DECOMPOSITION OF SETS OF GROUP ELEMENTS

W. B. LAFFER AND H. B. MANN

In this paper small letters will denote group elements or integers.
Large letters will denote sets of these. The cardinal of a set S will
be denoted by (S).

1. Sets in Abelian. Groups. The problem of decomposition of sets
of elements of a finite additive Abelian group, G, of order v, is the
following. Given a set of group elements, C, when do there exist
sets of group elements, A and B, with Min (4),(B)=2 and C =
A+ B=1{a+blac A, be B}? If there are such sets, A and B, then
we say that A and B are components of C, and that C is decom-
posable. We are also concerned with the following question, given a
set C and a set A, when is A a component of C? The problems of
decomposition are stated analogously when C, A, and B are sets of
nonnegative integers. The results for sets of group elements are
analagous to the results for sets of nonnegative integers. We include
the proofs for both cases because although the techniques used in
handling additive problems in finite Abelian groups are analogous to
the techniques used in handling additive problems for sets of non-
negative integers (see Mann [5], [6], [7]; Dyson [1]; and Kneser [4]),
they are not identical.

In Theorems 1-5 all sets shall be sets of elements from a finite
Abelian group, G, of order v.

THEOREM 1. Let C be sets of elements from the finite Abelian
group, G. Let C={G, ¢, ++-, ¢,} be ths complement of C in G. Let
D={, —-C={¢,—¢;|j=1,+-+,7}. Then A is a component of C,
iof and only if, for every k¢ D we have A+ k ¢ A + D.

Proof. Put B = ()i-.{¢; — A}. Then A is a component of C if
and only if A+ B=C.

Suppose for every k¢ D we have A + k& A + D. Then, for every
keD thereisanaec Asuchthata +k=a, + d, forevery s =1, «--, 7
where d; = ¢, — ¢; and @;c A. Hence for every i =1, -+, r we have
¢,—k=a—a;,+¢=a+¢—a=a+b where be B. For every
ceC put k=¢, —c. Hence ¢ = a + b which implies that A + B = C.
Thus A is a component of C.

Suppose A + B= C. If thereisa k¢ Dsuchthat A + kC A + D,
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then for every a € A there is an ¢ such that a + k¥ = a; + d;. There-
fore, ¢, —k=a + ¢ — a; = a + b where be B = J’-.{¢; — A}. Since
k+¢,— ¢;, we must have k = ¢, — ¢ for some ceC. Hence for
every a € A we have ¢ — a = be B. Therefore, c¢ A + B. This is a
contradiction and hence the theorem is true.

COROLLARY 1.1, Let C = {¢}. Then A is a component of C if
and only if A is not a coset of some subgroup of G.

COROLLARY 1.2. If G is cyclic of prime order and C = {C}, then
A s a component of C if and only if 1 < (4) < (C).

DEFINITION. We say that A is an m component of C if and only
if A is a component of C and (4) = m.

{€y, ++-, ¢}, then {0, a} is a 2 component

COROLLARY 1.3. If C =
= ¢; — ¢; vmplies a = ¢; — ¢, for some m.

of C if and only if 2a

Proof. Suppose {0, a} is a 2 component of C. Let 2a = ¢, — ¢;.
By Theorem 1 if k¢ D then {k,a + k} Z{0,a} + D. Put k=a + d..
Then {k,a + k} = {a + d;, 2a + d;} = {a + d,;, d;}c{0,a} + D. If k¢ D,
then {0,a} is not a 2 component of C. Hence ke D. Thus k =
a + d; = d, which implies @ = ¢; — C,.

Suppose that 2¢ = ¢; — ¢; implies @ = ¢, — ¢, for some m. If
{0, @} is not a 2 component of C, then by Theorem 1 there is a k¢ D
such that {k,a + k} {0, a} + D. This implies that k¥ =a + d, for
some v =1, --+,7, and ¢« + k = 2a + d, = d,. Thus 2¢ = ¢, — ¢, and
by assumption this implies @ = ¢, — ¢,. Therefore, k =a + d, =d, e D,
This is a contradiction, and hence {0, a} is a 2 component of C.

In Corollaries 1.4-1.9 we shall assume that C is a difference set
with parameters v = (G), » = (C), and A = the number of representa-
tions which each nonzero element of G has in the form ¢; — ¢;.

COROLLARY 1.4, Let (C)=r<w. If 2a=0 for a+0, then
{0, a} s not a 2 component of C.

Proof. If {0,a} is a 2 component of C then 2a = ¢; — ¢&; for
every t =1, .-+, 7, and by Corollary 1.3 we have r = v.

COROLLARY 1.5. If (A, v) =1, then there does not exist an a + 0
such that {0, a} is a 2 component of C.

Proof. Suppose there is an a # 0 such that {0,a} is a 2 com-
ponent of C. Because of Corollary 1.4 we may assume 2a * 0. Since
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C is a difference set we have

(i) 2(1:5,-1—5,-1:5@-2—5“:---=5i,\—5],\
By Corollary 1.3 we must have

(ii) (J,:(—B-il——(?ml:C_iz—-C-M: s :Ei}\_(?'nw\'
Subtracting a from 2a¢ we get

(iii) a = E""l - Ejl = C_m2 - é_jz = s = Em)\ - Ej)\.

If there is an index m, in (iii) that does not appear as a first index
1, in (ii), then a has at least N + 1 distinct representations as an ele-
ment of {C — C}. This contradicts the choice of a # 0. Hence we
must have that every first index in (iii) appears as a first index in (ii).

Thus from (ii) we obtain Ma = >3-, ¢;, — ¢,, = 0. Since (A, v) =
1, it follows that @ = 0. This contradicts our choice of @, hence
Corollary 1.5 is true.

COROLLARY 1.6. If G s cyclic of order n*+ n+ 1, and tf G
has no simple difference set of order m + 1, them every set of n’
elements has a 2 component.

COROLLARY 1.7. Let G be cyclic of order n*+ n + 1, and let
n = 1600. If n is nmot a prime power, then every set of n* elements
has a 2 component.

Proof. This follows from Corollary 1.6 and the paper of Evans
and Mann [2].

COROLLARY 1.8. Let A > 2. Suppose therg 18 a cyclic subgroup
H of G such that (H) =N. Suppose H+ g C for some geG. Let
a € H such that a has order n. Then {0,a} ts a 2 component of C.

Proof. If C is a difference set, then sois C — g. Hence without
loss of generality we may assume that Hc C.

If ae H and a has order \, then jac H for 0 <7 <) — 1. Since
2a # 0, we have that 2a =ja — (7 — 2)a for 0 <5<\ —1 are the
) distinct representations of 2z as an element of {C — C}. Clearly,
a=jJa— (J—1a for 0 <7 <\ — 1 are the \ distinct representations
of o as an element of {C — C}. By Corollary 1.3 {0,a} is a 2 com-
ponent of C.

An example of a case where this situation actually occurs is the
following. Let G be the residues modulo 15. Let C = {0, 1, 2, 4, 5, 8, 10}.
Here A =3, a =5, and g = 0. This and other examples can be found
in [3].

An immediate generalization of Corollary 1.8 is the following.

COROLLARY 1.9. Let (\,v) =d > 2. Suppose H is a cyclic sub-
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group of G of_orde’r d. Suppose there are exactly n\/d cosets of H
contained in C. If ae H such that a is of order d, then {0, a} is a
2 component of C.

An example of a case where this situation occurs is again from
[8]. It is the geometry modulo 63. We have C ={0,1,2,3,4,6,7,8,
9,12, 13, 14, 16, 18, 19, 24, 26, 27, 28, 32, 33, 35, 36, 38, 41, 45, 48, 49, 52,
54,56}, Here A =15, d =3, and a =21. We have H = {0, 21, 42};
and the 5 cosets are: {3, 24, 45}; {6, 27, 48}; {7, 28, 49}; {12, 33, 54}; and
{14, 35, 56}.

DEFINITION. We say that C is indecomposable, if there do not
exist sets, A and B, such that Min (4),(B) =2 and A + B=C.

THEOREM 2. Let C be such that (C) = 3. If the elements of C
are not in progression, then C 1s indecomposable.

THEOREM 3. Let C=1{0,¢,¢Cy -++,¢}. Let s=3 and let C* =
{0,¢¢, +yCoa}e If c,e{C* — C*YU{C* + C*}, then C is indecom-
posable.

Proof. Suppose there are sets, A and B, with Min (4), (B) = 2
and such that A+ B=C. Since 0¢C we must have 0 =a, + b,
where a,€A and b,cB. Let A’ =A4 —a, and B’'= B —b,. Since
b, = —a, we must have A’ + B’ = A + B = C. Thus we may assume
without loss of generality that 0e AN B. Hence AU BcC.

If ¢,e A+ B, then ¢,=¢;+c¢;. If t#s and j+#s, then
¢, € {C* + C*} contrary to hypothesis. Thus c¢,€ A U B. Suppose
¢, € A. Since (B) = 2, we have a ¢ ¢ B such that ¢ # 0. We must have
¢, +¢c=¢c,€C. Hence ¢,=c¢; —ce{C* — C*} which is contrary to
hypothesis. Thus C is indecomposable.

The fact that (C) = 4 is necessary is illustrated by the follow-
ing example. Let C = {0,2¢,¢}. Put C* ={0,2¢}. We have
{C* — C*IU{C* + C*} ={0, 2¢c, —2¢, 4¢}, and c ¢ {C* — C*}U{C* + C*}
for any choice of ¢ such that 3¢ + 0. Yet C = {0, ¢} + {0, ¢}.

COROLLARY 3.1. Let s=3. If (G)=wv > [3s(s — 1)/2] + 1, then
there exists a set CC G such that (C)=s+ 1 and C is indecom-
posable.

Proof. Let C* ={0,¢, ¢y -+, ¢,,} be any set of s — 1 nonzero
elements of G and zero.

We have ({C*+-C*}) =[s(s—1)/2] +sand {C*—-C*)<s(s—1)+1.
Since C* c{C* + C*}N{C* — C*}, we have ({C* + C*}N{C* — C*}) =s.
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Hence ({C* + C*}U{C* — C*}) < [3s(s — 1)/2] + 1.

Since v > [3s(s — 1)/2] + 1, we must have an element ¢, € G such
that ¢, € {C* + C*} U {C* — C*}. By Theorem 3 C* U {c,} is indecom-
posable.

Theorem 2 and Corollary 3.1 give us the following.

THEOREM 4. For any positive integer s = 2 there always exists
an Abeltan group G and a subset C of G such that (C) =s+ 1 and
C 1s indecomposable.

THEOREM 5. Let {e, ++,e,} = {C — C}. Let s(x, y) be the number
of solutions, of the group equation xg =Yy where x is an integer.
Suppose m +1=v—(C). If v> S, Smls(x, e,) =0, then there
exist sets A and B such that 0 A, (A) = m + 1, A s in progression
and A + B = C.

Proof. There are at most 6 solutions of the equations xg = e,
where 2<x<m-+1and 1 £t < wu. Hence if v > 0, there exists an
element a €G such that xa # ¢, — ¢, for all ¢, ¢;cC and x =2, ---,
m + 1. We distinguish two cases:

I m=0(2);

II m=12);

Case I. m = 0(2). Put A =1{0,qa, —a, -+, ma/2, —ma/2}. For
k¢ D suppose that A+ kA + D. Then k= ha + d;. Choose |h]|
minimal.

If 2>0, then k& + [((m + 2)/2) — hla = [(m + 2)/2]a + d; = ja + d,.
From our choice of @, in follows that 7 = m/2. Hence a + d; = d,,
and so k = (b — 1l)a + d,, contradicting our choice of h.

If » <0, then k+ [(—(m + 2)/2) — hla = —[(m + 2)/2]a + d; =
ja + d,. From our choice of @ it follows that j = —m/2. Hence
d;=a+d,, and so k = (h + 1)a + d, contradicting our choice of k.

Thus by Theorem 1.1 A is a component of C.

Case II. m = 1(2). Put A={0, a, —a, -+, [(m — 1)/2]a,
—[(m — 1)/2]a, [(m + 1)/2]a}. The argument is the same as above
replacing m + 2 with m + 3 and j will be either (m + 1)/2 or
—(m + 1)/2.

COROLLARY 5.1. Let v > 0. Then there exist an A; and a B,
for every 1 such that 2 <t < m + 1 such that 0e A;, (4;) =1, A, s
wn progression, and A; + B, = C.
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COROLLARY 5.2. If v is a prime, then v > mu implies that for
every i for which 2 <1 <m + 1 there exist an A; and a B; such
that 0 A;, (A,) =1, A; is in progression, and A; + B; = C.

We note by an example that a set C may have an 2 +1 com-
ponent and not have an ¢ component. Let G be the integers modulo
13. Let C =1{1,2,4,10}. By Corollary 1.5 C does not have a 2 com-
ponent, since C is a simple difference set. But {0, 9, 12} + {0, 7, 9, 12} =
{0,8,5,6,7,8,9,11, 12} = C.

Sets of integers. From now on our sets shall be sets of nonnega-
tive integers. In particular the complement of a set S, which shall
be denoted by S, shall mean the set of all nonnegative integers whigh
are not in S.

DEFINITION. An 7 section is a set of nonnegative integers which
contain all integers greater than » but does not contain n.

In Theorems 6 and 7 we shall assume that the sets A and C are
¢, sections.

THEOREM 6. Let C={¢, < & <+-+-<¢&,). Let D={d, = ¢, — ¢,
t=1, «--, 7}, Then A is a component of C if and only if for every
k¢ D, k<c, we have A+ kg A+ D.

Proof. Put B= ;.. {¢; — A}. If A+ B, = C, then B,c B and
also A+ B=C. Hence, A is a component of C if and only if
A+ B=C.

Suppose for every k¢ D, k < ¢, we have A+ kZ A+ D. Then,
for every k¢ D, k < ¢, there is an a€ A such that ¢ + k = a; + d;
for every ¢ =1,+--,r where d, = &, — ¢; and @;c A. Hence, ¢, — k =
a—a;+ ¢; foreveryt =1, ---,r. Hence, ¢, — k= a + b where be B.
Put k= ¢, — ¢ where ¢ceC. Then k¢ D and k <¢,. Thus ¢c=a +b.
Hence A + B= C, and A is a component of C.

Now suppose A is a component of C. Hence A+ B=C. If
there is a k¢ D,k < ¢, such that A + kC A + D, then for every ac A
there is an ¢ such thata + k = a; + d;. Hence, ¢, —k=a + ¢, — a; =
a + b, where beB. Since k # ¢, — ¢; for any j =1, --+, r, we must.
have k =¢, — ¢ for some ceC. Hence for every acA we have
¢ —a=>beB. Therefore, c¢ A+ B. This is a contradiction, and
hence our theorem is true.

DEFINITION. For m a positive integer we say that A is an m set,.
if and only if, for all € A we have a + m e A.

COROLLARY 6.1. Let A be an n section such that 0c A. Then
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A is a component of {n}, if and only if, A is nmot am m set for
m = n.

COROLLARY 6.2. Let A be an m set for some m such that m < n.
Let A={n,<m,< -+ <m,=mn}. Then there is an m; <mn, such
that
Am) - Ay

(1) n,+1  m;+1

where A(x) denotes the usual counting function of all a € A such that
a=x.

Proof. At the end of Lemma 1 on page 911 of [7] it was shown
that if the construction defined there fails at a gap n, < n, = n, then

Om) 5 A+ Bm) =1 , (g, — 1) Olmd, ) _1

n+1" n, + 1 n+1/n, +1°
Now let C = A and B = {0}. Then we have
An) - A(n,) Ald. — 1) — A(n)d, 1
n+1=n8+1+<(8 ) n—l—l)ns-l—l'

If we assume that A(n,)/(n; + 1) > A(w)/(n + 1) foralle=1,---,r — 1
then it follows that for all a € A we have A(a)/(a + 1) > A(n)(n + 1).
Hence the remainder term, [A(d, — 1) — {A(n)d,/(n + )}1/(n, + 1) is
positive, and we have A(n)/(n + 1) > A(n,)/(n, + 1). This contradicts
the assumption that A(n,)/(n; + 1) > A#n)/(n + 1) for all ¢ —1, ---,
r—1.

If the construction does not fail, then all gaps in C are filled
except n = n,. Since in our case C = A, we would have that 4 is a
component of {n}. But A is an m set for some m < n, and by Corol-
lary 6.1 this is impossible.

An example of a case where we have equality in (i) is A = {0, 2, 4}.
We have A(1)/2 = A(3)/4 = A(5)/6 = 1/2.

DEFINITION. The ¢, section C has an m component if and only
if there exist sets, A and B such that A(¢,) =m and A + B=C.

COROLLARY 6.3. Let C = {e. <@} and let 0 C. Then C has a
2 component, if and only if, C is not one of the following three
sets: {1, 2}; {2, 4}; {3, 5}.

COROLLARY 6.4. If ¢, ts such that ¢, — ¢, > ¢,_,, then C has a
2 component.
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Proof. One can easily verify that {0,¢, — ¢} is a 2 component
by Theorem 6.

THEOREM 7. For a given r and m there exist at most a finite
number of sets with r gaps which do not have an m + 1 component.

That is to say if C ={¢, < & < +++- < &,}, then there are sets A
and B such that A(G,) =m + 1, 0c A, and A + B = C except for at
most a finite number of sets C. Ome can even impose the additional
condition that A be in progression.

Proof. We first prove a lemma,.

LEMMA. If there exists an a € C such that
(1) za=#¢;—¢; for 1=j5j<i<r and z=1,---,m+1;
and

(2) either ¢; <a <(m+ 1)a < ¢;,, for some j such that
1<j<r—1 or 0<a<(m+1a<c;

then A ={0, a,2a, ---, ma} is an m + 1 component of C.

Proof. By Theorem 6 A is a component of C, if and only if,
for all k¢D, k<¢,, we have A+ kZ A+ D, If for some k¢ D,
k<¢ we have A+ kC A+ D, then k = sa + di for some s and ¢
such that 0 <s<m and 1 <¢=<7. Under the assumption that a
satisfies (1) and (2), we shall show that k¥ + (m — s + l)a¢ A + D, and
hence A + k¢ A + D contrary to the assumption that A+ kC A+ D.
Hence A will be an m + 1 component of C.

We have k+(m —s+1a=sa+d;,+ (m—s+1a=m-+1a+d;
for some 7. If k+ (m — s+ 1l)ae A + D then either

(3) (m+1Va +d;, =ta +d; for some ¢t=0,-.--,m and
j=1,---,r and j#1;

or
(4) (m+ 1o +d,>¢ >sa+d;.

Now (3) implies (m + 1 — t)a = ¢; — ¢; contrary to (1), and (4)
implies (m + 1)a > ¢; > sa = @ > 0 contrary to (2). Hence A is an
m + 1 component of C. This completes the proof of the lemma.

Let 0=(c;—¢;|1=<j<i=7}). Then 1= —1r)2. If
there are at least (m + 1)0 + 1 choices for @ between ¢; +1 and
[€ir:/(m + 1)] — 1 inclusive or between 1 and [&;/(m + 1)] — 1 inclusive,
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then we can choose an a so that conditions (1) and (2) of the lemma
are satisfied. Thus conditions (1) and (2) of the lemma are satisfied
if either

(5) Cinz(m+10Om+1) +¢;+2) for 1=sj=r—1

or
(6) ¢, = (m+1)0(m + 1) + 2) .

Let o(m +1) +2=mn. If (5) and (6) both fail, then we must
have ¢ < (m + 1)n

g, < (m + D + &) < n((m + 1) + (m + 1))
a<m+bm+a4<n§m+bq

g, < (m+ Dn+ 7)< nX(m+1y.

Hence if ¢, = n >};_, (m + 1) then either condition (5) or condition
(6) is satisfied and @ can be chosen so that conditions (1) and (2) of
the lemma are both satisfied.

Thus if ¢, = (0(m + 1) + 2) D7, (m + 1), then there is an acC
such that {0, a, 2a, -+, ma} is an m + 1 component of C. Since for
a fixed 7, § is bounded, it follows that the number of sets C, with »
gaps which do not have an m + 1 component is finite.

In Theorems 8-11, we shall make no restriction on the number
of gaps that a set C may have.

DEFINITION. A set C is said to be strictly decomposable if there
are sets, A and B, such that Min(4), (B)=2 and A + B=C.

DEFINITION. A set C is said to be asymptotically decomposable
if there are sets, A and B, such that Min(4),(B)=2 and A + B =
= C* where (C*NC) < o and (CNC*) < . We write A + B~ C.

THEOREM 8. Let C be given. Let {n;} be a monotonically increas-
ing sequence of nomnegative integers. Let C,= CN[0,k]. Then a
necessary and sufficient condition that C be strictly decomposable is
that for each m; in the sequence there exist a pair of sets, A, and
B,, such that {A,, + B,}N[0,n] = C,,; and there exists a positive
anteger N such that whenever n; = N we have Min A, (N), B, (N) = 2.

Proof. If C is strictly decomposable, then we have a pair of sets,
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A and B, such that Min (4), (B)=2and A+ B=C. PutA,,=AnN[0,n;}
andB,, = BN [0,n;]. If for some n; we have {4, + B,} N[0, n] =
Ccn o, n;], then {4 + B} N[0, n;] # C N[0, n;] which is a contradiction.
Since Min (A4), (B) = 2 we must have a positive integer N such that
Min A(N), B(N) = 2. This clearly implies that for n; = N we have
Min 4,,(N), B, (N) = 2. Hence our condition is necessary.

Now let {m;}7., be any monotonically increasing sequence of non-
negative integers. Put A, , ¢ = 4,, N[0, m] and B, ,+ = B, N[0, m,].
Since there are only a finite number, 2*™+?, of choices for each pair
of sets, A4,,%¢ and B, there must be at least one pair, 4,, and
B,,, which is repeated for an infinite number of indices 1.

Let {n{"} be the subsequence of {n;} for which 4, = A4, (1)N[0, m,}
and B, = B,,(1) N[0, m]. Now A, + B, ,CC, since in the original
construction of Am0 and B, the m; may be chosen arbitrarily large..
Also we have {4, + B,} N[0, m] = C,,.

We repeat this process using m, and the sequence {n{"}. Put
A,,1=A4,1)n[0,m] and B,,%= B,(1) N[0, m]. Again we must
have at least one pair of sets, 4, and B, , that repeats an infinite
number of times. This pair, 4, and B, , determines a subsequence
n}c {ni"}. We must have A4, + B, CC and {4, + B,}N[0, m] =
Cn,

Continuing in this way, we have for each m; a pair of sets,
A,, and B,, and a subsequence {n{*'}c {n{’} such that A, ;=
A,G+1)n[0,m] and B,, = B, (7 + 1) [0, m;]. For each m; we
also have 4, + B, , CC and {4,, + B, } N[0, m;] = Cy,.

Put A = Ui, 4., and B = U, B. ,» Since in each subsequence,, _
{n{?"}, there exists an n{” such that n{” = N, we have that Min 4,, (N),
B, (N) =z 2, and hence Min(4),(B)=z 2. If A+ B+ C, then there
is a section of C, say C,, for which the decomposition fails. Let.
m; > k. Then for the subsequence, {n{"*"}, we have

{AwG +1) + Bl + DY Coy = Co, = GG + DN [0, m]

This contradicts the original hypothesis. Hence A + B = C is a strict.
decomposition of C, and our condition is sufficient. This completes.
the proof of Theorem 8.

If C has a finite number of gaps, C is a section. If C has infi-
nitely many gaps then Theorem 8 shows that the problem of strict
decomposability reduces to the problem of decomposability of sections.
because we can choose for {n;} a sequence of gaps of C.

_ CoroLLARY 8.1. Let {n;} be an infinite sequence of elements of
C. Then C is strictly decomposable, if and only tif, every section
{CN[0, n)}U[n; + 1, ) s decomposable.



DECOMPOSITION OF SETS OF GROUP ELEMENTS 557

THEOREM 9. Let C be given. Let A be such that A=2C and
(A) = 2. Let (@) be the number of representations of & in the form
a; + ¢; — a,. If for every @acA, such that @ =0, and such that
aecA+C— A we have f(@) < A@), then there exists a set B such
that A + B = C 1s a strict decomposition of C.

Proof. Put B= N,{¢; — A}. Now B # ¢ since 0 € B and clearly
A+ BcC.

Let @c A such that @acC. If a¢ A+ B, then it must be true
that for every ac A such that ¢ < @, we must have @ —aeB =
Uz.{¢; — A}. Hence for every aecA such that ¢ <@ we must
have that there exists a ¢,€C and an a’e¢A such that @ =
a+ ¢ —a' €A+ C — A. There exist at least A(@) such representations
of @, since there are A(@)a’s in A such that a < a. Hence f(a)=
A(@) contrary to hypothesis. Hence there is an ac A such that
@ —acB., Hence A+ B=C. Since A+ C, ACC, we must have
{B) = 2, and thus this decomposition of C is strict.

THEOREM 10. Let C be an infinite set. If C is asymptotically
decomposable, then there is an integer k such that for all positive
integers m there are infinitely many pairs of elements c,, ¢, € C such
that m < ¢, < ¢, <e¢, + k.

Proof. Since C is asymptotically decomposable, there is a C*
such that C* ~ C and C* is strictly decomposable. And if C* satis-
fies the conclusions of Theorem 10, then so does C. Hence without
loss of generality we may assume that C is strictly decomposable.

Since C is an infinite set, and since C is strictly decomposable,
at least one of the two components is infinite. Suppose without loss
of generality that (B) = «. Let a@,,a,¢ A where 0 = a, <a, <k
Let m be any positive integer. Then there are an infinite number
of elements be B such that @, +b=¢, >m and a,+ b =c¢,. Now
¢, —¢ =a,—a, <k, and we have m < ¢, < ¢, <¢, + k.

COROLLARY 10.1. Let C be an infinite set. Let f(n) =c, — ¢,
for m = 2 where ¢,_, and ¢, are consecutive elements of C. If there
exists am integer m such that for n = m, f(n) is increasing, then
C is asymptotically decomposable if and only if f(n) is bounded.

THEOREM 11. Let g¢(y) = lim,...[C(x + ¥) — C@)]. If g(y) s
bounded for all y, then C is mot asymptotically decomposable as the
sum of two infinite sets.

Proof. Suppose C ~ A + B = C* where (4) = (B) = o. Clearly
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lim, .. [C*(@ + y) — C*@)] = [im,...[C(z + y) — C(x)] = g(y). Let B =
{B, < b, <b, < -++}. Then g(y) = lim,_.. [C*(b,; + y) — C*(b))] = A¥).
Since for all « <y and a € A we must have b; <b; + « < b, +y. Hence
for all b€ B and y we must have C*(b; + y) — C*(b;) = A(y). But
if g(y) is bounded, then A(y) is bounded and A is not an infinite set.

Let P be the set of all primes. It is easy to show that P is not
strictly decomposable.

THEOREM 12. If A + B ~ P, the set of all primes, then (A) =
(B) = oo.

Proof. Suppose A ={a, <a,< --- <a,} and A+ B~ P. Then
A —a,+ B+ a, ~ P. Thus we may without loss of generality assume
a,=0. Let N=max{peA+ B,p¢ A+ B}. Then whenever be B
and b > N, we must have a;,+be P for 1 =1,---,n, and in particular
beP.

Choose n primes p, ---,p, such that (a;, ;) =1= (p; p;) for
1%j and ©=2,+--,% and (p,a;)=1=(p,p) for 1 =2, .-+, nm.
Consider the solutions to the simultaneous congruences. x = a,(p;) for
1 =2,---,m and © = —a,(p). The set of solutions forms an arithe-
metic progression {x + k[]~, ».}i with (x, [[%.p,) = 1. By the
Dirichelet theorem there exist an infinite number of primes of the
form « + k[[~,p;. Let ¢ be such a prime, and let ¢ > N + a,.
Then qe A + B.

If ¢g=a,+ b for some 1 =2, +---,n and be B, then b > N and
beP. But ¢ =a;+ b implies that b = o(p;) which is impossible for
sufficiently large q. If ¢ = be B, then ¢ + a,€ P. But ¢ + a, = 0(p,)
which is also impossible for sufficiently large q.

Hence (4) = (B) = o.
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