A SUFFICIENT CONDITION THAT AN ARC IN S^{n} BE CELLULAR

P. H. DOYLE

An arc A in S^n , the *n*-sphere, is cellular if $S^n - A$ is topologically E^n , euclidean *n*-space. A sufficient condition for the cellularity of an arc in E^3 is given in [4] in terms of the property local peripheral unknottedness (L.P.U) [5]. We consider a weaker property and show that an arc in S^n with this property is cellular.

If A is an arc in S^n we say that A is p-shrinkable if A has an end point q and in each open set U containing q in S^n , there is a closed n-cell $C \subset U$ such that q lies in Int C (the interior of C), while BdC (the boundary of C) meets A in exactly one point. We note that A is p-shrinkable is precisely the condition that A be L.P.U. at an endpoint [5]. There is, however, a good geometric reason for using the p-shrinkable terminology here; the letter p denotes pseudo-isotopy.

LEMMA 0. Let C^n be a closed n-cell and D^n a closed n-cell which lies in int C^n except for a single point q which lies on the boundary of each n-cell. If there is a homeomorphism h of C^n onto a geometric n-simplex such that $h(D^n)$ is also an n-simplex, then there is a pseudo-isotopy ρ_t of C^n onto C^n which is the identity on BdC^n , while $\rho_1(D^n)$, the terminal image of D^n , is the point q.

The proof of this is omitted since it depends only on the same result when C^n and D^n are simplices.

LEMMA 1. Let C^n be a closed n-cell and B an arc which lies in int C^n except for an endpoint b of B on BdC^n . Then there is a pseudo-isotopy of C^n onto C^n which is fixed on BdC^n and which carries B to b.

Proof. Since $B \cap BdC^n = b$ we note that there is in C^n an *n*-cell D^n which contains B in its interior except for the point $b, D^n - b \subset \text{Int } C^n$, and D^n is embedded in C^n as in Lemma 0. Thus Lemma 0 can be applied to shrink B in the manner required by the Lemma.

THEOREM 1. Let A be an arc in S^n such that for each subarc B of A, B is p-shrinkable. Then every arc in A is cellular.

Proof. The proof is by contradiction. If A contains a non-cellular Received January 30, 1963.

subarc there is no loss of generality in assuming this arc is A. Then $S^n - A \neq E^n$. By the characterization theorem of E^n in [1], there is a compact set C in $S^n - A$ and C lies in no open *n*-cell in $S^n - A$. By the Generalized Schoenflies Theorem [2], this is equivalent to the condition that no bicollared (n-1)-sphere in S^n separates C and A.

Let G be the set of all subarcs of A which cannot be separated from C by a bicollared sphere in S^n . We partially order G by set inclusion and select a maximal chain in G. Let B be the intersection of all arcs in this maximal chain. Evidently B cannot be separated from C by a bicollared sphere in S^n . Thus B is an arc and each proper subarc of B can be so separated from C in S^n .

By the hypothesis of the theorem, *B* is *p*-shrinkable. So let *B* be L.P.U. at an endpoint *q*. Let *U* be an open set containing *q* and $U \cap C = \Box$. Then there is an *n*-cell $C^n \subset U$, $C^n \cap B = B^1$, an arc, while $B^1 \cap BdC^n = p$, a point. So by Lemma 1 there is a pseudoisotopy ρ_t of S^n onto S^n , ρ_t is the identity in $S^n - C^n$, and $\rho_1(B^1) = p$. But $\rho_1(B)$ is a proper subarc of *B* which cannot be separated from *C* in S^n by a bicollared sphere. But this is a contradiction. Thus *A* is cellular as well as each subarc of *A*.

COROLLARY 1. Let A be an arc in S^n which is the union of two p-shrinkable arcs, $A_1 \cup A_2$, which meet in a common endpoint p. Then A is cellular if A_1 is L.P.U.

Proof. Each subarc of A is p-shrinkable.

COROLLARY 2. Each non-cellular arc A in S^n contains a subarc which is not L.P.U. at either of its endpoints.

Even in S^3 there is a difference between an arc being L.P.U. at each point and having the *p*-shrinkable property for each subarc. The simplest example is perhaps a mildly wild arc which is not a Wilder arc. [3].

References

^{1.} M. Brown, The monotone union of open n-cells is an open n-cell, Proc. Amer. Math. Soc., **12** (1961), 812-814.

^{2.} ____, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc., **66** (1960), 74-76.

^{3.} R. H. Fox, O. G. Harrold, The Wilder arcs, Topology of 3-manifolds and related topics, Prentice-Hall, (1962).

4. O. G. Harrold, The enclosing of simple arcs and curves by polyhedra in 3-space, Duke Math. J., **21** (1959), 615-622.

5. ____, Combinatorial structures, local unknottedness, and local peripheral unknottedness. Topology of 3-Manifolds and related topics, Prentice-Hall, (1962).

VIRGINIA POLYTECHNIC INSTITUTE