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This paper contains an extension of an earlier work by Dickson
([1], p. 95), in which the following theorem was proven:

THEOREM 1. (Dickson's Theorem). If a number is represented
properly by a form [α, ί>, c] of discriminant D = 4αc — b2, then any
divisor of that number is represented by some form of the same
discriminant D.

DEFINITION. ([1], p. 68). A positive form [α, b, c] is called reduced
if — a < b ^ α, c ^ α, with b ̂  0 if c = α.

As a consequence of the above definition it follows that 4α2 ̂  4αc —
D + b2 ̂  D + a\ 3α2 ̂  A and finally a ^ α/(l/3) D

THEOREM 2. Lei ikf be properly represented by the integral positve
definite quadratic form aa2 + bay + cy2 of discriminant D = 4αc — δ2.
IfMS 3D/16 α îcί (D, M) = 1, ίfee^ m ê  eri/ factorization of M one
of the factors is ai9 one of the minimal values of a primitive quadratic
form of discriminant D. In other words, M = MXM2 where Mx is a
unit or a prime and M2 is the product of no more than two a{.

Proof. According to the remark following the definition α4 S
where equality for a primitive reduced form is possible only if ai —
b{ = d = l and hence D = 3 so that the inequality 0 < M ^ 3D/16
cannot be satisfied. Thus a{ < T/.D/3.

Now assume M = rτr2. Then according to Theorm 1 it follows that

rλ = a{a\ + 6^7* + ca\ , r2 = aόa) + 6 iα i7 J + cfΐ)

where the two quadratic forms are primitive reduced forms of discriminant
D. Hence

(4α<r1) (4α,ra) - [(2aiai + 6,7,)2 + Dy2] [(2ajai + δ ^ )2 + Dy2]

- {β\ + Dy2)(β2 + Dy2) = lβa^M

< 16(Dβ)M ^ (16D/3) (3U/16) = J92 ,

where βt = (2αία:i + 6^) and /3, = (2αjα:i + bfί5). This implies that
"Iff3 — 0, say 7« = 0, and therefore rx = a{.

To prove the final statement of the theorem, assume M Φ ai and
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let r2 be a minimal factor of M so that r2 Φ aά. If Mx is any prime
factor of r2, then M = MXM2 where M2 = (M/r2) (r2/M1) = α ^ .
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