THE RELATIONSHIP BETWEEN THE RADICAL OF A LATTICE-ORDERED GROUP AND COMPLETE DISTRIBUTIVITY

PAUL CONRAD

1. Introduction. Throughout this note let G be a lattice-ordered group (notation 1-group). G is said to be *representable* if there exists an 1-isomorphism of G onto a subdirect sum of a cardinal sum of totally ordered groups (notation 0-groups). In particular, every abelian 1-group is representable. G is said to be *completely distributive* if for $g_{ij} \in G$

$$\bigwedge_{i \in I} \bigvee_{j \in J} g_{ij} = \bigvee_{f \in J^I} \bigwedge_{i \in I} g_{if(i)}$$

provided the indicated joins and intersections exist.

For each $0 \neq g$ in G let R_g be the subgroup of G that is generated by the set of all 1-ideals of G not containing g. Then R_g is an 1-ideal of G and the radical of G is defined to be

$$R(G) = \cap R_g \qquad (0 \neq g \in G)$$
 .

In [2] it is shown that if G is a divisible abelian 1-group, then there exists a minimal Hahn-type embedding of G into an 1-group of real valued functions if and only if R(G) = 0. Thus it would be useful to identify the class of abelian 1-groups with zero radicals, and to examine the properties of non-abelian 1-groups with zero radicals. In our main theorem we show that a representable 1-group G is completely distributive if and only if R(G) = 0. We also show R(G) = 0 if and only if G has a regular representation. This settles a question raised by Weinberg [6].

With no restrictions on G we show that R(G) is completely determined by the lattice \mathscr{L} of all 1-ideals of G. In particular, if Gis a representable 1-group, then whether or not G is completely distributive depends only on \mathscr{L} .

The author would like to express his gratitude to A. H. Clifford who read a rough draft of this note and made valuable suggestions. In particular, the present forms of Lemmas 1 and 2 are due to him.

2. Regular and essential L-ideals. If $g \in G$ and M is an 1-ideal of G that is maximal with respect to $g \notin M$, then M is called a regular 1-ideal of G. Let M^* be the intersection of all 1-ideals of G that

Received June 6, 1963. This research was supported by a grant from the National Science Foundation.

properly contain M. Then since $g \in M^*$, it follows that M^* is the unique 1-ideal of G that covers M. Let Γ be an index set for the set of all pairs (G^{γ}, G_{γ}) of 1-ideals of G such that G_{γ} is regular and G^{γ} covers G_{γ} . Define $\alpha < \beta$ if $G^{\alpha} \subseteq G_{\beta}$. Then Γ is a *po*-set, and we say that $\gamma \in \Gamma$ is a value of g if $g \in G^{\gamma} \backslash G_{\gamma}$. In particular, the set of all values of g is a trivially ordered subset of Γ . An element $\gamma \in \Gamma$ is called *essential* if there exists an $0 \neq h$ in G such that all the values of h are $\leq \gamma$. In this case G_{γ} is called an *essential* 1-*ideal* of G, and if $g \in G^{\gamma} \backslash G_{\gamma}$, then we say that γ is an *essential value* of g.

Clearly the set E of all essential elements in Γ is a dual ideal of Γ ($\alpha < \beta \in \Gamma$, $\alpha \in E \rightarrow \beta \in E$). The following lemma shows that the radical R(G) of G is completely determined by the essential ideals of G.

LEMMA 1. The radical of G is the intersection of essential 1-ideals of G: $R(G) = \bigcap G_{\gamma}(\gamma \in E)$.

Proof. If $g \notin R(G)$, then $g \notin R_h$ for some h in G and by Zorn's lemma there exists an 1-ideal M of G that is maximal with respect to $g \notin M \supseteq R_h$. Thus $M = G_\gamma$ for some $\gamma \in E$, $g \in G^\gamma \backslash G_\gamma$ and hence ghas an essential value. If $x \in \cap G_\gamma$, then x has no essential value and hence $x \in R(G)$. Therefore $\cap G_\gamma \subseteq R(G)$. If E is the null set, then $G = \cap G_\gamma \supseteq R(G)$ and if $\gamma \in E$, then there exists $0 \neq h_\gamma \in G$ such that if δ is a value of h_γ , then $\delta \leq \gamma$ and hence $G_\delta \leq G_\gamma$. Thus $R_{h_\gamma} \subseteq G_\gamma$ and so

$$igcap_{\gamma \in E} G_\gamma \supseteq igcap_{\gamma \in E} R_{h_\gamma} \supseteq igcap_{0
eq g \in G} R_g = R(G)$$
 .

COROLLARY. R(G) = 0 if and only if each nonzero element in G has at least one essential value.

We next show that R(G) depends only on the lattice \mathscr{L} of all 1-ideals of G. Note that a regular 1-ideal M of G is characterized by the fact that it is meet irreducible in \mathscr{L} . That is, if M^* is the intersection of all 1-ideals of G that properly contain M, then M is properly contained in M^* .

LEMMA 2. $\beta \in \Gamma$ is essential if and only if $\bigcap \{G_{\gamma} : \gamma \in \Gamma \text{ and } \gamma \leq \beta\} \neq 0.$

Proof. Suppose that $0 < h \in \bigcap \{G_{\gamma} : \gamma \in \Gamma \text{ and } \gamma \leq \beta\}$ and let α be a value of h. Then $h \notin G_{\alpha}$ and so $\alpha \leq \beta$. Thus all the values of h are $\leq \beta$, and hence β is essential. Conversely assume that G_{β} is essential and pick $0 < h \in G$ such that all the values of h are $\leq \beta$. Then

 $h \in \cap \{G_{\gamma} : \gamma \in \Gamma \text{ and } \gamma \leq \beta\}$. For if $h \notin G_{\gamma}$, where $\gamma \leq \beta$, then h must have a value $\alpha \geq \gamma$ which is impossible.

COROLLARY. R(G) is an invariant of the lattice \mathcal{L} of all 1-ideals of G.

LEMMA 3. For an 1-group G the following are equivalent.

(1) G/M is an 0-group for each regular 1-ideal M of G.

(2) G is representable.

Proof. For each $0 \neq g$ in G pick an *l*-ideal M_g of G that is maximal with respect to not containing g. Then $\cap M_g = 0$, and if (1) is satisfied, then each G/M_g is an 0-group and the mapping of $x \in G$ upon $(\dots, M_g + x, \dots)$ is a representation of G. Conversely suppose that G has a representation, then clearly

(3) if $a, b \in G^+$ and $a \wedge b = 0$, then $a \wedge (-x + b + x) = 0$ for all $x \in G$. In fact, Sik [5] established that (2) and (3) are equivalent, but we only need that (2) implies (3). Let M be an 1-ideal of G that is maximal with respect to not containing $0 < a \in G$, and let A = M + a. Suppose (by way of contradiction) that G/M is not an 0-group. Then there exist strictly positive elements X and Z in G/M such that $X \wedge Z = M$.

Case I. $X \wedge A = M$. Then $P(A) = \{Y \in G/M : |Y| \wedge A = M\}$ is a convex 1-subgroup of G/M that contains X but not A. If $M < Y \in P(A)$, then Y = M + y, where $0 < y \in G$, and $a = a \wedge y + a'$, $y = a \wedge y + y'$, $a' \wedge y' = 0$. Moreover

$$M = A \wedge Y = M + a \wedge M + y = M + a \wedge y$$
.

Thus $a \wedge y \in M$ and so Y = M + y' and A = M + a'. But by (3), $a' \wedge (-g + y' + g) = 0$ for all g in G and hence $A \wedge -(M + g) + Y + (M + g) = M$. Thus P(A) is a nonzero 1-ideal of G/M that does not contain A, and hence there exists an 1-ideal of G that properly contains M but not a, but this contradicts the maximality of M.

Case II. $X \wedge A \neq M$. Then P(X) is an 1-ideal of G/M that contains Z but not A, and once again we contradict the maximality of M. Therefore G/M is an 0-group, and hence (2) implies (1).

COROLLARY. If G is representable and R(G) = 0, then an element g is positive in G if and only $G_{\gamma} + g$ is positive for all essential values γ of g.

Proof. If g is positive in G, then $G_{\gamma} + g$ is positive for all values γ of g, essential or otherwise. If g is not positive, then $g = g \vee 0 + q$

 $g \wedge 0 = g^+ + g^-$, where $g^- \neq 0$ and $g^+ \wedge -g^- = 0$. By the Corollary to Lemma 1 there exists an essential value γ of g^- and by Lemma 3, G/G_{γ} is an 0-group, and so $g^+ \in G_{\gamma}$. Thus γ is also an essential value of g and $G_{\gamma} + g = G_{\gamma} + g^-$ is negative.

LEMMA 4. If $0 < g \in \lor A_{\lambda}$, where the A_{λ} are 1-ideals of G, then $g = g_1 \lor \cdots \lor g_n$, where $0 \leq g_i \in \bigcup A_{\lambda}$ for $i = 1, \cdots, n$.

Proof. This proof is due to T. Lloyd. Clearly $g = a_1 + \cdots + a_n$, where the $a_i \in A_{\lambda i}$ for $i = 1, \dots, n$. Thus it suffices to show that $g \leq a'_1 \vee \cdots \vee a'_n$, where $a'_i \in A_{\lambda i}$ for $i = 1, \dots, n$. For then

$$g = ((a'_1 \lor 0) \land g) \lor \cdots \lor ((a'_n \lor 0) \land g)$$

= $g_1 \lor \cdots \lor g_n$

where $0 \leq g_i \in A_{\lambda i}$ for $i = 1, \dots, n$. If n = 2, then

$$a_{1}+a_{2} \leqq 2a_{1} \lor (a_{1}+a_{2}-a_{1}+a_{2}) = a_{1}' \lor a_{2}'$$

because

$$egin{array}{ll} 0 \leq |\,a_1-a_2\,| = (a_1-a_2) \,ee\, (a_2-a_1) \ = -a_1 + (2a_1 \lor (a_1+a_2-a_1+a_2)) - a_2 \ . \end{array}$$

Thus $a_1 + \cdots + a_n \leq (a_1 + \cdots + a_{n-1})' \vee a'_n$, and since $(a_1 + \cdots + a_{n-1})' \in \vee A_{\lambda i}$ $(i = 1, \dots, n-1)$, $(a_1 + \cdots + a_{n-1})' = b_1 + \cdots + b_{n-1}$, where $b_i \in A_{\lambda i}$ for $i = 1, \dots, n-1$. Thus by induction $b_1 + \cdots + b_{n-1} \leq a'_1 \vee \cdots \vee a'_{n-1}$ and hence $g \leq a'_1 \vee \cdots \vee a'_n$.

3. Completely distributive L-groups. Let A be a sublattice and and subdirect sum of a cardinal sum B of 0-groups $B_{\lambda}(\lambda \in A)$. If for each λ in A, the projection ρ_{λ} of A onto B_{λ} preserves infinite joins, then A is called a *regular* subgroup of B. An 1-group G is said to have a *regular representation* if it is 1-isomorphic to a regular subgroup of a cardinal sum of 0-groups. It is easy to prove that an 1-group G with a regular representation is completely distributive [6]. Weinberg has also shown ([6] Proposition 1.3) that the natural homomorphism of an 1-group G onto G/J, where J is an 1-ideal of G, preserves infinite joins if and only if J is closed $(\forall j_{\lambda} \in G, \{j_{\lambda} : \lambda \in A\} \subseteq J \rightarrow \forall j_{\lambda} \in J)$. Thus it follows that G has a regular representation if and only if there exists a family of closed 1-ideals J_{λ} of G such that $\cap J_{\lambda} = 0$ and each G/J_{λ} is an 0-group.

LEMMA 5. (Weinberg) An 1-group G is completely distributive if and only if for each 0 < g in G there exists $0 < g^*$ in G such that

$$g = \bigvee g_{\lambda}, g_{\lambda} \in G^{+} \rightarrow g^{*} \leq g_{\lambda} \text{ for some } \lambda.$$

THEOREM. For a representable 1-group G the following are equivalent.

- (1) R(G) = 0.
- (2) Each essential 1-ideal of G is closed and $\cap G_{\gamma} = 0$ ($\gamma \in E$).
- (3) G has a regular representation.
- (4) G is completely distributive.

Proof. By Lemma 3, for each γ in E, G/G_{γ} is an 0-group, and hence by the preceding discussion (2) implies (3) and (3) implies (4). Suppose that G is completely distributive, and assume (by way of contradiction) that $0 < g \in R(G)$. Then by Lemma 5 there exists $0 < g^* \in G$ such that if $g = \bigvee g_{\alpha} (g_{\alpha} \in G^+)$, then $g^* \leq g_{\alpha}$ for some α . Since $g \in R(G)$ it follows that $g \in R_{g^*} = \bigvee A_{\lambda}$. where the A_{λ} are the 1-ideals of G not containing g^* . Thus by Lemma 4, $g = g_1 \lor \cdots \lor g_n$, where $0 \leq g_i \in \bigcup A_{\lambda}$. But then $g^* \leq g_i$ for some i, and hence $g^* \in \bigcup A_{\lambda}$ a contradiction. Therefore (4) implies (1).

To complete the proof we must show that (1) implies (2). If (1) is satisfied, then by Lemma 1, $\bigcap G_{\gamma} = 0$ ($\gamma \in E$). Let G_{δ} be an essential 1-ideal of G and assume (by way of contradiction) that G_{δ} is not closed. Then there exists $g \in G^+ \setminus G_{\delta}$ such that $g = \bigvee g_j(g_j \in G_{\delta}^+)$. Since G_{δ} is essential there exists $0 < h \in G$ such that all the values of h are $\leq \delta$. We shall show that for some such h, $g - h \geq g_j$ for all j, and hence $\lor g_j > \lor g_j - h = g - h \geq \lor g_j$.

Case I. There exists $0 < h \in G$ such that all the values of h are $\leq \delta$ and $G_{\delta} + h < G_{\delta} + g$. Since $g - h \notin G_{\delta}$ and $g_j \in G_{\delta}$, $g - h - g_j \neq 0$. By the Corollary to Lemma 3 it suffices to show that $G_{\beta} + g - h - g_j$ is positive for all values β of $g - h - g_j$ in E. If $h \in G_{\beta}$, then $G_{\beta} + g - h - g_j = -h - g_j = G_{\beta} + g - g_j$ is positive. If $h \notin G_{\beta}$, then there exists a value γ of h such that $\gamma \geq \beta$. But then $\beta \leq \gamma \leq \delta$, and since $g - h - g_j \in G^{\beta} \setminus G_{\delta}, \ \beta = \delta$. Therefore $G_{\beta} + g - h - g_j = G_{\delta} + g - h$ is positive.

Case II. For each $0 < h \in G$ such that all of the values of h are $\leq \delta$, $G_{\delta} + h \geq G_{\delta} + g$. If $\delta > \gamma \in E$, then we may choose $0 < k \in G$ such that all of the values of k are $\leq \gamma < \delta$. But then $G_{\delta} + g > G_{\delta} =$ $G_{\delta} + k$. Therefore δ is minimal in E. If all values of 0 < h are $\leq \delta$, then $G_{\delta} + h \geq G_{\delta} + g$ and so $G_{\delta} + g \wedge h = G_{\delta} + g$. If β is a value of $g \wedge h$ in E, then $g \wedge h \in G^{\beta} \backslash G_{\beta}$ and hence $h \notin G_{\beta}$. Thus there exists a value γ of h such that $\beta \leq \gamma \leq \delta$ and since δ is minimal in $E, \beta = \delta$. Thus without loss of generality, $0 < h \in G, \delta$ is the only value of hin E and $G_{\delta} + h = G_{\delta} + g$. If $g - h - g_{j} \neq 0$ and β is a value of $g - h - g_{j}$ in E then $h \in G_{\beta}$. Otherwise $\beta = \delta$, but $g - h - g_{j} \in G_{\delta}$. Therefore $G_{\beta} + g - h - g_{j} = G_{\beta} + g - g_{j}$ is positive for all values β of $g - h - g_j$ in *E*. This completes the proof of our theorem. In proving that (4) implies (1) we did not use the hypothesis that *G* is representable. Thus we have

COROLLARY I. If G is a completely distributive 1-group, then R(G) = 0.

From the Corollary to Lemma 2 we have

COROLLARY II. If G is a representable 1-group, then whether or not G is completely distributive depends only on the lattice \mathcal{L} of all 1-ideals of G.

4. Remarks and examples. Let P be the 1-group of all order preserving permutations of the real line (with fg(x) = f(g(x))) and f positive if $f(x) \ge x$ for all x). Let

 $A = \{f \in P : f \text{ induces the identity on } (-\infty, a] \text{ for some } a\}$, and

 $B = \{f \in P : f \text{ induces the identity on } [a, \infty) \text{ for some } a\}$. Let $C = A \cap B$. Then Holland [4] has shown that A, B and C are the only proper 1-ideals of G, and Higman [3] has shown that C is algebraically simple. Therefore 0 is the only essential 1-ideal of C and since C/0 is not an 0-group it follows from Lemma 3 that C is not representable. Therefore C satisfies property (2) of the theorem, but not property (3).

(G, B) is the only value of each element in $A \setminus B$ and (C, 0) is the only value of each nonzero element in C. Thus B and 0 are essential 1-ideals of P, and in particular, P satisfies (1). For each $n = 1, 2, \cdots$ let

$${f}_n(x)=egin{cases} 2x & ext{if } x \leq n \ rac{x+3n}{2} & ext{if } n \leq x \leq 3n \ x & ext{if } 3n \leq x \ . \end{cases}$$

Then $(\vee f_n)(x) = 2x$, and hence the f_n belong to B, but $\vee f_n \notin B$. Therefore P satisfies (1) but not (2).

A simple application of Lemma 5 shows that P is completely distributive (or see [6] Example 3.3). Therefore (4) does not imply (2) or (3). On the other hand for arbitrary 1-groups, $(3) \rightarrow (2) \rightarrow (1)$. The remaining question is whether or not (1) or (2) implies (4) for non-representable 1-groups? Note that if R(G) = 0 implies complete distributivity, then every 1-group with no proper 1-ideals is completely distributive, and in particular, every 1-group that is algebraically simple is completely distributive.

If the radical used in this note is replaced by one constructed in

498

exactly the same way, but with 1-ideals replaced by convex 1-subgroups, then if this new radical is zero, the group is completely distributive. Also the new radical is an invariant of the lattice of all convex 1-subgroups of G. The proofs of these statements are analogous to those in this paper using the fact that if C is a regular convex 1-subgroup, then the set of right cosets of C in G is totally ordered by

$$C + x \leq C + y$$
 if $x \leq y + c$ for some $c \in C$.

Unfortunately the converse to the above is false. For example, the new radical for P is P itself and yet P is completely distributive.

Let G be an Archimedean 1-group. By Theorem 5.7 in [2], R(G) = 0 if and only if G has a basis, and by Theorem 7.3 in [1], G has a basis if and only if G is (isomorphic to) a subdirect sum of a cardinal sum of subgroups R_{γ} of the reals which contains the finite cardinal sum of the R_{γ} . Thus we have a new proof for one of the main results in [6].

References

1. P. Conrad, Some structure theorems for lattice-ordered groups, Trans. Amer. Math. Soc., **99** (1961), 212-240.

2. P. Conrad, J. Harvey and C. Holland, *The Hahn embedding theorem for lattice-ordered groups*, Trans. Amer. Math. Soc., **108** (1963), 143-169.

3. G. Higman, On infinite simple permutation groups, Publ. Math. Debrecen 3, (1953-54), 221-226.

4. C. Holland, The lattice-ordered group of automorphisms of an ordered set, Michigan Math. J., 10 (1963), 399-408.

5. F. Sik, Über Summen einfach geordneter Gruppen, Czech. Math. J., 8 (1958), 22-53.

6. E. C. Weinberg, Completely distributive lattice-ordered groups, Pacific J. Math., 12 (1962), 1131-1137.