n)}}(z) < b \} \; , \ & {
m for} \;\; 0 < a < b < 1 \; . \end{array}$$

The sets D(a, b) and $D^{(n)}(a, b)$ will be mapped by $w = \log z$ $(0 \le Imw < 2\pi)$ on two sets which we denote by H(a, b) and $H^{(n)}(a, b)$, respectively. Finally we define: $h(w) = g(e^w)$, $h^{(n)}(w) = g^{(n)}(e^w)$ and

$$\gamma_{ extsf{c}} = \{ w \, | \, 0 < \mathit{Im} \, w < 2\pi, \, h(w) = c \}$$
 , for $\, 0 < c < 1$.

The proof of the theorem rests on the following inequality:

(20)
$$\iint_{H^{(n)}(a,b)} [1 + \varepsilon^2 (\nabla h^{(n)})^2]^{1/2} du dv \leq \iint_{H^{(a,b)}} [1 + \varepsilon^2 (\nabla h)^2]^{1/2} du dv ,$$

where w = u + iv, 0 < a < b < 1 and $\varepsilon > 0$.

Inequality (19) is derived from (20) by a standard argument which we shall briefly describe.

The closures of the sets D(a, b) and $D^{(n)}(a, b)$ are compact sets contained in D and $D^{(n)}$, respectively. Therefore the first partial derivatives of h(u, v) $(h^{(n)}(u, v))$ are bounded in H(a, b) $(H^{(n)}(a, b))$. It is evident from the definitions that the area of H(a, b) equals that

618

of $H^{(n)}(a, b)$. Taking into account these facts and using the binomial expansion of the integrands in (20), (for ε small enough), we obtain:

$$\frac{\varepsilon^2}{2} \iint_{H^{(n)}(a,b)} (\mathcal{F}h^{(n)})^2 du dv + O(\varepsilon^4) \leq \frac{\varepsilon^2}{2} \iint_{H(a,b)} (\mathcal{F}h)^2 du dv + O(\varepsilon^4) \; .$$

Dividing by ε^2 and letting ε tend to zero we find that

$$\iint_{H^{(n)}(a,b)} (\nabla h^{(n)})^2 du dv \leq \iint_{H(a,b)} (\nabla h)^2 du dv .$$

Since the Dirichlet integral is invariant under a simple conformal mapping, it follows that

$$\iint_{D^{(n)}(a,b)} (arphi g^{(n)})^2 dx dy \leq \iint_{D(a,b)} (arphi g)^2 dx dy \;.$$

Hence, letting a tend to zero and b tend to one, we obtain the required inequality.

In the proof of (20) we may suppose that $\varepsilon = 1$.

The first step is the following assertion. Suppose that $w^* = u^* + iv^* \in H^{(n)}(a, b)$ and $0 < v^* < (2\pi/n)$. Put $h^{(n)}(u^*, v^*) = c^*$. If $\partial h/\partial u \neq 0$ at all the points of intersection of the set γ_{c^*} and the lines $Im \ w = v^* + (2\pi m/n) \ (m = 0, \dots, n-1)$, then there exists a neighbourhood of w^* in which $h^{(n)}(u, v) \in C^1$.

In order to prove this assertion we shall show first that $L(c, v) \in C^1$ in a neighbourhood of (c^*, v^*) . By property (iii) the set γ_{c^*} intersects the line $Im \ w = v^*$ in a finite number of points, which we denote by w_1, \dots, w_p , where $Re \ w_1 < Re \ w_2 < \dots < Re \ w_p$. By hypothesis, $\partial h/\partial u \neq 0$ at these points. Let q be a positive number such that the circles $K_j: |w - w_j| \leq q$, $(j = 1, \dots, p)$, are contained in H(a, b) and $\partial h/\partial u \neq 0$ in them. Then the following is easily verified:

There exists a rectangle

$$P = \{(c, v) \, | \, | \, c - c^* \, | \leq \delta, \, | \, v - v^* \, | \leq \delta \}$$
 ,

(where $a < c^* - \delta < c^* + \delta < b$, $0 < v^* - \delta < v^* + \delta < (2\pi/n)$), such that:

(a) If $(c, v) \in P$ then γ_c intersects the line $Im \ w = v$ in exactly p points, one point in each circles K_j .

(b) The set $H(c^*-\delta, c^*+\delta)$ intersects the strip $v^*-\delta < Imw < v^*+\delta$ in exactly p domains Q_j , where $Q_j \subset K_j$, $(j = 1, \dots, p)$. Solving c = h(u, v) for u in Q_j we obtain a function $u = u_j(c, v)$. This function belongs to C^1 in the rectangle P where

(21)
$$\frac{\partial u_j}{\partial c} = \left(\frac{\partial h}{\partial u}\right)^{-1}, \quad \frac{\partial u_j}{\partial v} = -\left(\frac{\partial h}{\partial v}\right) \times \left(\frac{\partial h}{\partial u}\right)^{-1}.$$

Since by definition:

(22)
$$L(c, v) = \sum_{j=1}^{p} (-1)^{j+1} \times u_j(c, v)$$

it follows that $L(c, v) \in C^{1}[P]$. We observe that in Q_{j} we have $\partial h/\partial u = (-1)^{j+1} \times |\partial h/\partial u|$ so that

(23)
$$\frac{\partial L}{\partial c} = \sum_{j=1}^{p} \left| \frac{\partial u_j}{\partial c} \right|, \qquad \text{in } P.$$

Evidently, similar results hold for any of the points $c = c^*$, $v = v^* + (2\pi m/n)$, for $m = 0, \dots, n-1$. Therefore it is possible to find a positive number $\eta(\eta \leq \delta)$ such that $L^{(n)}(c, v) \in C^1$ and $(\partial L^{(n)}/\partial c) > 0$ in the rectangle $|c - c^*| < \eta$, $|v - v^*| < \eta$. By (18), for any fixed $v, c = h^{(n)}(u, v)$ is the inverse function of $u = L^{(n)}(c, v)$ in the interval 0 < c < 1. Hence it follows that in a certain neighbourhood of (u^*, v^*) , $h^{(n)}(u, v) \in C^1$ and

(24)
$$\frac{\partial h^{(n)}}{\partial u} = \left(\frac{\partial L^{(n)}}{\partial c}\right)^{-1}, \quad \frac{\partial h^{(n)}}{\partial v} = -\left(\frac{\partial L^{(n)}}{\partial v}\right) \times \left(\frac{\partial L^{(n)}}{\partial c}\right)^{-1}$$

Denote by A(v) and $A_n(v)$ the intersections of the line Im w = vwith the sets H(a, b) and $H^{(n)}(a, b)$ respectively. Let $w \in A(v)$ and h(w) = c, $(0 < v < 2\pi)$. If at one of the points of intersection of γ_c with the line Im w = v, $\partial h/\partial u$ vanishes then we shall say that w is a critical point of A(v). Let $w \in A_n(v)$ and $h^{(n)}(w) = c$. If the intersection of γ_c with one of the sets $A(v + 2\pi m/n)$, $(m = 0, \dots, n - 1)$, contains a critical point of that set, we shall say that w is a critical point of $A_n(v)$. By properties (iii) and (iv) the set of critical points of $A_n(v)$ is finite, and consequently, the set of critical points of $A_n(v)$ is finite.

We shall prove now that

(25)
$$\int_{\mathcal{A}_{1}(v)} [1 + (\nabla h^{(1)})^{2}]^{1/2} du \leq \int_{\mathcal{A}(v)} [1 + (\nabla h)^{2}]^{1/2} du ,$$

for $0 < v < 2\pi$. Inequality (20) for n = 1, follows from (25).

Let v_0 be a fixed point in the interval $(0, 2\pi)$ and let $\{c_1, \dots, c_{k-1}\}$ be the set of values (possibly void) taken by h(w) at the critical points of $A(v_0)$. We assume that these values are ordered as follows:

$$a = c_{\scriptscriptstyle 0} < c_{\scriptscriptstyle 1} < \cdots < c_{\scriptscriptstyle k-1} < c_{\scriptscriptstyle k} = b$$
 .

Denote by B_l that subset of $A(v_0)$ which consists of open segments, free from critical points, such that at the endpoints of each segment h(w) assumes the values c_l and c_{l+1} . Evidently, for any l $(l=0,\dots,k-1)$ the set B_l is not void and $A(v_0) = \bigcup_{l=0}^{k-1} B_l$.

Now let m be a fixed integer, $0 \le m \le k-1$, and denote by $\alpha_1, \dots, \alpha_p$.

the segments contained in B_m , which were described above. We shall assume that α_j is at the left of α_{j+1} , $(j = 1, \dots, p-1)$. In some neighbourhood of α_j it is possible to solve c = h(u, v) for u and thereby obtain a function $u = u_j(c, v)$. By (21) we obtain:

(26)
$$\int_{a_j} [1 + (\nabla h(u, v_0))^2]^{1/2} du = \int_{c_m}^{c_{m+1}} [1 + (\nabla u_j(c, v_0))^2]^{1/2} dc ,$$

for $j = 1, \dots, p$.

Denote: $u'_j = L(c_j, v_0)$ and $w'_j = u'_j + iv_0$, $(j = 0, \dots, k)$. Then w'_0 and w'_k are the endpoints of $A_1(v_0)$ while w'_1, \dots, w'_{k-1} are the critical points of $A_1(v_0)$. Denote by B'_m the open segment with endpoints w'_m , w'_{m+1} . By (22) and (24) (with n = 1) we get:

(27)
$$\int_{B'_{m}} [1 + (\nabla h^{(1)}(u, v_{0}))^{2}]^{1/2} du = \int_{\sigma_{m}}^{\sigma_{m+1}} [1 + (\nabla L(c, v_{0}))^{2}]^{1/2} dc$$
$$= \int_{\sigma_{m}}^{\sigma_{m+1}} \left\{ 1 + \left[\nabla \sum_{j=1}^{p} (-1)^{j+1} u_{j}(c, v_{0}) \right]^{2} \right\}^{1/2} dc .$$

By (26), (27) and the well known inequality

(28)
$$\left\{ \left(\sum_{j=1}^{p} x_{j}\right)^{2} + \left(\sum_{j=1}^{p} y_{j}\right)^{2} + \left(\sum_{j=1}^{p} t_{j}\right)^{2} \right\}^{1/2} \leq \sum_{j=1}^{p} (x_{j}^{2} + y_{j}^{2} + t_{j}^{2})^{1/2},$$

 $(x_j, y_j, t_j \text{ being real numbers})$ we finally obtain:

(29)
$$\int_{B'_{m}} [1 + (\nabla h^{(1)}(u, v_{0}))^{2}]^{1/2} du \leq \int_{B_{m}} [1 + (\nabla h(u, v_{0}))^{2}]^{1/2} du \\ = \sum_{j=1}^{p} \int_{a_{j}} [1 + (\nabla h(u, v_{0}))^{2}]^{1/2} du .$$

Since (29) holds for any m, $(m = 0, \dots, k-1)$ inequality (25) follows.

It remains to prove inequality (20) for $n = 2, 3, \cdots$. Since this inequality is proved for n = 1, it is enough to show that

$$(30) \quad n \times \int_{A_n(v_0)} [1 + (\nabla h^{(n)}(u, v_0))^2]^{1/2} du \leq \sum_{j=0}^{n-1} \int_{A_1(v_j)} [1 + (\nabla h^{(1)}(u, v_j))^2]^{1/2} du ,$$

where $0 < v_{\scriptscriptstyle 0} < (2\pi/n)$ and $v_{j} = v_{\scriptscriptstyle 0} + (2\pi j/n)$.

Let $\{c_1^*, \dots, c_{r-1}^*\}$ be the set of values (possibly void) assumed by $h^{(n)}(w)$ at the critical points of $A_n(v_0)$, these values being ordered as follows:

$$a = c_{\scriptscriptstyle 0}^* < c_{\scriptscriptstyle 1}^* < \dots < c_{r-1}^* < c_r^* = b$$
 .

Put $u_m^* = L^{(n)}(c_m^*, v_0)$ and $u_{m,j}^* = L(c_m^*, v_j)$. By (24) we get:

(31)

$$\int_{u_{m}^{*}}^{u_{m+1}^{*}} [1 + (\nabla h^{(n)}(u, v_{0}))^{2}]^{1/2} du = \int_{c_{m}^{*}}^{c_{m+1}^{*}} [1 + (\nabla L^{(n)}(c, v_{0}))^{2}]^{1/2} dc$$

$$= \frac{1}{n} \int_{c_{m}^{*}}^{c_{m+1}^{*}} \left[n^{2} + \left(\sum_{j=0}^{n-1} \nabla L(c, v_{j}) \right)^{2} \right]^{1/2} dc ;$$

$$\int_{u_{m,J}^{*}}^{u_{m+1,j}^{*}} [1 + (\nabla h^{(1)}(u, v_{j}))^{2}]^{1/2} du = \int_{c_{m}^{*}}^{c_{m+1}^{*}} [1 + (\nabla L(c, v_{j}))^{2}]^{1/2} dc ,$$

for $m = 0, \dots, r-1$ and $j = 0, \dots, n-1$. From (31) and (28), inequality (30) follows. This completes the proof of the theorem.

5. The transformation S_n diminishes the capacity of a condenser. Let $C = (D, E_0, E_1)$ be a condenser in the complex plane z, satisfying the conditions of Definition 3. It will be assumed that the Dirichlet problem for $\nabla u = 0$, with continuous boundary values, always has a solution in D. (Sufficient conditions for the validity of this assumption are given, for example, in Hayman [2], Th. 4.2, pp. 63-64. Following Hayman's terminology we shall say that a domain is admissible if it satisfies these conditions.) The capacity of the condenser C is defined as the Dirichlet integral over D, of the potential function $\omega(z)$ of C, (see § 3).

Let $C^{(n)} = S_n C = (D^{(n)}, E_0^{(n)}, E_1^{(n)})$, (where $S_n = S_n(z_0)$). The domain $D^{(n)}$ is admissible so that the capacity of $C^{(n)}$ is defined. We now prove the following:

THEOREM 2. Let C and $C^{(n)}$ be the condensers mentioned above and denote their capacities by I and I_n respectively. Then we have $I_n \leq I$.

Proof. Let $\omega^{(n)}(z) = S_n \omega(z)$, $(S_n = S_n(z_0))$. Since $\omega(z) \in (C, z_0)$, by Theorem 1 we have

(32)
$$\int_{D^{(n)}} (\nabla \omega^{(n)})^2 dx dy \leq \int_D (\nabla \omega)^2 dx dy = I.$$

The function $\omega^{(n)}(z)$ is continuous over the extended plane z and Lip in every compact subset of $D^{(n)}$; it vanishes on E_0 and assumes the value 1 on E_1 . Hence, by the Dirichlet minimum principle (see, Hayman [2], Th. 4.3, pp. 65-67) we have

(33)
$$I_n \leq \int_{D^{(n)}} (\nabla \omega^{(n)})^2 dx dy .$$

The required result follows from (32) and (33).

We shall apply Theorem 2 in order to obtain a result about the inner radius. Let D be a domain in the complex plane z, z_0 a point

of D, and $r(D, z_0)$ the inner radius of D at z_0 . (We refer here to the definition given, for example, in Hayman [2] pp. 78-80, where the inner radius is defined without any assumptions on D.) The domain D can be approximated from within by a series of bounded analytic domains $\{D_n\}$, which contain the point z_0 , such that $\lim_{n\to\infty} r(D_n, z_0) = r(D, z_0)$. (An analytic domain is a domain bounded by a finite number of disjoint, simple closed, analytic curves.) By a well known method of Pólya and Szegö (see Pólya-Szegö [3] pp. 44-45; also Hayman [2] pp. 81-84) the following theorem is obtained as a consequence of Theorem 2.

THEOREM 3. Let D be a domain in the complex plane z and let $z_0 \in D$. If $S_n = S_n(z_0)$, then

(34)
$$r(D, z_0) \leq r(S_n D, z_0) .$$

6. Applications in the theory of functions. In this section we denote by w = f(z) a function which is regular in |z| < 1 and by D the domain of all values w assumed by this function at least once in |z| < 1. It is known that

(35)
$$|f'(0)| \leq r(D, f(0))$$
,

equality holding if and only if f(z) is a (1,1) mapping, (see Hayman [2], Th. 4.5, p. 80).

As a consequence of Theorem 3 we obtain the following:

THEOREM 4. Let $S_n = S_n(f(0))$ and suppose that S_nD does not contain the entire open plane. Let w = F(z) be a (1,1) conformal mapping of |z| < 1 onto S_nD , such that F(0) = f(0). Then we have $|f'(0)| \leq |F'(0)|$.

Proof. By (35) we get: $|f'(0)| \leq r(D, f(0))$ and $|F'(0)| = r(S_nD, F(0))$. From these relations together with (34), the required inequality follows.

The following results are based on Theorem 4.

THEOREM 5. Let $f(z) = a_1 z + a_2 z^2 + \cdots$. Define $R^{(n)}(\varphi)$ as in Definition 1, for the domain D and the point w = 0. Then,

$$|a_1| \leq \sqrt[n]{4} R^{(n)}(\varphi) , \qquad (0 \leq \varphi < 2\pi)$$

and equality holds for the function

 $w=\psi_n(z)=te^{i(arphi+ heta)}z/(1+e^{in heta}z^n)^{2/n}$, (t and heta real numbers) .

Proof. Let φ_0 be a fixed real number and suppose that $R^{(n)}(\varphi_0) = d < \infty$. Denote by D_0 the domain containing the entire w plane, with the exception of n rays: arg $w = \varphi_0 + (2\pi k/n), d \leq |w|, (k = 0, \dots, n-1)$. The domain $S_n D(S_n = S_n(0))$ is contained in D_0 . The function $w = \frac{n}{\sqrt{4}} de^{i\varphi_0} f_n(z)$ where

(37)
$$f_n(z) = z/(1+z^n)^{2/n}$$
,

maps |z| < 1 conformally, (1,1) onto D_0 . Therefore, by the principle of subordination and Theorem 4 it follows that $|a_1| \leq \sqrt[w]{4}d$, and inequality (36) is proved. The assertion concerning the function $w = \psi_n(z)$ is evident.

The following theorem may be proved by the same method.

THEOREM 6. Let $f(z) = a_1 z + a_2 z^2 + \cdots$. Suppose that $R^{(n)}(\varphi) \leq M < \infty$ for $0 \leq \varphi < 2\pi$ and that $R^{(n)}(\varphi_0) = \beta M (0 < \beta \leq 1)$. Then

$$|a_1| \leq \beta M \cdot \sqrt[n]{4}/(1+\beta^n)^{2/n},$$

and equality holds for the function

$$w=\phi_n(z)=Me^{iarphi_0}f_n^{-1}[qf_n(e^{i heta}z)]$$
 ,

where $f_n(z)$ is defined by (37), $0 \leq \theta < 2\pi$ and $q = \sqrt[n]{4}\beta/(1+\beta^n)^{2/n}$.

We now prove

THEOREM 7. Let $f(z) = a_1 z + a_2 z^2 + \cdots$ and define:

(39)
$$R_{0} = \exp\left[\frac{1}{2\pi}\int_{0}^{2\pi}\log R(\varphi)d\varphi\right] = \exp\left[\frac{1}{2\pi}\int_{0}^{2\pi}\log R^{(n)}(\varphi)d\varphi\right].$$

Then $|a_1| \leq R_0$, and equality holds for $w = a_1 z^2$.

Proof. First suppose that w = f(z) is regular in $|z| \leq 1$ and that $f'(z) \neq 0$ on |z| = 1. Then $R(\varphi)$ is a continuous function of φ , and we have

$$(40) \qquad \lim_{n\to\infty}R^{(n)}(\varphi)=\lim_{n\to\infty}\exp\left[\frac{1}{n}\sum_{k=0}^{n-1}\log\,R\Big(\varphi+\frac{2\pi k}{n}\Big)\right]=R_{_{0}}\,,$$

for any real φ . Therefore, if a positive ε is given and n is sufficiently large, the domain S_nD (where $S_n = S_n(0)$) is contained in the circle $|z| < R_0 + \varepsilon$. Hence, by Theorem 4 and the principle of subordi-

² The author obtained this result in a weaker form, with $\overline{r}_n = \frac{1}{2\pi} \int_0^{2\pi} R^{(n)}(\varphi) d\varphi$ instead of R_0 . (By the geometric-arithmetic mean theorem $R_0 \leq \overline{r}_n$ for every *n*). The stronger form written above was suggested by the referee, to whom our thanks are due.

nation, we get $|a_1| \leq R_0 + \varepsilon$. In order to prove the theorem in the general case, we approximate the function w = f(z) by functions $w = f(\rho z)$, with $0 < \rho < 1$.

Let Ω be an open set in the plane z and let $z_0 \in \Omega$. Denote by $m(\varphi)$ the linear (Lebesgue) measure of the set $E(\varphi) = \{z | \arg(z - z_0) = \varphi, z \in \Omega\}$, and define

(41)
$$m^{(n)}(\varphi) = \frac{1}{n} \sum_{k=0}^{n-1} m \left(\varphi + \frac{2\pi k}{n} \right).$$

We shall show that Theorems 5, 6, 7, remain true if $R(\varphi)$ is replaced by $m(\varphi)$, and $R^{(n)}(\varphi)$ by $m^{(n)}(\varphi)$. This is a consequence of the following inequalities:

(42)
$$R(\varphi) \leq m(\varphi)$$
,

$$(42') extsf{R}^{(n)}(arphi) \leq m^{(n)}(arphi) extsf{,} extsf{ for } 0 \leq arphi < 2\pi extsf{.}$$

If $R(\varphi)$ is finite, equality holds in (42) if and only if the set $E(\varphi)$ is contained in a segment E^* such that $E^* - E(\varphi)$ is a set of measure zero. (We shall refer to this condition as the *MR* condition.) Inequality (42') follows from (42) by the geometric-arithmetic mean theorem. Hence, if $R^{(n)}(\varphi)$ is finite, equality holds in (42') if and only if

$$R(arphi)=R\Big(arphi+rac{2\pi k}{n}\Big)=m(arphi)=m\Big(arphi+rac{2\pi k}{n}\Big)$$
 , $(k=1,\,\cdots,\,n-1)$.

From this it follows that when we replace $R(\varphi)$ by $m(\varphi)$ and $R^{(n)}(\varphi)$ by $m^{(n)}(\varphi)$, the functions mentioned at the end of Theorems 5, 6, 7, are in each case, the *only* functions for which equality holds.

In order to prove (42) we may suppose that $m(\varphi)$ is finite. In this case, for any $\varepsilon > 0$ we can find a subset F of $E(\varphi)$, consisting of a finite number of segments, such that the linear measure of $E(\varphi) - F$ is smaller than ε . Therefore it is enough to prove (42) in the case that $E(\varphi)$ consists of a finite number of segments. Suppose that these segments are not adjacent. Then, by shifting them toward z_0 (so that they do not overlap), we increase $R(\varphi)$, while $m(\varphi)$ is invariant. But if the segments are adjacent we have $R(\varphi) = m(\varphi)$. Therefore (42) is proved.

Evidently, the MR condition for $E(\varphi)$ is sufficient in order that $R(\varphi) = m(\varphi)$. Suppose now that $R(\varphi)$ is finite and that $E(\varphi)$ does not satisfy the MR condition. Then it is possible to find a subset F_1 of $E(\varphi)$ and a subset F_2 of the complement of $E(\varphi)$ on the ray $\arg(z-z_0) = \varphi$, such that the two subsets have equal, positive measures and F_2 separates F_1 from z_0 . Replacing F_1 by F_2 we increase $R(\varphi)$, but not $m(\varphi)$. Therefore we must have $R(\varphi) < m(\varphi)$.

References

1. G. M. Golusin, *Interior Problems of the Theory of Schlicht Functions*, translated from the Russian article Uspekhi Matem. Nauk, 6, pp. 26-89 (1939) by T. C. Doyle, A. C. Schaeffer and D. C. Spencer.

2. W. K. Hayman, Multivalent Functions, Cambridge University Press, (1958).

3. G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematical Studies. Nr. 27, Princeton, (1951).

4. G. Szegö, On a certain kind of symmetrization and its applications Ann. Mat. Pura Applicata, Ser. 4, Vol. 40, pp. (1955), 113-119.