EXTREMAL ELEMENTS OF THE CONVEX CONE B_{n} OF FUNCTIONS

E. K. McLachlan

Let B_{0} be the set of nonnegative real continuous on $[0,1]$, let B_{1} be the set of functions belonging to B_{0} such that $\Delta_{n}^{1} f(x)=f(x+h)-$ $f(x) \geqq 0, h>0$, for $[x, x+h] \subset[0,1]$, and let $B_{n}, n>1$ be the set of functions belonging to B_{n-1} such that $\Delta_{n}^{n} f(x) \geqq 0$ for $[x, x+n h] \subset[0,1]$ [1]. Since the sum of two functions in B_{n} belongs to B_{n} and since a nonnegative real multiple of a B_{n} function is a B_{n} function, the set of B_{n} functions form a convex cone. It is the purpose of this paper to give the extremal elements [2] of this cone, to prove that they are not dense in a compact convex set that does not contain the origin but meets every ray of the cone, and to show that for the functions of the cone an integral representation in terms of extremal elements is possible. The intersection of the B_{n} cones is the well-known class of functions, the absolutely monotonic functions. Thus the set of these functions form a convex cone also. The extremal elements for this convex cone are given too.

In some correspondence with the author relative to the convex cone B_{2}, Professor F. F. Bonsall noted that the extremal elements of B_{2} were the indefinite integrals of the characteristic functions that are extremal elements of the weak closure of B_{1}. Professor Bonsall guessed that successive integration would give the extremal elements of B_{n}. This proved to be a very good guess, and the author gratefully acknowledges the assistance of these comments.

In the following discussion the vertex of the convex cone is not considered as an extremal element.

1. The convex cone B_{0}. For $f \in B_{0}$, then take $f_{1}(x)=x f(x)$ and $f_{2}=f-f_{1}$. Then f is the sum of functions in B_{0} that are not proportional to f. Therefore, B_{0} has no extremal elements.
2. The convex cone B_{1}. For $f=c>0$ and $f=f_{1}+f_{2}$ where f_{1} and $f_{2} \in B_{1}$ then $0=\Delta_{n}^{1} f(x)=\Delta_{n}^{1} f_{1}(x)+\Delta_{n}^{1} f_{2}(x)$ implies $\Delta_{n}^{1} f_{i}(x)=0$ for $i=1,2$ and $[x, x+h] \subset[0,1]$. Therefore $f_{i}=c_{i}, c_{i}>0, i=1,2$, where $c_{1}+c_{2}=c$. Hence f is an extremal element of B_{1}. Now $f=$ $c>0$ belongs also to B_{n} for $n>1$. The set B_{n} is a subcone of B_{1} and hence $f=c$ is again an extremal element of B_{n}.

If f is not constant then $f(0)=m$ and $f(1)=M$ and a non-proportional decomposition can be given by taking $f_{1}(x)=\min (f(x),(1 / 2)(M+m))$
and $f_{2}=f-f_{1}$.
3. The convex cone B_{2}. The functions of B_{2} are exactly the non-negative, nondecreasing and convex functions on [0, 1] [5].

Again the positive constant functions are extremal functions. If $f \in B_{2}, f$ is not constant and $f(0)>0$ then take $f_{1}=f(0)$ and $f_{2}=f-f_{1}$. In so doing f_{1} and $f_{2} \in B_{2}$ and f_{1} and f_{2} are not proportional to f. Since this same technique still can be used for $B_{n}, n>2$, the only extremal elements of B_{n} such that $f(0)>0$ are the positive constant functions.

If $f(x)=0, x \in[0, \xi]$ and $m(x-\xi)$ for $x \in(\xi, 1]$ where $0 \leqq \xi<1$ and $m>0$, then for $f=f_{1}+f_{2}$ it follows that f_{1} and f_{2} are zero where f is zero and f_{1} and f_{2} are linear where f is linear. Thus f_{1} and f_{2} are proportional to f and f is therefore extremal.

If $f(x)=0, x \in\left[0, \xi_{1}\right], m_{1}\left(x-\xi_{1}\right)$ for $x \in\left(\xi_{1}, \xi_{2}\right], \cdots$,

$$
\sum_{i=1}^{l} m_{i}\left(x-\xi_{i}\right)
$$

for $x \in\left(\xi_{k}, 1\right]$ where $0<\xi_{1}<\xi_{2}<\cdots<\xi_{k}<1$ and $m_{i}>0$ for $i=$ $1,2, \cdots, k$, for $k>1$ then $f \in B_{2}$. Let $f_{1}(x)=0$, for $x \in\left[0, \xi_{1}\right], f_{1}(x)=$ $m_{1}\left(x-\xi_{1}\right)$ for $\left(\xi_{1}, 1\right]$ and $f_{2}=f-f_{1}$. Then f_{1} and $f_{2} \in B_{2}$ and both are not proportional to f.

Finally, if f is not any of the above functions, but f belongs to B_{2}, let $\xi_{1}=\inf \{x: f(x)>0\}$. Then $0 \leqq \xi_{1}<1$. On [$\left.\xi_{1}, 1\right], f$ is convex, $f\left(\xi_{1}\right)=0$ and $f(1)$ is finite. Furthermore, the right-hand derivative at $\xi_{1}, f_{+}^{\prime}\left(\xi_{1}\right)$ is finite and in $\left[\xi_{1}, 1\right] f_{-}^{\prime}$, the left-hand derivative, must take on more than a finite number of values since f is not polygonal on $\left[\xi_{1}, 1\right]$. Thus there exist $\xi_{2}, \xi_{1}<\xi_{2} \leqq 1$ such that on $\left[\xi_{1}, \xi_{2}\right] f_{+}^{\prime}$ is not piecewise linear on three or more non-overlapping segments whose union is $\left[\xi_{1}, \xi_{2}\right]$ and $f_{-}^{\prime}\left(\xi_{2}\right)$ is finite. By Lemma 4 of a paper by the author [4], there exist convex, nonnegative and nondecreasing functions f_{1} and f_{2} different from f on $\left[\xi_{1}, \xi_{2}\right]$ such that f_{1} and f_{2} have the same values and the same derivatives at the end-points as f and $f=\alpha f_{1}+$ $(1-\alpha) f_{2}$ for some $\alpha, 0<\alpha<1$. Thus define f_{1} and f_{2} equal to f on the complement of $\left[\xi_{1}, \xi_{2}\right]$ relative to $[0,1]$ and then αf_{1} and $(1-\alpha) f_{2}$ belong to B_{2} and both are not proportional to f.

Thus the extremal elements of B_{2} are positive constant functions and those f such that $f(x)=0, x \in[0, \xi]$ and $f(x)=m(x-\xi)$ for $x \in[\xi, 1]$ where $0 \leqq \xi<1$ and $m>0$. Designate this latter function by $f(\xi, 1 ;)$ for $m=1$.
4. The convex cone $B_{n}, n>2$. The function f, such that $f(x)=$ $0, x \in[0, \xi], f(x)=m(x-\xi)^{n-1}, x \in[\xi, 1], 0 \leqq \xi<1$ and $m>0$, that is $m f\left(\xi, n-1\right.$;) belongs to B_{n} and is an extremal element of B_{n}.

Already $m f(\xi, 1 ;)$ belongs to B_{2}. Now by induction it shall be shown that $m f(\xi, n-1 ;) \in B_{n}$ for $n>2$. In fact, it is true in general that if $f \in B_{n-1}$ and if

$$
F(x)=\int_{0}^{x} f(t) d t
$$

then $F \in B_{n} \cdot$ For if $\Delta_{n}^{k} f(x) \geqq 0$ for $k=0, \cdots, n-1$ then

$$
\Delta_{h}^{k} F(x)=\Delta_{h}^{k-1} \int_{x}^{x+h} f(t) d t=\Delta_{h}^{k-1} f(\xi)>0
$$

where $x<\xi<x-h$ and $k=0, \cdots, n$. Thus since

$$
m f(\xi, n-1 ; x)=\int_{0}^{x}(n-1) m f(\xi, n-2 ; t) d t
$$

and since by the induction hypothesis $(n-2) m f(\xi, n-2 ;) \in B_{n-1}$, it follows that $m f(\xi, n-1 ;) \in B_{n}$.

Similarly, by induction it shall be shown that $f=m f(\xi,-1$;) is an extremal element of B_{n} It has already been shown that $\operatorname{mf}(\xi, 1 ;)$ is an extremal element of B_{n-1} for any $m>0$ and for $0 \leqq \xi<1$. Now let $f=m f(\xi, n-1 ;)=f_{1}+f_{2}$ where f_{1} and f_{2} belong to B_{n}. For $n>2$, functions in B_{n} have derivatives, f_{1}^{\prime} and f_{2}^{\prime} on [0,1) (See [5] Chapter IV) and the functions f_{1}^{\prime} and f_{2}^{\prime} belong to B_{n-1} on $[0, \delta]$ for any $\delta, 0<\delta<1$. Take $\delta<1$ such that $\xi<\delta$, then by the induction hypothesis it follows that f_{i}^{\prime} and f_{2}^{\prime} are proportional to $f^{\prime}=(n-1) m$ $f\left(\xi, n-2 ;\right.$) on $[0, \delta]$. Hence $f_{i}(x)=\lambda_{i} f(x)+c_{i}, x \in[0, \delta], 0 \leqq \lambda_{i}$, where c_{i} is a constant for $i=1,2$. Since $f_{1}(0)=f_{2}(0)=(n-1) m$ $f(\xi, n-2 ; 0)=0$ it follows that $c_{i}=0, i=1,2$ and hence f_{1} and f_{2} are proportional to f on $[0, \delta]$ for any $\delta, 0<\delta<1$. However, since f, f_{1} and f_{2} are continuous on $[0,1]$, it follows then that f_{1} and f_{2} are proportional to f on $[0,1]$. Therefore, $m f(\xi, n-1$;) is an extremal element of B_{n}.

Notice that like the positive constant functions these functions $m f(\xi, n-1$;) for $\xi=0$, that is the functions $m f(0, n-1$;) belong to B_{n} for all n since its derivatives of all orders exist and are nonnegative on [0, 1]. However, if $\xi>0$, let s and k be integers such that $s>k$ and let x and h be such that $x+(s-2) h=\xi, 0 \leqq x<x+s h \leqq 1$. Then

$$
\Delta_{h}^{s} m f(\xi, k ; x)=m\left[(2 h)^{k}-s(h)^{k}\right]=m h^{k}\left(2^{k}-s\right)
$$

Hence, if $s>2^{k}$, then the expression on the right is negative and thus $m f(\xi, k ;) \notin B_{s}$. This means that whereas $m f(\xi, n-1 ;) \in B_{n}$ it does not belong to B_{j} for $j>2^{n-1}$.

It remains only to show that the functions of B_{n} other than the
positive constant functions of the form $m f(\xi, k ;), 0 \leqq \xi<1, m>0$, $k=1,2, \cdots, n-1$ that belong to B_{n} are not extremal elements of B_{n}.

It is known that f^{\prime} exists and is a continuous function on $[0,1)$. If f^{\prime} can be extended to be a continuous function on $[0,1]$, that is, if $\lim f^{\prime}(x)$ as $x \rightarrow 1^{-}$exists and is finite, then $f^{\prime} \in B_{n-1}$. By assuming the induction hypothesis on n, there exist functions g_{1} and g_{2} belonging to B_{n-1} such that $f^{\prime}=g_{1}+g_{2}$ and g_{1} and g_{2} are not proportional to f^{\prime}. Let $f_{i}(x)=\int_{0}^{x} g_{i}(t) d t, i=1,2$. Thus f_{1} and f_{2} belong to B_{n} and they are not proportional to f. For if $f_{1}=\lambda_{1} f, \lambda_{1} \geqq 0$, then $f_{1}^{\prime}=\lambda_{1} f^{\prime}=g_{1}$. This clearly violates what is known about g_{1}. Hence such a function f is not an extremal element of B_{n}.

Finally, suppose that $f \in B_{n}$ and $\lim f^{\prime}(x)=+\infty$ as $x \rightarrow 1^{-}$. Then the following must be true: $f^{\prime}, f^{\prime \prime}, \cdots, f^{(n-2)}$ and $f_{+}^{(n-1)}$, the right-hand derivative of $f^{(n-2)}$ are defined on $[0,1)$; each of them approaches $+\infty$ as x approaches one from the left; and $\Delta_{h}^{k} f^{(j)}(x) \geqq 0$ for $0 \leqq x<1$, $j=1,2, \cdots, n-1$, (with the special understanding for $j=n \perp 1$), $k=0,1,2, \cdots, n-j$. Denote by $B_{n-j}[0,1)$ the set of real functions ϕ of $[0,1) \Delta_{h}^{k} \phi(x) \geqq 0,0 \leqq x<1, k=0,1, \cdots, n-j$ for $j=1,2, \cdots$, $n-1$ such that $\phi(x) \rightarrow+\infty$ as $x \rightarrow 1^{-}$. The functions $B_{n-j}[0,1)$ form a convex cone and $f^{(j)} \in B_{n-j}[0,1)$ for $j=1, \cdots, n-1$. By an argument similar to the one given earlier, the indefinite integral of a function F in $B_{m}[0,1)$ belongs to $B_{m+1}[0,1)$ if $\int_{0}^{x} F(t) d t \rightarrow+\infty$ as $x \rightarrow 1^{-}$. Also if g, g_{1} and $g_{2} \in B_{m}[0,1), g=g_{1}+g_{2}$, and g_{1} and g_{2} are not proportional to g, then the indefinite integrals of g_{1} and g_{2} are not proportional to g. Not that if $g=g_{1}+g_{2}$ as above and if $\int_{0}^{1-} S(t) d t$ is finite, then the same will be true of $\int_{0}^{1-} g_{i}(t) d t$ for $i=1,2$. If the $\lim g(t)=+\infty$ as $t \rightarrow 1^{-}$and $\int_{0}^{1-} g_{i}(t) d t \stackrel{J^{0}}{=}+\infty$ then the same will be true of $\int_{0}^{1-} g_{i}(t) d t$ for $i=1,2$ if there exists constants $\gamma_{i}>0, i=1,2$ such that $g_{i}(t) \geqq$ $\gamma_{i} g(t)$ for some $\delta, 0<\delta<1$. For the case when $\int_{0}^{1-} g_{i}(t) d t$ is finite then f_{i} where $f_{i}(x)=\int_{0}^{x} g_{i}(t) d t, i=1,2$ can be extended into a function that is continuous on $[0,1]$. Hence f_{1} and f_{2} will belong to B_{m+1}.

Thus the object is to find two functions g_{1} and g_{2} that belong to $B_{1}[0,1)$, such that $f_{+}^{(n-1)}=g_{1}+g_{2}, g_{1}$ and g_{2} are not proportional to $f_{+}^{(n-1)}$, and such that $g_{i}(t) \geqq \lambda_{i} f_{-}^{(n-1)}(t), \delta \leqq t<1, \delta>0$. Then f_{1} given by

$$
f_{i}(x)=\int_{0}^{x} \int_{0}^{t_{n-2}} \cdots \int_{0}^{t_{2}} \int_{0}^{t_{1}} g_{i}(t) d t d t_{1} \cdots d t_{n-2}
$$

$i=1,2$ belong to B_{n} and give a nonproportional decomposition of f. The lemma below shows how the functions g_{1} and g_{2} with the desired properties can be constructed.

Lemma. Given f on $[0,1)$ such that f is right continuous, nonneqative, nondecreasing and $f(x) \rightarrow+\infty$ as $x \rightarrow 1$. There exist two functions f_{1} and f_{2} on $[0,1)$ that are right continuous, nonnegative and nondecreasing, $f=f_{1}+f_{2}, f_{1}$ and f_{2} are not proportional to f, and $f_{i}(x) \geqq \gamma_{i} f(x)$ on $[\delta, 1)$ for some $0<\delta<1$ and $\gamma_{i}>0, i=1,2$.

Proof. All the discontinuities of f must be jump discontinuities. If the point $x=1$ is an accumulation point of the discontinuities of f, then there exist c_{1}, c_{2} and $c_{3}, 0<c_{1}<c_{2}<c_{3}<1$ such that f has a jump of θ_{i} at $c_{i}, \theta_{i}>0, i=1,2,3$. Take $\theta=(1 / 2) \min \left(\theta_{1} \theta_{2} \theta_{3}\right)$. Let f_{1} be such that $f_{1}(x)=(1 / 2)(f(x)-\theta), c_{1} \leqq x<c_{2}, f_{1}(x)=(1 / 2)(f(x)+\theta)$, $c_{2} \leqq x<c_{3}$ and $f_{1}(x)=(1 / 2) f(x)$ otherwise. Take $f_{2}=f-f_{1}$. Then f_{1} and f_{2} have the required properties.

If the point $x=1$ is not an accumulation point of the discontinuities then there exists $\delta, 0<\delta<1$ such that f is continuous on $[\delta, 1)$. Let ξ be a point such that $f(\xi)=f(\delta)+1$, then $\delta \leqq \xi<1$. Take f_{1} such that $f_{1}(x)=(1 / 2) f(x), 0 \leqq x<\xi$ and $f_{1}(x)=(1 / 3)(f(x)-f(\delta)-1)+$ $(1 / 2)(f(\delta)+1), \xi \leqq x<1$. Let $f_{2}=f-f_{1}$. Then again f_{1} and f_{2} have the required properties.
5. Absolutely monotonic functions. The continuous functions f on $[0,1]$ such that $f^{(k)}(x) \geqq 0$ for $0<x<1, k=0,1,2, \cdots$ were called absolutely monotonic functions by Bernstein. These functions clearly form a convex cone of functions on [0, 1]. Since the functions f belonging to $B_{n}, n>2$, have $f^{(k)}(x) \geqq 0, k=0,1, \cdots, n-2$, it follows that $\bigcap_{n=0}^{\infty} B_{n}$ is contained in the set of absolutely monotonic functions. Since the continuous functions f on $[0,1]$ such that $f^{(k)}(x) \geqq 0, k \leqq n$ on $(0,1)$ have $\Delta_{h}^{k} f(x) \geqq 0$ for $k \leqq n$, then $\bigcap_{n=0}^{\infty} B_{n}$ is the set of absolutely monotonic functions. Denote this set by B_{∞}

From the earlier remarks it is clear that $c_{0}, c_{1} x, c_{2} x^{2}, \cdots$ belong to B_{∞} for $c_{i}>0, i=0,1,2, \cdots$ and they are indeed extremal elements of B_{∞}. Since any $f \in B_{\infty}$ is absolutely monotonic on $[0,1)$ it follows that

$$
f(x)=\sum_{n=0}^{\infty} f^{(n)}(0)\left(x^{n} / n!\right), \quad 0 \leqq x<1
$$

Consequently, if as many as two terms are nonzero in the series expansion, then take f_{1} equal to one of the two nonzero terms and $f_{2}=f-f_{1}$. Then clearly f_{1} and f_{2} belong to B_{∞} and f has a nonproportional decomposition. Hence the only extremal elements of B_{∞} are the functions $c_{i} x^{i}, c_{i}>0, i=0,1,2, \cdots$.

The following theorem summarizes all of the results up to this point.

Theorem. The convex cone B_{0} has no extremal elements. The
functions $f=c>0$, where c is a constant, are extremal elements of $B_{n}, n=1,2,3, \cdots$. The function $m f(\xi, n-1 ; x)=0$ for $0 \leqq x<\xi$ and $m(x-\xi)^{n-1}$ for $\xi \leqq x \leqq 1, m>0,0 \leqq \xi<1$ are extremal elements of $B_{n}, n=2,3, \cdots$. The only other extremal elements of $B_{n}, n=$ $2,3, \cdots$ are those functions $m f(\xi, k ;), k=1,2, \cdots, n-2$ that belong to B_{n}. The extremal elements of the convex cone B_{∞}, the absolutely monotonic functions, are the functions of the form $c_{i} x^{i}, c_{i}>0, i=$ $0,1,2, \cdots$.
6. Integral representations. The set of functions $B_{n}-B_{n}, n \geqq$ 1 , form a linear space containing the convex cone B_{n}. Using the topology of simple convergence $B_{n}-B_{n}$ becomes a locally convex space. Let C_{n} be the set of functions f of B_{n} such that $f(1)=1$. Clearly, C_{n} meets every ray of C_{n} once and only once and does not meet the origin in $B_{n}-B_{n}$, that is the zero function. Furthermore, C_{n} is convex. Each function f of C_{n} is such that $0 \leqq f(x) \leqq 1$ for all $0 \leqq x \leqq 1$ since f is nonnegative and nondecreasing. It follows by use of the Tychonoff theorem that C_{n} is contained in a compact set in $B_{n}-B_{n}$, namely $\left\{f: f \in B_{n}-B_{n}, 0 \leqq f(x) \leqq 1,0 \leqq x \leqq 1\right\}$. Thus C_{n} is compact, if it can be shown that C_{n} is closed. This will be done by showing the complement of C_{n} is open.

If $g \in B_{n} \backslash C_{n}$ then $g(1) \neq 1$. The set

$$
V(1 ; \varepsilon)+g=\left\{f: f \in B_{n}-B_{n},|f(1)-g(1)|<\varepsilon\right\}
$$

where $\varepsilon=(1 / 2)|1-g(1)|$ is an open set about g that fails to meet C_{n}. If $g \notin B_{n}$ then there exists x_{0}, k and h such that $\Delta_{h}^{k} g\left(x_{0}\right)=\delta<0$. Now

$$
\Delta_{h}^{k} g\left(x_{0}\right)=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} g\left(x_{0}+(k-j) h\right) .
$$

Consider

$$
\begin{aligned}
& V=V\left(x_{0}, x_{0}+h, \cdots, x_{0}+k h ; \varepsilon\right)+g \\
& =\left\{f: f \in B_{n}-B_{n},\left|f\left(x_{0}+j h\right)-g\left(x_{0}+j h\right)\right|<\varepsilon, j=0,1, \cdots, k\right\}
\end{aligned}
$$

where $\varepsilon=2^{-(k+1)}(-\delta)$. Then V does not meet C_{n} since for if $f \in V$

$$
\begin{aligned}
\Delta_{h}^{k} f\left(x_{0}\right) & =\Delta_{h}^{k}\left(f\left(x_{0}\right)-g\left(x_{0}\right)\right)+\Delta_{h}^{k} g\left(x_{0}\right) \\
& <\left|\Delta_{h}^{k}\left(f\left(x_{0}\right)-g\left(x_{0}\right)\right)\right|+\Delta_{h}^{k} g\left(x_{0}\right) \\
& <\sum_{j=0}^{k}\binom{k}{j}\left|f\left(x_{0}+(k-j) h\right)-g\left(x_{0}+(k-j) h\right)\right|+\delta \\
& <\varepsilon \sum_{j=0}^{k}\binom{k}{j}+\delta \\
& =\varepsilon 2^{k}+\delta \\
& =(1 / 2) \delta<0 .
\end{aligned}
$$

Hence $f \notin B_{n}$.
Thus by Theorem 39.4 of Choquet [3], it follows that for any function f_{0} in C_{n} there exists a nonnegative measure μ_{0} on the closure of the extreme points of C_{n} such that $f_{0}(x) \int d \mu_{0}=\int f(x) d \mu_{0}$. Since C_{n} meets every ray of the cone B_{n} and does not contain the origin, it follows that each function of B_{n} is a scalar multiple of such a representation.

If the set of extremal elements of C_{n} are dense in C_{n}, then the above result would be of no interest, but this is not the case. Consider $g_{0}(x)=(1 / 2)+2^{n-2} f(1 / 2, n-1 ; x)$. Then g_{0} belongs to B_{n} since it is the sum of two functions in B_{n}. Notice further that $g_{0}(1)=1$ and hence $g_{0} \in C_{n}$. The neighborhood of g_{0},

$$
\begin{aligned}
V_{0} & =V(0,1 ; 1 / 8)+g_{0} \\
& =\left\{f: f \in B_{n}-B_{n},\left|f(i)-q_{0}(i)\right|<(1 / 8), i=0,1\right\}
\end{aligned}
$$

does not meet any extreme point of C_{n}. Any positive constant function of C_{n} is $f(x)=1$ for all x and hence $f(0)>5 / 8$ at $x=0$. Any function of the form $m f(\xi, k ;$) that belongs to zero at $x=0$ and hence does not belong to V_{0}.
7. Remarks. Choquet [3] discusses convex cones of functions related to the cones discussed here. The main difference is that the differences, $\Delta_{h}^{k} f(x)$, alternate in sign as k takes on successive integral values in the cones that Choquet considered.

References

1. F. F. Bonsall, Semi-alqebras of continuous functions, Proceedings of the International Symposium on Linear Spaces, (1961), 101-114.
2. N. Bourbaki, Espaces vectoriels topologiques, Act. Sci. Ind. no. 1189, Paris, 1953.
3. G. Choquet, Theory of capacities, Annales de l'Institut Fourier, 5 (1953 and 1954), 131-256.
4. E. K. McLachlan, Extremal elements of the convex cone of semi-norms, Pacifie J. Math., 13 (1963), 1335-1342.
5. D. V. Widder, The Laplace transform, Princeton Mathematics Series, 6 (1946).

Oklahoma State University

