QUASI-POSITIVE OPERATORS
D. W. SASSER

1. Introduction. The classical results of Perron and Frobenius
q[6], [7], [12]) assert that a finite dimensional, nonnegative, non-nilpotent
matrix has a positive eigenvalue which is not exceeded in absolute
value by any other eigenvalue and the matrix has a nonnegative
eigenvector corresponding to this positive eigenvalue. If the matrix
has strictly positive entries, then there is a positive eigenvalue which
-exceeds every other eigenvalue in absolute value, and the correspond-
ing space of eigenvectors is one-dimensional and is spanned by a vector
with strictly positive coordinates. Numerous generalizations of these
results to order-preserving linear operators acting in ordered linear
spaces have appeared in recent years; a short bibliography is included
at the end of this paper. In this paper a generalization in a different
-direction is obtained which reduces, in the finite dimensional case, to
the assertion that the Perron-Frobenius theorems hold if it is only
required that all but a finite number of the powers of the matrix
-satisfy the given conditions. The principal results are theorems of the
Perron-Frobenius type which are applicable to any compact linear
operator (the compactness condition is weakened somewhat), acting in
.an ordered real Banach space B, which satisfies a condition weaker
than order-preserving. In addition, the results apply to the case when
the “cone” of positive elements in B has no interior.

2. Preliminaries. Throughout the sequel, B will denote a real
Banach space with norm ||-||. The complex extension of B, B, is the
complex Banach space B = {x + 4y | x, y € B} with the obvious definitions
of addition and complex scalar multiplication and the norm in B is
[l + 2y || = supg||cos@-x + sinf-y|l. If T is a (real) linear operator
on B into B, the (coraplex) linear operator 7' on B into B is defined
by T(x + 1) = Tx + iTy. T is bounded if and only if 7 is bounded,
in which case || T'|| = || T|l. The spectrum, o(T), and the resolvent,
o(T), are defined to be the corresponding sets associated with the
operator 7. We denote the spectral radius of T by 7, 7=
lim, ... || T"[|""* = suprescr | M| (provided || T'|] < o).

In all of our results there will be a basic assumption that the
linear operator under consideration is quasi-compact, a notion which
we will now define. A bounded linear operator 7T is compact (also
called completely continuous) if each sequence Tw,, Tx, ---, with

Received September 13, 1962. This work was performed under the auspices of the
TTnited States Atomic Energy Commission.

1029



1030 D. W. SASSER

le;]l=1, ¢t=1,2,---, has a convergent subsequence. 7 is quasi-
compact if there exists a positive integer % and a bounded linear oper-
ator V such that 7" — V is compact and 7, < 72! There are a number
of properties possessed by quasi-compact operators some of which we
state now without proof.” If N eo(T) and || = 7#,, then X, is an
isolated point in ¢(T) and is in the point spectrum, i.e., (\J — T) is
not one-to-one. The resolvent operator, R(\, T) = (M — T)™, exists
in a neighborhood of X\, (excluding ;) and, in this neighborhood,
R(\, T) has a Laurent series expansion of the form

n(A TIN Jo — oo
Ro, T) = 5, QL= D pi 1y 4 550 — a4, T)
= (0 — N)E k=0

where A,(\, T') is a bounded linear operator and the series on the
right is convergent in the uniform operator topology. The integer
n(\,) is the index of A, i.e., n(\,) is the smallest integer » such that
o] (VI — T)H e =0} = {&| (NI — T)c =0}, P(n, T) is a projection
onto the finite dimensional space {x| (I — T)**0x = 0}. The minimal
property of n(\,) implies that (A\,J — T)"*1P(x\,, T) = 0.

We recall that for an arbitrary bounded linear operator, the resolv-
ent R\, T) = A\ — T)~* is an analytic function of A for » e o(T') and
the expansion RO\, T') = S, (1N 1 T* is valid for | N | > 7.

3. Quasi-positive operators. A cone in B is a convex set K
which contains Ax for all A = 0 if it contains x. K is a proper cone
if xre K and —x e K imply = 0. A cone K induces an ordering = in
B with x =y if and only if « —ye K. This transitive ordering
satisfies

(1) ifx=zy, u=wv, thenx +u=y + v,

(2) if x =y and A = 0, then A2 = My, and

(3) z=y if and only if —y = —u=.

If the cone is proper, then the ordering satisfies, in addition,

(4) if =y and y = x, then x = y.

We will use the notation 2 >y to denote x = y, x = y. Associated
with a cone K is a closed cone K* in the conjugate space B* of con-
tinuous, real-valued, linear functions on B, consisting of those z* ¢ B*
with the property that x*(x) = 0 for all x€ K. K™* is a proper cone
if and only if the linear space spanned by K is dense in B (a set with
this property is called fundamental). This is an easy consequence of
the Hahn-Banach theorem on the extension of linear functionals. We
will use the notations «* = y* and 2* > y* to denote z* — y*e K*
mat a compact operator is quasi-compact if and only if it has a positive
spectral radius.

2 For details, see Yu. L. Smvl’yan, Completely continuous perturbations of operators,.
Amer. Math. Soc. Translations 10, 341-344.
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and ¢* — y*e K+, &* # y*, respectively. An element z >0 (z* > 0)
will be called strictly positive if x*(x) > 0 for all «* > 0 (x*(x) > 0
for all z > 0).

The following theorem is a characterization of a closed cone and
its interior (when the latter is nonvoid) in terms of K*. The proof
may be found, for example, in [11] (Theorem 1.3 and its corollaries,
pg. 16).

THEOREM 1. Let K be a closed cone in B. Then xe K if and
only if x*(®) = 0 for all 2* = 0. If K has a nonvoid interior, then

(1) =« %s tn the interior of K if and only if x s strictly
positive and

(2) for each x on the boundary of K there exists an x* >0
such that x*(x) = 0.

COROLLARY. If K is a closed proper cone, K+ is a total set of
Sfunctionals, i.e., for each x + 0, x € B, there exists x* > 0 such that
x*(x) = 0.

Proof. Since either x¢ K or —x¢ K if 2 % 0, this follows im-
mediately from Theorem 1.

A linear operator T on B into B will be called positive with re-
spect to a cone K if TK < K. In the absence of ambiguity we will
simply say T is positive. In our applications K will be a closed cone
and in this case, in view of Theorem 1, T is positive if and only if
z*(Tx) = 0 for all x =0, 2*=0. Since Tx =0 if 2 =0, we have
2*(T’x) = 0 and, in general, 2*(T"x) = 0 for all » and all x = 0, «* = 0.
We define T' to be quasi-positive if for each pair x = 0, x* = 0, there
exists an integer n(x, x*) = 1 such that z*(T"x) = 0 if n = n(x, x*).
We define T to be strictly quasi-positive if for each pair 2 > 0, x* > 0,
there exists an integer n(x, 2*) =1 such that «*(T"x) >0 if » =
n(x, ©*). Finally we define T to be strongly quasi-positive if it is not
nilpotent® and for each pair z > 0, * > 0, lim inf, .. 2*(T"x)/|| T" || > O.

4. Spectral properties. Throughout this section, K will denote a
closed proper cone in B and K will be assumed to be fundamental. T
will denote a quasi-compact bounded linear operator with spectral
radius 1. This restriction on the spectral radius is for convenience
only and the results given may be interpreted for a general (quasi-
compact) bounded linear operator S with spectral radius 7y >0 by
considering the operator 7 = (1/rs) S which has spectral radius 1.

3 An operator T is nilpotent if 7'» = 0 for some .



1032 D. W. SASSER

THEOREM 2. If T 1is quasi-positive and quasi-compact with-
spectral radius 1, then 1e€o(T) and the index of 1 is mot exceeded
by the index of any other point neo(T), |\ =1.

Proof. Assume that 1€ p(T). Since o(T) is open and R(\, T)
is analytic in N for e o(T), it follows that the function g(\) =
2*(R(@A/N, THz), © > 0, «* > 0, is analytic for 1/x € p(T'), in particular
for X\ in some neighborhood of 1. Moreover, R(\, T) = S\ (1/n)*HT*
if [N >1, hence g(\) = S\ N a*(Thx) if [N < 1. A theorem of
Pringsheim states that if a power series has nonnegative coefficients
and converges in the open unit disk, either 1 is a singularity of the
series or the series has radius of convergence greater than 1.* Clearly
it is sufficient to assume that all but a finite number of the coefficients
are nonnegative. Since x*(7T"x) = 0 if n = n(x, 2*), and g(\) is analytic
in a neighborhood of 1, we conclude that the series > 7 A Ha*(T*x)
converges in |\ | <1 4+ 0 for some 6 > 0. By assumption r; = 1, hence
R(x, T) has a singularity somewhere on |A| =1, say at A\, Since T"
is quasi-compact, the expansion

Ro, T = 5 8L D po, 1)+ 55 00— 0 A, T)

is valid for 0 < |AN — A\,| < 0', where n = n(\,) is the index of X,
and (I — T)"'P(\, T) 0. We may choose # >0 such that
(NI — TY'P(N,, T)x = y # 0 since K is fundamental and by Theorem 1
we may choose «* > 0 such that x*(y) == 0. It follows easily that

g0 = M) (@A — )R, 1N =N | <,

where h(\) is analytic and k{1/7n,) = 2*(y) == 0. Thus g has a pole at
1/», which contradicts the fact that g has a Taylor’s series about the
origin with radius of convergence greater than 1. Our assumption
that 1€ o(T) leads to a contradiction, hence 1co(T).

Now let the index of 1 be m. It is easy to see that
lim,, (0 — 1R\, T) =0 if k> mn. It follows that for |[\| > 1,
lim,, v — 1) S A/ He*(T™x) = 0 for every pair x >0, z* >0
and clearly this implies lim,., (M — 1)* Yo ; AN Pa*(T™x) = 0 if
E>n and 7=0. If Neo(T), || =1 and N, has index [, then
lim, ., (M — 2)'R(\, T) = 0. We may choose >0 and z* > 0 such
that lim,.,, (M — X)'2*(RB(\, T)x) # 0 and it follows that for [\| > 1,
lim, .\ (A — X)) 2im=; (A" Ha*(T"w) # 0. Let N, =€, A =pe*, p>1. If
JZn@,x%), | (M — N Zn= (I (Tmw) < (0 —1) Sin-(1/0)"a*(T ™).
The expression on the right in this last inequality tends to zero as

¢ See Titchmarsh, Theory of Functions, pg. 214. Acknowledgement is due here to
S. Karlin for the essence of the proof in Theorem 2 (see [10], Theorem 4).
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© tends to 1 if [ > n, hence ! < n. This completes the proof.

THEOREM 3. If T s quasi-positive and quasi-compact with
spectral radius 1, there exist elements w >0 and u* > 0 such that
Tu =u, T*u* =u*>

Proof. By Theorem 2, 1e€d(T). We have

Ro, Ty = 3 4= D

k:lwp(l, T) + 3 (v — DA, T)

where P(1, T) is a projection onto the finite-dimensional space
{¢|(I — Ty = 0} and (I — T)**PQ, T)#0. Let I'=(I— T)"*P(,T).
It is easy to see that R(\, T)BS B for » real. Since [ =
lim,_, (v — 1)"R(\, T), it follows that ’BS B. Also TI'=1IT =T.
Let £ =0, 2* =0 be arbitrary and let N = n(z, 2*). If A > 1, we
have «*(TYR(\, T)x) = Do, AN 2*(TV™)x = 0. It follows that
for v > 1, 2*(T I'x) = lim,,; (v — 1)* Do /M) Pa*(TY¥+™x) = 0. Since
T =TI, I" is a positive operator. We choose v > 0 such that I'v =
% %0, Then w >0 and Tu = TI'v = I'v = u. We choose v* > 0 such
that v*(u) > 0. Letting «w* = I'v*, we see that for x = 0, u*(x) =
(I*v*)x) = v*(I'x) = 0 since »* >0 and /" is a positive operator.
Hence u* = 0, and since u*(v) = (I™*0*)(v) = v*(['v) = v*(u) >0, u* > 0.
Finally, we have I'T = I which implies T*I'* = I'*, hence T*u* =
T*(I*v*) = I™v* = u* which completes the proof.

For strictly quasi-positive operators we obtain stronger results in
the next two theorems.

THEOREM 4. If T s strictly quast-positive and quasi-compact
with spectral radius 1, then 1eo(T), 1 has index one and T has a
representation of the form T = 37, \;P; + S where x, =1, |\;| =1,
pP*=PpP, SP;=PS=0, j=1,2,+--,m, P,P;=0 if 1+ 75, and
r, < 1.

Proof. By Theorem 2, 1eo(T). By Theorem 3, there exists
#* > 0 such that T*u* = u* and for x >0, w*(x) = u*(T"x) >0 if
n = n(x, u*), hence u* is strictly positive. Let the index of 1 be n.
Then " = lim,, (A — 1)"R(\, T) = 0. For A >1 and arbitrary = we
have

w*('x) = 1}\1_1:? N — 1)n§ (1/)\))k+lu*(Tkx) — l)fnll w*@)(n — 1) ki‘: (1/n)E+

=0

= u*(x) im (v — 1)* = 0
A—1

5 T* is the adjoint of T, defined on B* by (T*z*)(x) = «*(Tx).
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unless » = 1. In proving Theorem 3 we showed that I” is a positive
operator, hence there exists « >0 such that I'v >0 and therfore
w*(I'r) > 0. It follows that m =1. By Theorem 2, every e o(T),
X | = 1, has index 1 and hence P(\,, T) = lim,_,, (A — N)R(\, T') exists
and is a projection onto the finite dimensional space {x | (A — T)x = 0}.
Let \, = 1,%; «++, \,, be an enumeration of the points in o(7T) with
absolute value 1 and let P; = P(\;, T). Since T commutes with R(x, T)
and P; = lim, ., — M)E(\, T), it follows that T commutes with P;.
For ¢ = j we have N;P,P; = TP,P; = P,;TP; = \;P,P;, hence P,P; = 0.
Define the bounded linear operator S by the equation T = 3\, \;P; + S.
Since TP,- = PjT =n\;P;, P} =P ~and P,P; =0 if %7, it follows
that P;,S = SP; = 0. This implies 7" = 37, A\}P; + S". Suppose rs =
1. T is quasi-compact, hence 7" = U+ V for some n where U is
compact and 7, < 1. The operator U’ defined by U'x = Ux — 3.7 NPz
is compact’ and S" = U’ + V. Therefore S is quasi-compact. Let
rea(S), | =ry=1. Then Sx =z for some xeB, x 0. Since
P,S = SP; =0, it follows that Tx = and therefore for some 7, A = N;
and P,x = x. This implies S = SP;x = 0, a contradiction. Therefore

r¢ <1 and the proof is complete.
Before stating our next result, we state the following lemma

which is easily proved.

LemMMA 1. If E is a finite dimensional real Banach space, K
is a cone in E and K is fundamental, then K contains an open set.

THEOREM 5. If T s strictly quasi-positive and quasi-compact
with spectral radius 1, the eigenspace for T corresponding to the

ergenvalue 1 is one-dimensional.

Proof. By Theorem 4 we have T = 37, \;P; + S where P;is a
projection onto the eigenspace corresponding to ;N =1, || =1,
P,S=SP;=0,5=1,2,---,m and P,P; =0 if 2= 5. By a theorem
of Kronecker, there exists a sequence m,, m, -+ of positive integers
such that lim, .A¥ =1, 7=1,2, ---,m.” Since ry <1, it follows
that lim,..||S"|| =0. This implies lim,.. 7" = 3", P;,, Let P=
>r.P;. For xe¢ B we have Pr = lim,_.. T, hence PB< B. For
=0 and z* = 0, «*(Px) = lim,_.. e*(T"* x) = 0, hence P is a positive
operator. Consider the finite dimensional real Banach space PB with
closed proper cone PK. Since K is fundamental in B, it is clear that
PK is fundamental in PB. Therefore, by Lemma 1, PK contains an
open set (open relative to PB). Since T is strictly quasi-positive, every

¢ The compact operators from an ideal in the algebra of bounded linear operators

and any bounded operator with a finite dimensional range is compact.
7 See, for example, Hardy & Wright, The Theory of Numbers, Oxford Univ. Press.
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non-trivial fixed vector of 7 in K is strictly positive. By Theorem 3,
there exists 4 > 0 such that Tu = u. Let Tx =x,2x + 0. We wish
to show % and x are linearly dependent and for this purpose we may
assume x¢ K (otherwise replace x by —=x). It is clear that we PK
and xe€ PB. Let t, =sup{t|w + tx € PK}. Since u is in the interior
of PK and x ¢ PK, it is easy to see that 0 < ¢, < o and that w + tx
is on the boundary of PK. Hence, by Theorem 1, there exists «* € (PK)*
such that 2*(u + t,x) = 0. We extend «* to y* € B* by defining y*(y) =
2*(Py). Since PK < K, it follows that y* e K*. We have P(u+{tx) =
% + tyx, hence y*(u + tx) = 2™*(u, + tx) = 0. Now u + t is a fixed
vector of T which is not strictly positive, hence w + t;x = 0, which
completes the proof.

Our next result is a characterization of strongly quasi-positive
operators.

THEOREM 6. If T is quasi-compact with spectral radius 1, then
T 1is strongly quasi-positive 1f and only if the following conditions
are satisfied:

(1) leo(T) and 1 is the only point wn o(T) with absolute value
one,

(2) the eigenspace for T corresponding to the eigemvalue 1 1is
one-demensional and is spanned by a strictly positive element wu,

(8) there exists a strictly positive element u* such that T*u* =
u*,

Proof. In Theorems 3, 4, 5 we have seen that if T is strictly
quasi-positive (in particular, if it is strongly quasi-positive), then
1e0(T) and (2) and (3) hold. There remains to show 1 is the only
point in o(T) with absolute value one. We define the operator P =
Sy, P; ag in Theorem 5 and recall that PB is a finite dimensional
real Banach space with closed proper cone PK containing interior ele-
ments. Let A = ¢* be a point in ¢(T) and let T'(x + iy) = e(x + iy)
for some z,y in B, not both zero. It is easy to see that Px = x and
Py =y, hence x < PB and ye€ PB. At least one of the four elements
x+Y, x—Y, Yy—®, —2x—y must be not in PK since otherwise
x+y=0,—y=0, hence x =y = 0. Therefore ax + by ¢ PK for
some choice of @ = =1 and b = 1. Now choose ¢ > 0 such that
% + t(ax + by) = v is on the boundary of PK. By Theorem 1, there
exists z* e (PK)", «* =0, such that 2*(v) = 0. We extend 2* to
y*e K*:y*(y) = 2*(Py). Now choose a sequence of positive integers
Ny, Ny, -+ such that lim, ... e"® =1, It follows that lim,...T™v = v,
Since 7 =1, we have || T*|| = 1 for all » and hence if v > 0,

lim inf y*(T™) = lim inf y*(T™)/|| T"|| > 0.

n—oe
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This is impossible since lim,_. ¥*(T™v) = y*(v) = 0. Therefore v = 0,
i.e., ax + by = —(1/t)u. Since T(x + iy) = e®(x + iy), it follows that
w* (@) + w*(y) = e®(w*(x) + w*(y)). This implies either e =1 or
u*(x) = u*(y) = 0. The second alternative is incompatible with
ax + by = —(1/t)u since u*(u) > 0. Therefore e = 1 and the necessity
of (1), (2), (3) is proved.

Now let T satisfy conditions (1), (2), (3). We assume without
loss of generality that #* is normalized so that w*(u) = 1. Define the
bounded linear operator S by Tx = uw*(x)u + Sx. As in Theorem 4, it
can be shown that r¢ < 1. We have Su=Tu —u*wu=u —u =20
and it follows that T"x = w*(x)u + S"x. Since rs <1, ||S"|| = M for
all » and hence || T*|| < ||u* |||« ]| + || S*|| £ M’ for all n. Moreover,.
S"x— 0 as n— o for all x. Hence if x > 0 and z* > 0,

lim igf (T x)/|| T™|| = lim 122 w*(x)x*(u) + x*(S"x))/ M’
= u*(@)*(w)/ M’ >0 .

Therefore T is strongly quasi-positive and the theorem is proved.

THEOREM 7. Assume that B 1is a lattice® with respect to the
ordering given by K. Then Theorem 6 is true if “strongly quasi-
positive” is replaced by “strictly quasi-positive.”

Proof. Conditions (1), (2) and (3) in Theorem 6 imply T is strongly
quasi-positive, hence, a fortiori, 7 1is strictly quasi-positive. Now
suppose T is strictly quasi-positive. Then 1e€a(T) and (2), (3) hold.
It is easy to see from the representation of Thecrem 4, T = S\7 N\, P; +
S, that || T"| is bounded independently of n. Hence, by a theorem
of Krein-Rutman ({11], Theorem 8.1 and corollary), every rxea(T),
M| =1, is a root of unity. It is easily verified that every power of
T is quasi-compact and strictly quasi-positive, hence the eigenspace for
T™ corresponding to the eigenvalue 1 is one-dimensional for all n. If
Te =2, v =1, =1, then 7"z =\"z =2 and it follows that
A = 1 which completes the proof.

An immediate consequence is the following corollary.

COROLLARY. If B is a lattice, every strictly quasi-positive and
quast-compact operator is strongly quasi-positive.

The conclusion of this corollary is not true in general as we will
illustrate by an example. Let B be three-dimensional (real) Euclidean

8 T.e., each pair of elements in B has a greatest lower bound and a least upper
bound.
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space, B = {(x,, ®,, #,)}, and let K = {(x,, @,, ®;) | 2? + ) < a3, 2, = 0}, If
we interpret “to the right” to mean any direction in which the x,
coordinate is increasing, each non-trivial element x* € K+ is represented
by a plane through the origin whose unit normal at the origin directed
to the right lies in K. Let T be a rotation about the x, axis through
0 radians where 6 and 27 are incommensurable. It is clear that
|| T"]| =1 for all » and that TK =& K. To show that T is strictly
quagi-positive it suffices to consider x* € K* which is represented by a
plane tangent to K. If p isin the interior of K, T"p is in the interior
for all n, hence 2*(7T"p) > 0. Now let » be on the boundary of K.
There exists exactly one point ¢ which has the same «, coordinate as
p and such that «*(¢) = 0. Since ¢ and 27 are incommensurable, there
is at most one value of n such that T"p = ¢q. Therefore, z*(T™p) > 0
for all m sufficiently large and, hence, T is strictly quasi-positive. If
P is on the boundary of K, sois T"p for all #. We can pick a sequence
Ny, Ny, +++ such that T*p converges to a point ¢ on the boundary of
K and there exists ¢* € K* such that #*(¢) = 0, «* = 0. This shows
T is not strongly quasi-positive.
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