LINEAR TRANSFORMATIONS ON GRASSMANN SPACES

R. Westwick

1. Let U denote an n-dimensional vector space over an algebraically closed field F, and let $G_{n r}$ denote the set of nonzero pure r-vectors of the Grassmann product space $\Lambda^{r} U$. Let T be a linear transformation of $\Lambda^{r} U$ which sends $G_{n r}$ into $G_{n r}$. In this note we prove that T is nonsingular, and then, by using the results of Wei-Liang Chow in [1], we determine the structure of T.

For each $z=x_{1} \wedge \cdots \wedge x_{r} \in G_{n r}$, we let [z] denote the r-dimensional subspace of U spanned by the vectors x_{1}, \cdots, x_{r}. By Lemma 5 of [1], two independent elements z_{1} and z_{2} of $G_{n r}$ span a subspace all of whose nonzero elements are in $G_{n r}$ if and only if $\operatorname{dim}\left(\left[z_{1}\right] \cap\left[z_{2}\right]\right)=r-1$; that is, if and only if $\left[z_{1}\right]$ and $\left[z_{2}\right]$ are adjacent. If $V \subseteq \Lambda^{r} U$ is a subspace such that each nonzero vector in V is in $G_{n r}$ and if V is maximal (that is, not contained in a larger such subspace) then $\{[z] \mid z \in V, z \neq 0\}$ is a maximal set of pairwise adjacent r-dimensional subspaces of U. These sets of subspaces are of two types; namely, the set of all r-dimensional subspaces of U containing a common $(r-1)$-dimensional subspace, and the set of all r-dimensional subspaces of an $(r+1)$ dimensional subspace of U. We adopt the usual convention of calling these sets of subspaces maximal sets of the first and second kind respectively. We will let A_{r} denote the set of those maximal V which determine a set of pairwise adjacint subspaces of the first kind, and we will let B_{r} denote the set of those maximal V which determine a set of pairwise adjacent subspaces of the second kind.
2. In this section we prove that if T sends each member of B_{r} into a member of B_{r} then T is nonsingular.

Let U_{1}, \cdots, U_{t} be k-dimensional pairwise adjacent subspaces of U and let $z_{i} \in G_{n k}$ be such that $\left[z_{i}\right]=U_{i}$ for $i=1, \cdots, t$. Then $\left\{U_{1}, \cdots, U_{t}\right\}$ is said to be independent if and only if $\left\{z_{1}, \cdots, z_{t}\right\}$ is an independent subset of $\Lambda^{k} U$. We note the following facts concerning an independent set $\left\{U_{1}, \cdots, U_{t}\right\}$. If it is of the first kind (in the sense of the previous section) then there is an independent set of vectors $\left\{x_{1}, \cdots, x_{k-1}, y_{1}, \cdots, y_{t}\right\}$ of U such that for $i=1, \cdots, t, U_{i}=\left\langle x_{1}, \cdots, x_{k-1}, y_{i}\right\rangle \cdot\langle\cdots\rangle$ denotes the linear subspace spanned by the vectors enclosed. If it is of the second kind, then there is an independent set of vectors $\left\{x_{1}, \cdots, x_{k+1}\right\}$ such that $U_{i}=\left\langle x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{k+1}\right\rangle$, for $i=1, \cdots, t$. It is easily

[^0]deduced from this that $\operatorname{dim}\left(\Lambda^{r} U_{1}+\cdots+\Lambda^{r} U_{t}\right)$ is equal to $t\binom{k-1}{r-1}+$ $\binom{k-1}{r}$ or $\sum_{i=0}^{t-1}\binom{k-i}{r-1}$ according as the set of subspaces $\left\{U_{i}\right\}$ is of the first or second kind. We adopt the usual convention that $\binom{m}{n}=$ 0 if $m<n$. Finally, if the set $\left\{U_{1}, \cdots, U_{t}\right\}$ is not independent, then for some $i, \Lambda^{r} U_{i} \subseteq \Lambda^{r} U_{1}+\cdots+\Lambda^{r} U_{i-1}{ }^{\bullet}$ In fact, the choice of i such that $\left\{z_{1}, \cdots, z_{i-1}\right\}$ is independent and $z_{i} \in\left\langle z_{1}, \cdots, z_{i-1}\right\rangle$ will do.

We require the

Lemma 1. Let $\left\{U_{1}, \cdots, U_{s+1}\right\}$ be a set of pairwise adjacent k dimensional subspaces of U. Suppose further that the set is independent and is of the second kind. Let $V \cong \Lambda^{r} U_{1} \cdots+\Lambda^{r} U_{s+1}$ be a subspace with dimension $\binom{k-s}{r-s}$, where $s \leqq r \leqq k$. Then there is a set $\left\{V_{1}, \cdots, V_{s}\right\}$ of pairwise adjacent k-dimensional subspaces of U such that $V \cap\left(\Lambda^{r} V_{1}+\cdots+\Lambda^{r} V_{s}\right) \neq\{0\}$.

Proof. Let $m=\binom{k-s}{r-s}$ and let $\left\{z_{1}, \cdots, z_{m}\right\}$ be a basis of V. Choose an independent set of vectors $\left\{x_{1}, \cdots, x_{k+1}\right\}$ of U such that for $i=1, \cdots, s+1, U_{i}=\left\langle x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{k+1}\right\rangle$. We can write

$$
z_{i}=z_{1}^{i}+x_{1} \wedge \cdots \wedge x_{s-1} \wedge x_{s} \wedge z_{2}^{i}+x_{1} \wedge \cdots \wedge x_{s-1} \wedge x_{s+1} \wedge z_{3}^{i}
$$

where

$$
z_{1}^{i} \in \Lambda^{r} U_{1}+\cdots+\Lambda^{r} U_{s-1} \quad \text { and } \quad z_{2}^{i}, z_{3}^{i} \in \Lambda^{r-s}\left\langle x_{s+2}, \cdots, x_{k+1}\right\rangle
$$

for $i=1, \cdots, m$. In the case that $s=1$, we take $z_{1}^{i} \in \Lambda^{r}\left\langle x_{3}, \cdots, x_{k+1}\right\rangle$. In the case that $s=r$, we take $z_{2}^{i}, z_{3}^{i} \in F$. If $\left\{z_{2}^{1}, \cdots, z_{2}^{m}\right\}$ or $\left\{z_{3}^{1}, \cdots, z_{3}^{m}\right\}$ is dependent, then we can form a linear combination of z_{1}, \cdots, z_{m} which will be in $\Lambda^{r} U_{1}+\cdots \mathbf{V}^{r}{ }_{s-1}+\Lambda^{r} U_{s+1}$ or $\Lambda^{r} U_{1}+\cdots+\Lambda^{r} U_{s-1}+\Lambda^{r} U_{s}$ respectively. If, on the other hand, both sets are independent then each is a basis of $\Lambda^{r-s}\left\langle x_{s+2}, \cdots, x_{k+1}\right\rangle \operatorname{since} \operatorname{dim}\left(\Lambda^{r-s}\left\langle x_{s+2}, \cdots, x_{k+1}\right\rangle\right)=$ $\binom{k-s}{r-s}=m$. Let $z_{2}^{i}=\sum_{j=1}^{m} a_{i j} z_{3}^{j}, i=1, \cdots, m$. Choose $\lambda \neq 0$ and $b_{i} \in F$, not all equal to zero, such that

$$
\lambda b_{j}=\sum_{i=1}^{m} b_{i} a_{i j}, \quad j=1, \cdots, m
$$

Then

$$
\begin{aligned}
0 \neq \sum_{j=1}^{m} b_{j} z_{j} & =\sum_{j=1}^{m} z_{1}^{j}+\sum_{j=1}^{m} x_{1} \wedge \cdots \wedge x_{s-1} \wedge\left(x_{s}+\lambda^{-1} x_{s+1}\right) \wedge b_{j} z_{2}^{j} \\
& \in \Lambda U_{1}+\cdots+\Lambda U_{s-1}+\Lambda V_{1}
\end{aligned}
$$

where $\quad V_{1}=\left\langle x_{1} \cdots, x_{s-1}, x_{s}+\lambda^{-1} x_{s+1}, x_{s+2}, \cdots, x_{k+1}\right\rangle$. The subspaces
$U_{1}, \cdots, U_{s-1}, V_{1}$ are pairwise adjacent and so the Lemma is proved.
The nonsingularity of T is now proved as follows. Let W be a subspace of U. We prove, by induction on the dimension of W, that T is one-to-one on $\mathbf{\Lambda}^{r} W$ and that the image of $\mathbf{\Lambda}^{r} W$ under T is $\Lambda^{r} W^{\prime}$ for some subspace W^{\prime} of U with $\operatorname{dim}(W)=\operatorname{dim}\left(W^{\prime}\right)$. When $\operatorname{dim}(W)=r+1$ this is clear since we are assuming that B_{r} is sent into B_{r} by T. Suppose that the statement has been proved for k-dimensional subspaces, and consider a $(k+1)$-dimensional subspace W of U. Let s be the largest integer such that for any set $\left\{W_{1}, \cdots, W_{s}\right\}$ of pairwise adjacent k-dimensional subspaces of W, T is one-to-one on $\Lambda^{r} W_{1}+$ $\cdots+\Lambda^{r} W_{s}$. If $s \geqq r+1$ then T is one-to-one on $\Lambda^{r} W$, since in this case, for an independent set $\left\{W_{1}, \cdots, W_{s}\right\}$ we must have $\Lambda^{r} W=$ $\Lambda^{r} W_{1}+\cdots+\Lambda^{r} W_{s}$. Suppose then that $1 \leqq s \leqq r$ and let $\left\{U_{1}, \cdots, U_{s+1}\right\}$ be any set of $s+1$ pairwise adjacent k-dimensional subspaces of W. If the set is dependent then T is one-to-one $\Lambda^{r} U_{1}+\cdots+\Lambda^{r} U_{s+1}$ since we may drop one of the terms. Therefore we assume that the set is independent. Choose k-dimensional subspaecs $U_{1}^{\prime}, \cdots, U_{s+1}^{\prime}$ such that $T\left(\Lambda^{r} U_{i}\right)=\Lambda^{r} U_{i}^{\prime}$ for $i=1, \cdots, s+1$. For each $j \leqq s, T$ maps $\Lambda^{r} U_{1}+\cdots+\Lambda^{r} U_{j}$ onto $\Lambda^{r} U_{1}^{\prime}+\cdots+\Lambda^{r} U_{j}^{\prime}$. Therefore, since T is one-to-one on $\Lambda^{r} U_{1}+\cdots+\Lambda^{r} U_{s}$, the set $\left\{U_{1}^{\prime}, \cdots, U_{s}^{\prime}\right\}$ is independent. Furthermore, the set $\left\{U_{1}^{\prime}, \cdots, U_{s+1}^{\prime}\right\}$ is also independent. If not, then the image under T of both $\Lambda^{r} U_{1}+\cdots+\Lambda^{r} U_{s}$ and $\Lambda^{r} U_{1}+\cdots \Lambda^{r} U_{s+1}$ is $\Lambda^{r} U_{1}^{\prime}+\cdots+\Lambda^{r} U_{s}^{\prime}$. But then the dimension of the null space of T in $\Lambda^{r} U_{1}+\cdots+\Lambda^{r} U_{s+1}$ is at least as large as the difference in the dimensions of $\Lambda^{r} U_{1}+\cdots+\Lambda^{r} U_{s+1}$ and $\Lambda^{r} U_{1}+\cdots+\mathbf{\Lambda}^{r} U_{s}$, that is, $\binom{k-s}{r-s}$. We apply Lemma 1 to contradict the choice of s. It follows that T is one-to-one on all of $\Lambda^{r} W$. Finally, let $\left\{W_{1}, \cdots, W_{k+1}\right\}$ be an independent set of k-dimensional pairwise adjacent subspaces of W (necessarily of the second kind). Let W_{i}^{\prime} be chosen so that $T\left(\Lambda^{r} W_{i}\right)=\Lambda^{r} W_{i}^{\prime}$. It follows easily that $\left\{W_{1}^{\prime}, \cdots, W_{k+1}^{\prime}\right\}$ is of the second kind also, so that the image of $\Lambda^{r} W$ is $\Lambda^{r} W^{\prime}$ where W^{\prime} is the $(k+1)$-dimensional subspace of U containing $W_{1}^{\prime}, \cdots, W_{k+1}^{\prime}$. By taking $W=U$ we see that T is one-to-one on $\Lambda^{r} U$.
3. It is necessary to investigate whether a general T does necessarily send each element of B_{r} into B_{r}. For the cases $n>2 r$, $n<2 r$, this is proved directly, using Lemma 2. The case $n=2 r$ requires a more delicate argument, given at the end of this section; there it is shown that if some element of B_{r} is sent into B_{r} by T, then T sends B_{r} into B_{r}.

Lemma 2. Let $r<n$ and let V_{1} and V_{2} be in A_{r} such that $V_{1} \cap V_{2} \neq\{0\}$. Then, if $V \leqq V_{1}+V_{2}$ and $\operatorname{dim}(V)=n-r$, we have $V \cap G_{n r} \neq \phi$.

Proof. Let U_{i} be the ($r-1$-dimensional subspace of U determined by V_{i} for $i=1,2$. Since $V_{1} \cap V_{2} \neq\{0\}$, either $U_{1}=U_{2}$ or $\operatorname{dim}\left(U_{1} \cap U_{2}\right)=$ $r-2$.

If $U_{1}=U_{2}$ then $V_{1}=V_{2}$, so that in this case it is clear that $V \cap G_{n r} \neq \phi$.

Suppose that $\operatorname{dim}\left(U_{1} \cap U_{2}\right)=r-2$ and let $\left\{x_{1}, \cdots, x_{r-2}\right\}$ be a basis of this intersection. Choose y_{i} such that $U_{i}=\left\langle x_{1}, \cdots, x_{r-2}, y_{i}\right\rangle$ for $i=1,2$. Choose u_{i} and v_{i} in $U, i=1, \cdots, n-r$, such that

$$
\left\{z_{i}=x_{1} \wedge \cdots \wedge x_{r-2} \wedge\left(y_{1} \wedge u_{i}+y_{2} \wedge v_{i}\right) \mid i=1, \cdots, n-r\right\}
$$

forms a basis of V. If

$$
\left\{x_{1}, \cdots, x_{r-2}, y_{1}, y_{2}, v_{1}, \cdots, v_{n-r}\right\} \quad \text { or } \quad\left\{x_{1}, \cdots, x_{r-2}, y_{1}, y_{2}, u_{1}, \cdots, u_{n-r}\right\}
$$

is dependent, then there is a linear combination of the z_{i} which is in V_{1} or V_{2} respectively. If, on the other hand, both sets are independent, then they are both bases for U and we may write

$$
u_{i}=w_{i}+c_{i} y_{2}+\sum_{j=1}^{n-r} a_{i j} v_{j}, \quad i=1, \cdots, n-r,
$$

where $w_{i} \in\left\langle x_{1}, \cdots, x_{r-2}, y_{1}\right\rangle$ and $c_{i}, a_{i j} \in F$. We note that $\operatorname{det}\left(a_{i j}\right) \neq 0$ so we can choose $\lambda \neq 0$ and b_{j} for $j=1, \cdots, n-r$, not all zero, such that $\lambda b_{j}=\sum_{i=1}^{n-r} b_{i} a_{i j}$. Then

$$
0 \neq \sum_{j=1}^{n-r} b_{j} z_{j}=x_{1} \wedge \cdots \wedge x_{r-2} \wedge\left(y_{1}+\lambda^{-1} y_{2}\right) \wedge\left[\left(\sum_{j=1}^{n-r} b_{j} c_{j}\right) y_{2}+\lambda \sum_{j=1}^{n-r} b_{j} v_{j}\right]
$$

is an element of $V \cap G_{n r}$. This proves the Lemma.
For $n \neq 2 r$ the image under T of an element of B_{r} is an element of B_{r}. For $n<2 r$ this is clearly so since the subspaces of $\Lambda^{r} U$ in B_{r} have dimension $r+1$, which is greater than the dimension $(n-r+1)$ of the subspaces in A_{r}.
For $n>2 r$ we proceed as follows. The image of an A_{r} is an A_{r}. Suppose that the image of a $W \in B_{r}$ is a subspace of a $V \in A_{r}$. Choose two elements V_{1} and V_{2} of A_{r} such that $V_{1} \cap V_{2} \neq\{0\}$ and $\operatorname{dim}\left(V_{1} \cap W\right)=$ $\operatorname{dim}\left(V_{2} \cap W\right)=2$. One does this by choosing V_{1} and V_{2} so that the ($r-1$)-dimensional subspaces of U determined by them are adjacent subspaces of the $(r+1)$-dimensional subspace determined by W. Now, $T\left(V_{1}\right)=T\left(V_{2}\right)=V$ since each is in A_{r} and each intersects V in at least two dimensions. Therefore $T\left(V_{1}+V_{2}\right)=V$ and so the null space of T in $V_{1}+V_{2}$ has dimension equal to $(2 n-2 r+1)-(n-r+1)=$ $n-r$. By Lemma 2, it follows that the null space of T intersects $G_{n r}$ which contradicts the hypothesis that T sends $G_{n r}$ into $G_{n r}$.

In the case that $n=2 r$ the image of a B_{r} may be an A_{r} since the dimensions are equal. However, we prove that if some B_{r} is sent into a B_{r} by T, then the image of each B_{r} is a B_{r}. Suppose not. Then we can choose $(r+1)$-dimensional subspaces W_{1} and W_{2} of U such that $T\left(\Lambda^{r} W_{1}\right) \in A_{r}$ and $T\left(\Lambda^{r} W_{2}\right) \in B_{r}$. Furthermore, we can choose W_{1} and W_{2} adjacent, so that $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=r$. Choose three distinct elements V_{1}, V_{2}, and V_{3} of A_{r} such that the ($r-1$)-dimensional subspaces of U determined by these elements are contained in $W_{1} \cap W_{2}$. Then $\operatorname{dim}\left(V_{i} \cap \Lambda^{r} W_{j}\right)=2$ for $i=1,2,3$ and $j=1,2$, so that $T\left(V_{i}\right)$ intersects $T\left(\bigwedge^{r} W_{j}\right)$ in at least two dimensions for each i, j. This implies that each $T\left(V_{i}\right)$ is equal to one of $T\left(\Lambda^{r} W_{j}\right)$ and so two of them are equal. The argument of the previous paragraph now leads to a contradiction.
4. By essentially the same argument as used by Chow in [1] to prove his Theorem 1, we can prove that; if S is a nonsingular linear transformation of $\Lambda^{r} U$ sending $G_{n r}$ into $G_{n r}$, and if the image of each B_{r} is a B_{r}, then S is a compound. (By a compound we mean a linear transformation of $\Lambda^{r} U$ which is induced by a linear transformation of U.)

In the case that $n \neq 2 r$ it follows that T is necessarily a compound. For $n=2 r, T$ is a compound if some B_{r} is sent into a B_{r}. If we let T_{0} denote a linear transformation of $\Lambda^{r} U$ induced by a correlation of the r-dimensional subspaces of U, then T_{0} is nonsingular and sends $G_{n r}$ onto $G_{n r}$. The image of each A_{r} under T_{0} is a B_{r}. Therefore, if a B_{r} is sent by T into an A_{r}, the $T_{0} T$ is a compound. We have proved the

Theorem. Let U be an n-dimensional vector space over an algebraically closed field and let T be a linear transformation of $\Lambda^{r} U$ which sends $G_{n r}$ into $G_{n r}$. Then T is a compound except, possibly, when $n=2 r$, in which case T may be the composite of a compound and a linear transformation induced by a correlation of the r-dimensional subspaces of U.

Reference

1. Wei-Liang Chow, On the Geometry of Algebraic Homogeneous Spaces, Annals of Math., 50 (1949), 32-67.

[^0]: Received July 2, 1963. The author is indebted to M. Marcus for his encouragement and help.

