A SUFFICIENT CONDITION THAT AN ARC IN S^{n} BE CELLULAR

P. H. Doyle

An arc A in S^{n}, the n-sphere, is cellular if $S^{n}-A$ is topologically E^{n}, euclidean n-space. A sufficient condition for the cellularity of an arc in E^{3} is given in [4] in terms of the property local peripheral unknottedness (L.P.U) [5]. We consider a weaker property and show that an arc in S^{n} with this property is cellular.

If A is an arc in S^{n} we say that A is p-shrinkable if A has an end point q and in each open set U containing q in S^{n}, there is a closed n-cell $C \subset U$ such that q lies in Int C (the interior of C), while $B d C$ (the boundary of C) meets A in exactly one point. We note that A is p-shrinkable is precisely the condition that A be L.P.U. at an endpoint [5]. There is, however, a good geometric reason for using the p-shrinkable terminology here; the letter p denotes pseudo-isotopy.

Lemma 0. Let C^{n} be a closed n-cell and D^{n} a closed n-cell which lies in int C^{n} except for a single point q which lies on the boundary of each n-cell. If there is a homeomorphism h of C^{n} onto a geometric n-simplex such that $h\left(D^{n}\right)$ is also an n-simplex, then there is a pseudo-isotopy ρ_{t} of C^{n} onto C^{n} which is the identity on $B d C^{n}$, while $\rho_{1}\left(D^{n}\right)$, the terminal image of D^{n}, is the point q.

The proof of this is omitted since it depends only on the same result when C^{n} and D^{n} are simplices.

Lemma 1. Let C^{n} be a closed n-cell and B an arc which lies in int C^{n} except for an endpoint b of B on $B d C^{n}$. Then there is a pseudo-isotopy of C^{n} onto C^{n} which is fixed on $B d C^{n}$ and which carries B to b.

Proof. Since $B \cap B d C^{n}=b$ we note that there is in C^{n} an n cell D^{n} which contains B in its interior except for the point $b, D^{n}-$ $b \subset \operatorname{Int} C^{n}$, and D^{n} is embedded in C^{n} as in Lemma 0. Thus Lemma 0 can be applied to shrink B in the manner required by the Lemma.

Theorem 1. Let A be an arc in S^{n} such that for each subarc B of A, B is p-shrinkable. Then every arc in A is cellular.

Proof. The proof is by contradiction. If A contains a non-cellular

[^0]subare there is no loss of generality in assuming this are is A. Then $S^{n}-A \neq E^{n}$. By the characterization theorem of E^{n} in [1], there is a compact set C in $S^{n}-A$ and C lies in no open n-cell in $S^{n}-A$. By the Generalized Schoenflies Theorem [2], this is equivalent to the condition that no bicollared ($n-1$)-sphere in S^{n} separates C and A.

Let G be the set of all subarcs of A which cannot be separated from C by a bicollared sphere in S^{n}. We partially order G by set inclusion and select a maximal chain in G. Let B be the intersection of all arcs in this maximal chain. Evidently B cannot be separated from C by a bicollared sphere in S^{n}. Thus B is an arc and each proper subarc of B can be so separated from C in S^{n}.

By the hypothesis of the theorem, B is p-shrinkable. So let B be L.P.U. at an endpoint q. Let U be an open set containing q and $U \cap C=\square$. Then there is an n-cell $C^{n} \subset U, C^{n} \cap B=B^{1}$, an arc, while $B^{1} \cap B d C^{n}=p$, a point. So by Lemma 1 there is a pseudoisotopy ρ_{t} of S^{n} onto S^{n}, ρ_{t} is the identity in $S^{n}-C^{n}$, and $\rho_{1}\left(B^{1}\right)=p$. But $\rho_{1}(B)$ is a proper subarc of B which cannot be separated from C in S^{n} by a bicollared sphere. But this is a contradiction. Thus A is cellular as well as each subarc of A.

Corollary 1. Let A be an arc in S^{n} which is the union of two p-shrinkable arcs, $A_{1} \cup A_{2}$, which meet in a common endpoint p. Then A is cellular if A_{1} is L.P.U.

Proof. Each subarc of A is p-shrinkable.
Corollary 2. Each non-cellular arc A in S^{n} contains a subarc which is not L.P.U. at either of its endpoints.

Even in S^{3} there is a difference between an arc being L.P.U. at each point and having the p-shrinkable property for each subarc. The simplest example is perhaps a mildly wild arc which is not a Wilder arc. [3].

References

1. M. Brown, The monotone union of open n-cells is an open n-cell, Proc. Amer. Math. Soc., 12 (1961), 812-814.
2. -, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc., 66 (1960), 74-76.
3. R. H. Fox, O. G. Harrold, The Wilder arcs, Topology of 3-manifolds and related topics, Prentice-Hall, (1962).
4. O. G. Harrold, The enclosing of simple arcs and curves by polyhedra in 3-space, Duke Math. J., 21 (1959), 615-622.
5. ——, Combinatorial structures, local unknottedness, and local peripheral unknottedness. Topology of 3-Manifolds and related topics, Prentice-Hall, (1962).

Virginia Polytechnic Institute

[^0]: Received January 30, 1963.

