
HOMOGENEOUS QUASIGROUPS

SHERMAN K. STEIN

A mathematical system whose group of automorphisms is transitive
we will call homogeneous. If the group of automorphisms is doubly
transitive, then we will call the system doubly homogeneous. We ex-
amine here homogeneous and doubly homogeneous finite quasigroups.

We prove that there are no homogeneous quasigroups whose order
is twice an odd number (Theorem 1.1). As the quasigroups satisfying
the identity X(YZ) = XY-XZ show, there are homogeneous quasi-
groups of all other orders ([5], p. 236).

We then examine doubly homogeneous quasigroups and show that
they are intimately connected with nearfields (Theorem 2.2). Since all
finite nearfields are known, we thus have a complete description of
the doubly homogeneous quasigroups.

In the last two sections we obtain various equivalent descriptions
of double homogeneity and apply them to the construction of block
designs and models for certain identities.

1* Homogeneous quasigroups* In this section two theorems are
obtained that generalize results concerning distributive quasigroups.

THEOREM 1.1. There is no homogeneous quasίgroup of order
4k + 2.

Proof. Let (Q, o) be a homogeneous quasigroup of order 4fc + 2.
We first construct out of this quasigroup an idempotent homogeneous
quasigroup of order 4fc + 2.

Define / : Q —> Q by f(x) — χoχ. We assert that / is onto Q, and
hence a bisection. Indeed, let a be a fixed element of Q, b = αoα, c
an arbitrary element of Q, g an automorphism of (Q, o) such that g(b)
= c. We then have

c = g(b) = g(aoa) = g{a)og(d) = f(g(a)) .

Thus / is onto Q.
We thus can define a quasigroup (Q, 0 ) , isotopic to (Q, o), by

f(x)Θf(y) = xoy. Since f(x)Θf(x) - χoχ=f(χ), (Q, 0 ) is idempotent.
Moreover, if g is an automorphism of (Q, o), it is also an automorphism
of (G, 0) , since
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o(f(χ))ΘΛv)) = g(v°v) = 9(χ)

and

^)) = (g(x)og(χ))Q(g(y)og(y))

= 9(X)°9(V) .

Thus (Q, Θ) is an idempotent homogeneous quasigroup of order 4ifc + 2.
By ([5], p. 237), such quasigroups do not exist, and the theorem is
proved.

As was shown in [6], if Q is a left-distributive quasigroup, then
there is a quasigroup A! orthogonal to it. The next theorem gener-
ralizes this fact. The proof makes use of the notion of transversal
for a quasigroup, (Q, o), of order n. A transversal for (Q, o) is a set
T c Q x Q, T ={(&!, 2/i), , (xn, yn)} such that «< = av implies i = i',

j / y = I/,-/ implies j = i', and xioyi = xόoy3- implies i = j . It is easily-
seen that there is a quasigroup orthogonal to (ζ), o) if and only if
there are w disjoint transversals for Q.

THEOREM 1.2. // (Q, o) is α quasigroup of order n possessing a
transitive set of n automorphisms, then there is a quasigroup or-
thogonal to it.

Proof. Let Φu φif , φn be a transitive set of n automorphisms
of (Q, o) and Q = {6X, 6a> , bn}. We shall define n disjoint transversals
for Q, Γ(l), T(2), , Γ(^), where T(k) c Q ' x Q , t = l ,2, ,w. Select
α 6 Q and let

The first coordinates of the n elements of T(k) are distinct and so are
the second coordinates also T(i) Γϊ T(j) = Φ iί i ^ j .

It must be shown that Φi(a) o ̂ ^6^ = φό{a) o ̂ (̂6 )̂ implies that i = j .
From the assumed equation it follows that Φi(aobk) = Φj(aohk). Since
the w automorphisms ^ , , Φn are transitive on a set of w elements, it
follows that if Φι and φs agree on a single element of Q then Φι — φό

thus Φi = Φj, and the theorem is proved.

2* Relations between doubly homogeneous quasigroups and
nearfϊelds* Consider a finite doubly homogeneous groupoid (G, o). For
any order n the two groupoids defined by χoy = x O r χoy — y are
doubly homogeneous (in fact any bijection of G is an automorphism of
(G, o)). Also the groupoid of order 2 given by l o l = 2, 2o2 = l,
1©2 — 2, 2 o l = i ? and its transpose are doubly homogeneous. We will
show that the only other doubly homogeneous groupoids are quasigroups
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THEOREM 2.1. A doubly homogeneous groupoid (G, o) is either:
(i) The groupoid defined by x o y = χ9 for all x, y eG,
(ii) The groupoid defined by χoy = y for all x,yeG,
(iii) An idempotent doubly homogeneous quasigroup, or
(iv) A groupoid isomorphic to the groupoid defined above.

Proof. First let us show that if the order of G is at least 3,
then (G, o) is idempotent. To do so, let c, deG, c Φ d, coc — d. Let
•eeG, e Φ c, d, and Φ be an automorphism of (G, o) such that

Φ(c) = c, 0(<Z) = e .

Then we have

coc = d and coc = ψ(c)o0(c) = ^(coc) = 0(cZ) — e

a contradiction that implies coc — c.
Assume that α, 6eG, a Φ b. If αo& = α, then the double homo-

geneity of ((?, o) implies that χoy •= x for all x,yeG. Similarly, if
aob — b, then χoy = y for all x,yeG.

Consider finally the case, aob = c9 c Φ afb. Double homogeneity
implies that the equations AoY — C and XoB = C have solutions, X,
Y if A Φ C, B Φ C. Combining this with the idempotency of (G, o),

we see that if (G, o) has order at least 3, then it is a quasigroup.

The case of order 2 is left to the reader.

In view of Theorem 2.1, we will examine doubly homogeneous
quasigroups.

In the rest of this paper we will generally assume that all quasi-
groups are idempotent. An idempotent quasigroup that can be gen-
erated by two elements will be called a two-generated quasigroup. A
two-quasigroup is a doubly homogeneous two-generated quasigroup. We
will show that two-quasigroups and finite nearfields are closely related.

A finite near field, S, consists of a finite set S and two binary
operations, + and ., defined on all of S. The operation + is an abelian
group, the operation ., restricted to S — {0} is a group, and left dis-
tributivity holds, a(b + c) = ab + ac. From these conditions it follows
that αO = 0 = Oα and ( - l ) α = - a = α ( - l ) (see [8, pp. 188-190]), and
that the equation ax + bx = c has a unique solution if a + b Φ 0. More-
over, it is implicit in [8] that a finite nearfield has a primitive element.

THEOREM 2.2. If (S, o) is a two-quasigroup, then there is a near-
field (S, + , .) and primitive element k such that χoy = χ + (y — χ)k.
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The automorphisms of {S, ©) are of the form Φ(x) = a + bx.

Proof. The group G of automorphisms of (S, o) is doubly transi-
tive and only the identity automorphism fixes two elements of S. Such
a group of permutations on a finite set determines a near field as fol-
lows ([9], p. 25, [2], pp. 385-388).

The elements of G leaving no elements fixed, together with the
identity transformation, form an abelian, simply transitive normal sub-
group N of G. Select an element 0 e S. We define x + y as follows.
There is a unique σ e N, such that σ(0) = x define x + y to be σ(i/).

We define $ 2/ as follows. Select 1 e S, 1 Φ 0. Define a? j/ to
be τ(y) where τ(0) = 0, r(l) = x. Then (S, + , .) is a nearfield. More-
over, since σ(x) = x + b and τ(x) = ax (a Φ 0) are automorphisms of
(S, o), then so is 0(#) = ax + 6. Since there are (w) (w — 1) such ^'s,
where n is the cardinality of S, it follows that every automorphism
of (S, o) has the form Φ(x) — ax + b.

Next, we express the quasigroup (S, °) in terms of the nearfield
(S, + , .) just constructed. Let Ool = k. If x, ye S, x Φ y, let Φ be
the automorphism of (S, 0) such thar ^(0) = x, Φ(ϊ) = y, that is, Φ(u)
= x + (y — x)u for all ue S. Then we have

x°y = ^(0)o^(l) = 0(0ol) = 0(fc) = « + ( ] / - x)fc, (x Φ y).

Since α?oα? = ^ + (x — x)k, (S, o) is of the asserted form.

COROLLARY 2.3. A commutative two-quasigroup (Q, o) is of (odd)
prime order, p, and is expressible in terms of GF(p), the Galois
field of p elements, by the formula x o y = (x + y)/2.

Proof. (Q, o) is expressible in terms of a nearfield (Q, + , .) by
the formula χoy = x + {y — x)k. Since (Q, o) is commutative, Ool =
Io0. Thus

k = Ool = l o 0 = 1 -k ,

hence

k+k=1.

By left distributivity k 2 = 1. Now, the element 1 in any finite
nearfield generates a Galois field with a prime number of elements, say
p elements. The equation k 2 = 1 shows that p Φ 2 and that k is an
element of that Galois field. Since k is a primitive element of (Q,
+ , .), we see that (Q, + , .) is the Galois field with p elements, and
χoy =zχ + (y - a)(l/2) = (a? + !/)/2.

The next corollary relates doubly homogeneity to the identity
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(χoy)o(zow) — (χoz)o(yow), which has several names, including "the
medial law".

COROLLARY 2.4. A two-generated quasίgroup (S, °) of prime
order p, is medial if and only if it is doubly homogeneous.

Proof. If (S, o) is doubly homogeneous, then it is of the form
% + (v — %)k, for some nearfield. But the only near fields of prime
order are the Galois fields. Thus x o y = (1 — k)x + ky and a simple
computation shows that satisfies the identity (x o y) o (z o w) = (x o z) o (y o w)
Hence (S, o) is medial.

Conversely, if (S, o) is medial, it is of the form χoy = ̂ 4(α?) + -£?(?/)
where (£?, +) is an abelian group on p elements, and A and B are
automorphisms of (S, +) such that A(x) + B(x) = #, for all # e S (see
[4]). But (S, +) can be imbedded in the larger structure (S, +, .)>
the Galois field of p elements, in such a way that every automorphism,
Φ, of (S, +) is of the form φx = αα? for some α e S . Thus A(a?) =
(1 — k)x and S(α?) = kx for some fc. Hence we have χoy = χ + (y — χ)k
and so (£, o) is doubly homogeneous.

THEOREM 2.5. Lei (S, +, .) Iβ α .^wiίe nearfield and keS, kφ
0, 1. Define a binary operation o on Sby x°y — x + (y — x)k. Then
(S, o) is α doubly homogeneous quasigroup. (S>, o) is α two-quasigroup
if and only if k is a primitive element of S.

Proof. It is easy to see that (S, ©) is a quasigroup. For example,
if xoy = χΌy9 then

# + (!/ — #)& = %>' + (1/ — «')*

and so

(x - α') = (x - y)k + (y - x')k .

But we also have

(x - x') = (x - y)l + (y - x')l .

By the definition of a nearfield and the fact that k Φ 1, we obtain
x = xf.

For a,beS, a Φ 0, define ^: S -> S by Φ(x) = ax + b. Each ^
is an automorphism of (S, o) and the collection of all such ^'s is doubly
transitive on S. Thus (S, °) is a doubly homogeneous quasigroup.

If (S, o) is a two-quasigroup, it is generated, as a quasigroup, by
any two of its elements, in particularly by {0, 1}. Now, the nearfield
in (Sf +, .) generated by k contains 0 and 1; thus k is a primitive
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element of (S, + , .) Finally, we must show that if k is a primitive
element of (S, +, .), then {0, 1} generates the quasigroup (S, o). To
do so, let (T, o) be the subquasigroup of (S, ©) generated by {0, 1}.
We will show that T = S.

First of all, (Γ, o) is doubly homogeneous. Indeed, if α, δe T,
aΦ bf and 0 is an automorphism of (S, ©) such that 0(0) — α, 0(1) = δ,
then 0(T) is contained in the quasigroup generated by {α, 6}. Since
T and φ(T) have the same cardinality, Φ(T) — T, and φ \ T is an auto-
morphism of (Γ, o), taking 0 into α, and 1 into δ.

Thus, by Theorem 2.2, (Γ, o) is related to a nearfield (Γ, 0 , Θ>
by the formula xoy = a? 0 (y Q x) 0 k', where (T, 0 , 0 ) can be chosen
to have the same 0 and 1 as (S, +, .) [©denotes subtraction in (Γ,
0 , Θ)] We will show that 0 and 0 are restrictions of + and .,
and thus ( Γ , φ 0 ) is a subnearfield of (S, +, .).

Note first that since O©(10O)0fc ' = Ool = O + ( l - 0)k, we
have k = kf and thus fee T. Next we will show that xφy = x + y and

xQy = x .y for all x,ye T.

For a? = 0, it is obvious that x®y = x + y. Let x e T, x Φ 0,
and ^: S —> S be the automorphism of (S, o) given by φ(y) = x + y*
Then Φ\T is an automorphism of (T, o) without fixed points. Thus
(φ \T)y = u®y for some fixed u e T a n d all i/eΓ. Since u = (Φ\T) (0) =
0(0) = x, we have u = x. Thus α? © 1/ = (̂  | Γ)τ/ = (̂i/) = x + # for
all x,yeT.

To show xQy — x y for all x, ye T, we proceed similarly. For
x = 0 or 1 the statement is trivial. Let x Φ 0, 1, x e T. Let Φ : S—> S
be defined by Φ(y) — x y. Then φ \ T is an automorphism of (Γ, o)
with the one fixed element, 0. Thus (Φ \ T)(y) — uQy for some u+
Since u = u 0 1 = (Φ \ T)(l) = ^(1) = x 1 = x, we have u = x. Hence
xΘv = (Φ\T)y = Φ{y) = x -y, for all x,yeT.

Thus (Γ, ©, Θ) is a subnearfield of (S, +, .) and contains the
element k. Since k is a primitive element of the nearfield S, we must
have S — T. Thus (S, o) is generated by {0, 1} and therefore is a
two-quasigroup.

COROLLARY 2.6. If k is a primitive element of a nearfield S,
then {0, k} generates S by the single binary operation x o y = α; -f

The relation between quasigroups and near fields is shown further

in the following theorems. For simplicity if k is an element of a

nearfield (Q, + , .), then the quasigroup (Q, o) defined by χoy = x +

(# — »)]fc we denote Q(k).

THEOREM 2.7. / / (Q, +, .) is a nearfield, k,k'eQ and Φ: Q-^Q
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is an automorphism of (Q, + , .) such that φ(k) = k', then Φ is an
isomorphism between Q(k) and Q(k').

Proof. Let o denote multiplication in Q(k) and 0 denote multi-
plication in Q{k'). Then Φ{χoy) = φ(x + (y - x)k) = φ(x) + (Φ(y) -
Φ(x))k' = Φ{x)QΦ{y). Thus ^ is an isomorphism of Q(k) onto Q(fc')

The next theorem is the converse of Theorem 2.7.

THEOREM 2.8. / / (Q, + , .) is a near field, k, k! are primitive
elements of (Q, + , .), and Q(k) is isomorphic to Q(fc'), then there is
an automorphism φ of (Q, + , .) such that φ(k) = k'.

Proof. Let a : Q(k) —• Q{kf) be an isomorphism between the quasi-
groups Q(k) and Q{kf). Let o and 0 be the operations in Q{k), Q{k')
respectively. Since Q(k) is doubly homogeneous, we may assume that
α(0) = 0 and α(l) = 1. Then

a(k) = α(0 1) = α(O)0α(l) = 0 0 1 = ^

We will show that a is an automorphism of {Q, + , .).
Let σ be an antomorphism of Q(k) defined by σ(x) = x + 6, b Φ 0.

Then, aaar1, being an automorphism of Q(fc') and having no fixed ele-
ments, is of the form x—>x + c for some fixed c. Thus aσ(t) = a{t) + c
for all teQ equivalently, α(ί + b) = α(ί) + c. In particular, α(δ) =
α(0 + δ) = α(0) + c = c, and we have a(t + b) = a(t) + α(δ). That is,
a is an automorphism of (Q, + ) .

Similarly, let σ: Q(&) —• Q(k) be given by σ(x) = αx. Since σ is
an automorphism of Q(&) with σ(0) = 0, ασα""1 is an automorphism τ
of Q{kf) with r(0) = 0. Thus τ{x) = a'x for some a' e Q. We have

) = τα(tτ), or equivalently, a(ax) = a'a(x). But a(l) = 1 hence
= α(α 1) = α'α(l) = α' 1 = α'. Thus α(αa ) = α(α)α(aj), and α is

an automorphism of (Q, •)• This ends the proof.
As another application of Theorem 2.2 we have

THEOREM 2.9. A1 left-distributive two-quasigroup is medial (hence
right-distributive).

Proof. Let (Q, o) be a left-distributive two-quasigroup. By
Theorem 2.2, χoy = x + (y — a )fc for some nearfield (Q, + , .). Since
left translation by 0 is an automorphism of (Q, o)9 there exist a,beQ
such that

0oχ = a + bx for all xe Q.
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Thus xk = a + bx for all x e Q.
It is easy to see that a = 0 and 6 = fe, by letting a? = 0,1. Thus

xk = &# for all #e Q. Since & is a primitive element of (Q, +, .), the
nearfield in question is commutative, hence a field. The theorem follows
immediately.

It might be remarked that a quasigroup and its conjugates [5]
have the same automorphisms. Thus the conjugate of a two-quasigroup
is a two-quasigroup. If x o y = z then two of the six conjugate opera-
tions, a and β, are defined by xaz = # and j/#δ = a?. Here a and /3
denote division on the left and right respectively. It turns out that
a and β are easily expressed in terms of the nearfield describing o.
For if xoy — x + (y — x)k = z, then y = x + (z — x)k~ι. Also, it can
be shown that if xoy — z then x — y + (z —

3* Two-homogeneity and identities* Let Q be a finite idem-
potent quasigroup and Φ(Q) be the identities valid on Q [7]. Let F be
the free groupoid on two generators x, y and F(Q) be the homomorphic
image of F obtained from F through factoring F by Φ(Q). That is,
define an equivalence relation, ^ , on ί7 as follows: If U, Ve F and
U= V is an identity valid on Q, write U~ V. Then F(Q) is F / ~ .
It is easily seen that F(Q) is a finite idempotent quasigroup. Note
also that if Ue F and a,beQ, then replacement of x and ?/ in ί7 by
a and 6 defines an element in Q we denote this element, U(a, 6).
We may denote U itself as U(x, y). lί Ue F, then U determines a
unique element of F(Q), denoted U.

THEOREM 3.1. Let Q be a quasigroup generated by {α, &}, and
assume that for all U, Ve F such that U(a, b) = V{a, 6), one also
has the identity U(x, y) = V(x, y) valid on Q. Then Q is isomorphic
to F(Q). The converse holds.

Proof. Since Q satisfies all the identities that F(Q) satisfies, there
is a homomorphism h : F(Q) —• Q such that h(x) = a, h(y) = 6. Also
we can define a function k; Q-+ F(Q) by setting &(α) = 2? and k(b) = #,
and extending this assignment to a homomorphism. (The possibility
of defining this k is equivalent to the hypothesis made on a and b.)
Clearly h and k are inverse to each other, hence isomorphisms.

Conversely, assume that h: F(Q) —> Q is an isomorphism. Let

a = h(x), b = h(y). If ί/(α, &) = V(a, 6), then λ[ϋ(«Γί)] = h[V(x^y)].
Since fc is an injection, U(x9 y) = F(a?, #). Thus ?7^ F, which was
to be proved.

COROLLARY 3.2. A two-quasigroup Q is isomorphic to F(Q).
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It should be noted that for a quasigroup Q, F(Q) is doubly homo-
geneous if and only if it is generated by any pair of elements. And
when F(Q) is a two-quasigroup, any two elements of Q generate a quasi-
group isomophic to F(Q).

COROLLARY 3.3. Two two-quasigroups are isomorphic if and only
if they have the same identities in two variables.

COROLLARY 3.4. A two-generated quasigroup Q is doubly homo-
geneous if and only if for all distinct a,beQ and all distinct c,
deQ, U(a, b) = V(a, b) is equivalent to U{c, d) = V(c, d) for all terms
U, V in two variables.

Proof. Clearly, if {a, b) generates Q, so does {c, d}. Then apply
Theorem 3.1 and the remarks preceding Corollary 3.3.

As already mentioned, a two-quasigroup is defined by its identities
in two variables. In fact, if Q is a two-quasigroup of order n, then
Q can be defined by ri* — n + 1 identities, namely the identity X2 = X
and an identity corresponding to each product v,i(a, b) ud(af b) = uk(a, 6),
i Φ j , where each element of Q is represented in the form us(a, b) for
some term in a and b. Let us consider, for example, the only two-
quasigroup of order four, Q, given by:

a

b

ab

ba

a

a

ba

b

ab

b

ab

b

ba

a

ab

ba

a

ab

b

ba

b

ab

a

ba

Since a ab = ba and ab ba = a, Q satisfies the identities:
(i) X-XY= ΓXand
(ii) XY-YX=X. We will show that (i) and (ii) are sufficient

to reconstruct the multiplication table for Q. This will be useful in § 4.

THEOREM 3.5. A finite groupoid Q' satisfying the identities (i),
X ' XY — XY and (ii), XY - YX = X is a quasigroup. Moreover
any two distinct element a,beQ' generate a quasigroup Q" described
by the preceding multiplication table.

Proof. Let L and R be a left-and right translation in Qf by
the same element. By (i), LL = R. We prove that L is an injection.

Let c, d, ee Q' and cd = ce. We will show that d = e. We have
c cd = c ce and, by (i), dc = ec. Thus dc cd = ec ce. By (ii),
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d = e. Thus Q' is a quasigroup.
Since Q' satisfies X X 7 = 7X, it satisfies X XX = XX. Since

Q' is a quasigroup it must therefore satisfy XX = X thus Qr is
idempotent.

We next show that distinct elements of Qr do not commute. As-
sume that c, d e Qf, cd = dc. Then, by (ii) we have c = cd cίc =
dc cd = d.

Now let us examine the quasigroup Q" generated by a and 6.
First of all, Q" is an idempotent quasigroup and ab φ ba. Thus Q"
has at least the four distinct elements a, 6, ab, ba. We will show that
Q" has no more elements.

From (i) and (ii) we obtain XY(XY YX) = XY - X, hence YX.
1 7 - 1 7 X and thus Y = XY - X. From 7 = I 7 I follows
Y = X 7X [7]. Also, I 7 7 - 1 7 ( 1 7 . X) = X . X 7 = YX.

From these identities follow: aa = α, 66 = 6, ab - ab = ab, ba 6α
= δα a - ab — ba, a δα — 6, b - ab = a, b ba — ab; ab α — 6, αδ 6

= 6α, α6 6α = α ba > a — ab, ba 6 = α, 6α α6 = 6. Thus Q' has
only the four elements α, 6, αδ, 6α. Moreover its multiplication table
is the one already given.

4* Block designs and quasigroups* By a pairwse balanced in-
complete block design on a set S we will mean a family of subsets
Bl9 B2, , Br of S, each containing the same number of elements,
k > 3, such that each pair of elements of S is a subset of exactly
one of the J5's. If (S, ©) is a doubly homogeneous quasigroup, then
the two-generated subquasigroups of S form a pairwise balanced in-
complete block design (for brevity, block design). Calling the card-
inality of S, v, we then have a doubly transitive block design B(k, v)
where k, incidentally, is a power of a prime. The following theorems
show various relations between block designs and algebraic aspects of
quasigroups.

THEOREM 4.1. A two-generated quasigroup Q is doubly homo-
geneous (hence a two-quasigroup) if and only if the two-generated
subquasigroups ofQxQ all have the same order.

Proof. Assume that Q is a two-quasigroup of cardinality q. Con-
sider the quasigroup Q* c Q x Q generated by {(a, c), (6, d)}, where
a, 6, c, and d are distinct. Let π : Q x Q —•> Q be the projection defined
by 7ϋ(ql9 q2) = qx. Then π(Q*) = Q since Q is generated by any two of
its elements, in particular, a and 6. Now, for any U and V, terms
in the variables x and y, U((a, c), (6, d)) = V((a, c), (6, d)) if and only
if, U(a, 6) = V(a, 6) and U(c, d) = F(c, rf). By Corollary 3.4, U(a, b)
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= V(a, b) if and only if U{c, d) = V(c, d). Thus π is an isomorphism
onto Q, and {{a, c), (6, d)} generates a quasigroup of order q. Special
cases such as {(α, 6), (6, 6)}, {{a, 6), (α, 6)} or {(a, b), {c9 a)} are easily
disposed of.

Conversely, assume that ζ)*, of order q, is two-generated and that
every two elements of Q x Q generate a quasigroup of the same order,
necessarily q. We will show that Q is doubly homogeneous. Let {alr

a2) and {bu b2} be two distinct pairs of elements of Q, ax Φ a2, bλ Φ b2.
Then a — (au a2) and c — (blf a2) generate a quasigroup of order q
thus a and b = (bu b2) generate a quasigroup Q* such that τr(Q*) = Q.
This implies that two elements of Q* are equal if their first coordinates
are equal. Thus U(al9 bj = V(au bj is equivalent to U(a2, b2) — V(a2, 62).
By Corollary 3.4, Q is a two-quasigroup.

The notion of two-quasigroup can be used to give a simple proof
of the following combinatorial theorem due to Skolem [1, p. 183].

THEOREM 4.2 If k is a prime power and B(k, vx) and B(k, v2)
exist, then B(k, vλv2) exists.

Proof. Let B(k, v{) be a block design on the set Sif i — 1, 2. Select
a two-quasigroup Q of order k. On each block of B(k, vx) and B(k, v2)
define a quasigroup isomorphic to Q. This defines on Si a quasigroup
Qiy i = 1, 2, such that every two elements of Si generate a quasigroup
isomorphic to Q. Every two elements of Qx x Q2 generate a quasigroup
R satisfying all the identities that Q satisfies. Since Q — F(Q), R is
a homomorphic image of Q. As a two-quasigroup contains no proper
subquasigroups, (other than those with one element), R is isomorphic
to Q. This shows that on Si x S2 there is a B(k, v±v2).

THEOREM 4.3. There is a quasigroup of order v satisfying the
identities X XY = YX and I 7 YX= X if and only if v = 12n + 1
or v — 12n + 4.

Proof. Recalling the example at the end of I 3 and the argument

in the proof of Theorem 4.2, we see that such quasigroups exist if and
only if there is a B(4, v). As Hanani proved in [3], a B(4, v) exists
if and only if v — 12n + 1 or v = 12n + 4.

Similar reasoning shows that if an identity in two letters has a
two-quasigroup model of order k, and there is a B(k, v), then the
identity has a model of order v. In particular, since X XY— YX
has a two-quasigroup model of order 5, it has, by [3], models of all
orders of the form 2Qn + 1 or 20w + 5 (except possibly 141).
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