
LINEAR TRANSFORMATIONS ON GRASSMANN SPACES

R. WEST WICK

1* Let U denote an ^-dimensional vector space over an algebraically
closed field F, and let Gnr denote the set of nonzero pure r-vectors of
the Grassmann product space A r U. Let T be a linear transformation
of A r U which sends Gnr into Gnr. In this note we prove that T is
nonsingular, and then, by using the results of Wei-Liang Chow in [1],
we determine the structure of T.

For each z — xx /\ /\ xre Gnr, we let [z] denote the r-dimensional
subspace of Uspanned by the vectors xlf •••, xr. By Lemma 5 of [1],
two independent elements z± and z2 of Gnr span a subspace all of whose
nonzero elements are in Gnr if and only if dim ([zj Π [z2]) = r — 1; that
is, if and only if [2X] and [z2] are adjacent. If V Q Λ r Uis a subspace
such that each nonzero vector in V is in Gnr and if V is maximal
(that is, not contained in a larger such subspace) then {[z] \ze V, z Φ 0}
is a maximal set of pairwise adjacent r-dimensional subspaces of U.
These sets of subspaces are of two types; namely, the set of all
r-dimensional subspaces of U containing a common (r — l)-dimensional
subspace, and the set of all r-dimensional subspaces of an (r + 1)-
dimensional subspace of U. We adopt the usual convention of calling
these sets of subspaces maximal sets of the first and second kind
respectively. We will let Ar denote the set of those maximal V which
determine a set of pairwise adjacint subspaces of the first kind, and
we will let Br denote the set of those maximal V which determine a
set of pairwise adjacent subspaces of the second kind.

2* In this section we prove that if T sends each member of Br

into a member of Br then T is nonsingular.
Let Ul9 , Ut be fc-dimensional pairwise adjacent subspaces of U

and let zt e Gnk be such that fo] = ί/* for i = 1, , t. Then {Ulf , Ut}
is said to be independent if and only if {zl9 , zt} is an independent
subset of Afc U. We note the following facts concerning an independent
set {Uu , Ut). If it is of the first kind (in the sense of the previous
section) then there is an independent set of vectors {xlf , xk-.lf yu , yt)
of U such that for i = 1, , t, C/i — ζxl9 , xk~19 y» > < •> denotes
the linear subspace spanned by the vectors enclosed. If it is of the
second kind, then there is an independent set of vectors {xl9 , xk+1}
such that Ui = ζx19 , x^l9 xi+1, , xk+^9 for i = 1, , t. It is easily
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deduced from this that dim (A r E7i + + Λ r Ut) is equal to t(k ~ V) +

( ^ ) or Σ<=o (*. __ 1 ) according as the set of subspaces {Ui) is of

the first or second kind. We adopt the usual convention that ( j =

0 if m < n. Finally, if the set {Ul9 , Ut} is not independent, then
for some i, A r U{ C Λ r Ui + + A r C -̂i" In fact, the choice of i
such that {«!, , «i_i} is independent and 2;e<X, •• ,^_1> will do.

We require the

LEMMA 1. Let {Ulf •••, ί7s+1} be a set of pair wise adjacent k-
dimensional subspaces of U. Suppose further that the set is independent
and is of the second kind. Let V S A r Ux + A r Us+1 be a subspace

/h o\

with dimension ί \, where s^r^k. Then there is a set
\τ — sj

{Vu , Vs} of pair wise adjacent k-dimensional subspaces of U such

that FΠ (A r Vx + + A r V.) Φ {0}.

r — s) a n ( * ^ e t {zi>"m>z»} ^ e a basis of V.

Choose an independent set of vectors {xlf , xk+1} of U such that for

1 = 1, , s + 1, Ui = ζxlf , Xi-U xi+1, , xk+iy. We can write

Zi = zi + xxΛ Λ xs-ι A xs A z\ + xx A Λ xs-λ A xs+1 A z\

where

z\z A Ux+ ••• + A ί/.-i and 4 4 e Λ < » s + 2 , , % i )

for i = 1, , m. In the case that s — 1, we take sj G A r ^3> •> »*+i>

In the case that s = r, we take z\, z\ e F. If {z\, , zf\ or {sj, •••,«?}

is dependent, then we can form a linear combination of zl9 , 2;m which

will be in A r E7ί+ W i + A r ^ s + i or A r ^ + + Λ r ϋ.-i + A r ϋ .

respectively. If, on the other hand, both sets are independent then

each is a basis of Ar~s <Λ+2, , aWi> since dim (Ar~s <X+2, , %+i» =

( r Z g) = m L e t ^ = Σ?=i αϋ«3, i = 1, , m. Choose λ ^ 0 and 6* e F,

not all equal to zero, such that

Then

0 ^ Σ Mi = Σ «ί + Σ «i A Λ a.-! Λ (xs + λ~^s+1) Λ 6^1
3=1 3=1 3=1

e Λ ϋ i + + A ^ 3 - 1 + A Vi

where F x = <*t , »,_!, xε + λ~xa;,+1, xs+2, , xk+1>. The subspaces
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Ulf , Us-U VΊ are pairwise adjacent and so the Lemma is proved.
The nonsingularity of T is now proved as follows. Let i f be a

subspace of U. We prove, by induction on the dimension of W, that
T is one-to-one on A r ^ and that the image of /sj W under T is
A r W for some subspace W of U with dim(tF) = dim(W'). When
dim (W) = r + 1 this is clear since we are assuming that Br is sent into
Br by T. Suppose that the statement has been proved for fc-dimensional
subspaces, and consider a (k + l)-dimensional subspace W of U. Let
s be the largest integer such that for any set {Wl9 , Ws} of pairwise
adjacent fc-dimensional subspaces of W, T is one-to-one on h? Wx +
•• + ArΫPs I f s ^ r + 1 then T is one-to-one on A r W, since in
this case, for an independent set {Wl9 •••, Ws} we must have A r W —
A r W1 + + A r Wa. Suppose then that 1 ^ s ^ r and let {Ulf , Us+1}
be any set of s + 1 pairwise adjacent Λ-dimensional subspaces of W.
If the set is dependent then T is one-to-one A r Uλ + + A r Us+1

since we may drop one of the terms. Therefore we assume that the
set is independent. Choose fe-dimensional subspaecs Ul, •••, U'8+1 such
that 7\Ar Ui) = A r Ul for i = 1, , s + 1. For each j ^ s, Γ maps
A r Z7i + + A r Uj onto A r C7 + + A r U's. Therefore, since T
is one-to-one on A r Ux + + A r Us, the set {C//, , U's} is independent.
Furthermore, the set {Ul, , ?7/+i} is also independent. If not, then the
image under T of both A r Uλ + + A r U. and A r U, + A r ^ s+i is
A r Ul + + A r Us. But then the dimension of the null space of
T in A r Ux + + A r Us+1 is at least as large as the difference in
the dimensions of A r Ux + + A r Us+1 and A r Ux + + A r Ua9

__ ). We apply Lemma 1 to contradict the choice of s.

It follows that T is one-to-one on all of A r W. Finally, let {Wl9 , Wk+1}
be an independent set of Λ-dimensional pairwise adjacent subspaces of
W (necessarily of the second kind). Let W[ be chosen so that
Γ(A r Wi) = Ar Wl. It follows easily that {Wl, •••, WUi} is of the
second kind also, so that the image of Ar W is A r W' where W is
the (k + l)-dimensional subspace of U containing Wl, •••, Wί+1. By
taking W = U we see that T is one-to-one on A r U.

3* It is necessary to investigate whether a general Γ does
necessarily send each element of Br into Br. For the cases n > 2r,
n < 2r, this is proved directly, using Lemma 2. The case n = 2r
requires a more delicate argument, given at the end of this section;
there it is shown that if some element of Br is sent into Br by Γ,
then T sends Br into I?r.

LEMMA 2. Lβ£ r < w and let Vi αntZ F2 be in Ar such that
Vx Π F2 ^ {0}. Γfeβ%, if V S VΊ + F2 and dim ( F ) = w - r, ^β have
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Proof. Let E7i be the (r — l)-dimensional subspace of U determined
by Vi for ΐ = 1, 2. Since Vi Π F2 ^ {0}, either U, = U2 or dim (t/Ί Π t/,) =
r-2.

If t/Ί = Z72 then Vx — V29 so that in this case it is clear that
Vf]GnrΦφ.

Suppose that dim (ί/ί Π ϋi) — r — 2 and let {xl9 , #r_2} be a basis
of this intersection. Choose y{ such that U{ — ζxu , #r_2, ?/,)> for
i = 1, 2. Choose ^ and t\ in Z7, i = 1, , n — r, such that

fe^^Λ Λ xr-2 Λ (l/i Λ Ui + τ/2 Λ Vt) \i = 1, , w — r}

forms a basis of F. If

to, , α;r_2, ̂ , y2, vl9 , ^_y} or {x,, , xr_2, i/!, j / 2 , u l y , %n̂ r}

is dependent, then there is a linear combination of the z{ which is in
Vx or V2 respectively. If, on the other hand, both sets are independent,
then they are both bases for U and we may write

n-~ r

ui-=-wiΛ- CiV2 + Σ aa^3 , ΐ = 1, , w — r ,
3=1

where wi e ζxu , α?r_2, ^)> and cif aiό e F. We note that det {ai5) ψ 0
so we can choose λ Φ 0 and 6̂  for i = 1, , n — r, not all zero, such
that λ bj = Σ?=ir &^ίi Then

0 = α?! Λ Λ Xr-2 Λ (Vx + λ"1^) Λ [ ( Σ " M i V + λ Σ"
L\i=i / 3=1

is an element of Vf]Gnr. This proves the Lemma.
For n Φ 2r the image under T of an element of Br is an element

of Br. For n < 2r this is clearly so since the subspaces of A r U ίn Br

have dimension r + 1, which is greater than the dimension (n — r + 1)
of the subspaces in Ar.

For w > 2r we proceed as follows. The image of an Ar is an Ar.
Suppose that the image of a We Br is a subspace of a 7 G Ar. Choose
two elements Vx and V2 of Ar such that VΊ Π F2 ^ {0} and dim (FΊ Π TF) =
dim (V2 Π W) = 2. One does this by choosing Vx and F 2 so that the
(r — l)-dimensional subspaces of U determined by them are adjacent sub-
spaces of the (r + l)-dimensional subspace determined by W. Now,
T( Vx) = T{ V2) = V since each is in Ar and each intersects V in at
least two dimensions. Therefore T(V1 + V2) = Fand so the null space
of T in Vi + F2 has dimension equal to (2n — 2r + 1) — (n — r + 1) =
w — r. By Lemma 2, it follows that the null space of T intersects ,Gnr

whiςh contradicts the hypothesis that T sends Gnr into Gnr,
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In the case that n = 2r the image of a Br may be an Ar since
the dimensions are equal. However, we prove that if some Br is sent
into a Br by T, then the image of each Br is a Br. Suppose not.
Then we can choose (r + l)-dimensional subspaces Wλ and W2 of U
such that T(ArW1)eAr and T{^rW2)eBr. Furthermore, we can
choose WΛ and W2 adjacent, so that dim (Wx Π W2) = r. Choose three
distinct elements Vl9 V2, and F3 of Ar such that the (r — l)-dimensional
subspaces of U determined by these elements are contained in WΊΠ W2.
Then dim (F< Π A r Ws) = 2 for i = 1, 2, 8 and i - 1, 2, so that Γ(F,)
intersects T(Ar W, ) in at least two dimensions for each i, j . This
implies that each T(Vi) is equal to one of 7\Λr Wi) and so two of
them are equal. The argument of the previous paragraph now leads
to a contradiction.

4* By essentially the same argument as used by Chow in [1] to
prove his Theorem 1, we can prove that; if S is a nonsingular linear
transformation of A r U sending Gnr into Gnr, and if the image of each
Br is a Brj then S is a compound. (By a compound we mean a linear
transformation of Λ r U which is induced by a linear transformation
of U.)

In the case that n Φ 2r it follows that T is necessarily a compound.
For n = 2r, T is a compound if some jBr is sent into a 2?r. If we let
To denote a linear transformation of A r U induced by a correlation of
the r-dimensional subspaces of U, then To is nonsingular and sends
Gnr onto Gnr. The image of each Ar under To is a I?r. Therefore, if
a Br is sent by T into an Ary the T0T is a compound. We have
proved the

THEOREM. Let U be an n-dimensional vector space over an
algebraically closed field and let T be a linear transformation of
A r U which sends Gnr into Gnr. Then T is a compound except,
possibly, when n — 2r, in which case T may be the composite of a
compound and a linear transformation induced by a correlation of the
r-dimensional subspaces of U.
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