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Introduction* The purpose of this paper is to give a method of
determining the essential spectrum of a class of ordinary differential
operators in Lp of an interval with oo as a singular endpoint. The
method relies on the mapping theorem for the essential spectrum,
proved for ordinary differential operators by Rota [9]. A discussion
of this type of theorem is presented in § 1. The essential spectrum
of the constant coefficient operator and the Euler operator is determined
in §4. It is found that the essential spectrum of the Euler operator
is an algebraic curve which varies with the index p, 1 < p < °o.

In §§ 5 and 6 the class of differential operators which are compact
with respect to the constant coefficient operator, or Euler operator, is
determined. By a fundamental theorem of perturbation theory, these
operators may be added to the original operator without altering the
essential spectrum.

The results apply to differential equations of Fuchsian type. This
includes the Riemann differential equation, whose spectral theory was
investigated by Rota [10].

1* Spectral mapping theorems* Let A be a closed, densely-
defined operator in a Banach space X. A is a Fredholm operator if
the null space ^V{A) of A is finite dimensional and the range &(A)
of A is closed and of finite codimension in X. The Fredholm index
of A is the number

tc(A) = dim ^T(A) - codim &(A) .

A complex number λ is in the essential resolvent set of A, denoted
by pe{A), if XI — A is a Fredholm operator. Otherwise λ is in the
essential spectrum of A, denoted by oe{A). p(A) and o{A) will denote
the resolvent set and spectrum of A respectively.

Let i?(X) denote the ring of bounded operators on X, and let ^
denote the ideal of compact operators in ^(X) . S/ = ^(X)/ίf is a
Banach algebra. The coset A + <g* of an element i e ^ ( ϊ ) will be
denoted by Ά, and its spectrum will be denoted by sp(Ά). The in-
vertible elements of Szf are the cosets B = B + <̂% where 5 G ^ ( Ϊ )

is a Fredholm operator (cf [1]). In particular, sp(Ά) = oe{A) for all
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LEMMA 1. Let Ae &(£), and let f be analytic in a neighborhood
of σ(A). Then σe(f(A)) = f(σe(A)). If μe p.(A), then

κ(μl - f{A)) = Σ{fc(\I - A): \ef~\μ)} ,

where λ is counted in the set f~\μ) according to its multiplicity as
a solution of f(z) — μ = 0.

Proof. The first assertion of the lemma is a trivial consequence
of the- spectral mapping theorem for Banach algebras:

σe(f(A)) = sp(f(A)) = sp(f(Ά)) = f(sp(Ά)) = f(σ£A)) .

By replacing / b y μ — f it suffices to establish the formula

= Σ{κ(Xl - A): Xef~\0)} .

We can decompose the spectrum of A into a finite number of
spectral (closed and open) subsets Fif i = I, v , w , such that / is
analytic in an open connected neighborhood of each Ft. Corresponding
to each spectral set Fi9 there is a projection Ei onto a closed invariant
subspace ϊ 4 of X such that / = Σ?=i ^> EJSj = 0, ΐ =̂ i, and α(A 136̂) =
JF, (cf [5], VII. 3).

Since the index K satisfies the appropriate additivity conditions, it
suffices to prove the formula for the restriction operators A \ Hif i.e.
we may assume that / is analytic in a connected open neighborhood
of σ(A).

If / is identically zero, then f(A) = 0 is Fredholm, so X is finite
dimensional, and the result is trivial. If / is not identically zero, it
has a finite number of zeros zl9 , zn e o(A), counted according to
their multiplicity. Let

g is analytic and nonzero in a neighborhood of o(A), so g(A) is in-
vertible and has index zero. Now

f(A) = (zj - A) (zj - A)g(A) ,

where the zj — A are Fredholm. Since the index of a product of
Fredholm operators is the sum of their indices, we have

= Σ{κ(Xl - A): λ e f-\0) n σ(A)}

= Σ{κ(\I- A):\ef-\0)}.

If A and β are unbounded operators with domains &(A) and
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, then their product is defined by

3f(AB) = {x e 2f{β)\ Bx e &(A)}9 (AB)x = A(Bx) .

A and B commute if AB = BA.
If A and B are closed, densely-defined Fredholm operators, then

AB is closed and densely-defined, AB is Fredholm, and tc{AB) = tc(A) +
κ(B) (cf [6]). Conversely, if {A{}i=1 is a commuting set of closed
operators such that A = A1 Ania closed, densely-defined and Fredholm,
then each of the At is densely-defined and Fredholm. For ^i^'(A)'Ώ^ί^(Ai)
and &(A) C &(Ai) for each i. As a special case of these remarks,
we can state a version of Lemma 1 for unbounded operators. For
ordinary differential operators, the spectral mapping theorem is due to
Rota [9].

LEMMA 2. Let A be a closed, densely-defined operator in X, and
let p be a polynomial of degree n.

(a) If p(σe(A)) is not the entire complex plane, then p(A) is
densely defined and closed.

(b) If p(A) is densely defined and closed, then σe(p(A)) = p(σe(A)).
If μe pe(p(A)),

κ(μl - p(A)) = Σ κ(Xj - A) ,

where \, , λw are the solutions of p(z) — μ = 0, counted according
to their multiplicity.

Proof, μl - p(A) = ( λ j - A) (λ n l - A), where the λ,I - A
commute. If μ g 2>(<7e(A)), then each X< is in ρe(A), so μ l — p(A) is
densely-defined and closed. Hence p(A) is densely-defined and closed.

Part (b) of the lemma is a consequence of the preceeding discussion.

2* Some basic facts about linear operators* Let A be a closed
densely-defined linear operator in a Banach space 9c. The domain 3f(A)
of A becomes a Banach space when endowed with the A-topology, or
graph topology, defined by the norm || x \\A — \\ x || + \\Ax | |. A linear
operator B: &(B)->% is said to be A-defined if &(B) 3 3?(A). B
is A-bounded if the restriction of B to &(A) is a bounded operator
from ^ ( A ) , with the graph topology, to ϊ . Its A-norm || J5|[^ is
given by

| | B | U = s u p {\\Bx\\l\\x\\A}
e(A)

B is A-compact if it is compact as an operator from £P(A), with the
graph topology, to X.
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If Ar is a second operator which is closed on
then the A'-topology for Ξf(A) coincides with the A-topology for
The following lemma gives criteria for A' = A + B to be closed on

), and collects certain facts which will be used later.

LEMMA 3. Let A be a closed densely-defined operator in 3c, and
let B be an A-defined (not cecessarily closed) linear operator in H.

(a) / / there exist 0 S ot < 1 and 0 ^ β such that

\\Bx\\ S a\\Ax\\ + β\\x\\ for x

then A + B is closed on ()
(b) If B is A-compact, then A + B is closed on &{A), and

σe(A + B) =

κ(A + B- XI) = κ(A - XI) for X e ρe(A) .

(c) If X£ Pe(A), then there is an ε(λ) > 0 such that \\B\\A< ε(λ)
implies X e pe(A + B).

(d) // B is closed and A-compact, then for every ε > 0, there is
a K(ε) > 0 such that

|| Bx || ^ ε || Ax \\ + K(s) \\x\\ , xe &(A) .

Proof, (a), (b) and (c) are well-known. Suppose that (d) is not
true. Then there is an ε > 0 and a sequence {xn} in £3? (A) such that

\\Bxn\\^ε\\Axn\\ +n\\xn\\.

Since the inequality is homogeneous, we may assume ||a?»|L = 1-
Passing to a subsequence, if necessary, we may assume, that Bxn

converges to y. Since

II Bxn || ^ ε || xn \\A + (n - ε) || xn \\ - ε + (n - ε) \\ xn \\ ,

xn converges to 0. Since B is closed, y = 0. On the other hand,
|| y || = Km || Bxn \\ ̂  ε, a contradiction.

The argument establishing part (d) can be found in [4], p. 39.
There are operators B which are A-compact but for which no inequality
of the form || Bx \\ ^ ε || Ax \\ + ^(ε) || x \\ obtains.

3* Differential operators* Let {a, β) be an interval, where
a = — oo and β = + oo are allowed as endpoints. A formal differential
expression I on the interval (a, β) is an expression of the form

Σ
3=0

where the aά are complex-valued measurable functions on (a,
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The maximal operator L in Lp(a, β), 1 < p < oo, associated with
Z, is defined by

&(L) = {feLp(a, β):fU) exist and are loc. α.c, O ^ i ^ w - 1 ,
l(f)eLp(a,β)} and

Lf=l(f), fe^(L).

The operator LJ is the restriction of L to C°° functions with compact
support contained in (a, β).

If L; is closable, then the minimal operator Lo associated with I
is the closure of L'o. A differential operator associated with I is an
operator Lu such that

and

Luf=l(f), f

Under mild restrictions on the coefficients dj{t)9 for instance, that
aά(t) be locally integrable, 0 ̂  j ^ ^ — 1, and that l/an(t) be locally
integrable, the maximal operator L is densely defined and closed. In
this case, £3?(L0) is of finite codimension in £&(L).

Any finite dimensional extension of a Fredholm operator is again
Fredholm (cf [6]). Hence, under the preceeding restrictions on the
coefficients aί9 pe(LJ = pe(L) for all differential operators Lu determined
by I. This set is called the essential resolvent set of Z, and denoted
by Pe(l) Its complement σe(l) is the essential spectrum of I.

If &(LU) is of codimension k in S&(L), and μepe(l), then
κ(μl — Lu) = fc(μl — L) — k (cf [6]). To determine the Fredholm index
of μl — Lu, it suffices then to find the index of μl — L, or of μl — Lo.

In the following, DQ and D will denote respectively the minimal
and maximal operators in Lv{a, β) determined by the differential ex-
pression (lf)(t) = /'(ί), where (a, β) is the interval under consideration.

4* The basic formulae for the essential spectrum*

THEOREM 1. Let M be the maximal differential operator in
Lp[0, oo) associated with the expression

3=0

constants.
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Let 7Γ be the polynomial

π(z) = Σ ap' .

Then

<re(m) = {π(ir): — oo < γ < 00} .

If λ G |0e(m), the Fredholm index κ(Xl — M) is the number of roots
of π(z) = λ, counted according to their multiplicity, which lie in the
half-plane &+(z) < 0.

Proof. The equation Xg — Dog = / is satisfied by

g(s) = ( λ J - A)-y(s) - - β λ ( fe- λ ί/(ί)dί .
Jo

If ^ ( λ ) < 0, then ( λ / - A)" 1 / = &*/, where &G Z ^ - O O , CO). SO

( λ / — D Q ) - 1 is bounded, and Xep(DQ). In particular, Λ;(λJ — J90) = 0
for ^ ( λ ) < 0.

If <^(λ) > 0, the adjoint differential equation of Xf = Dof has
the solution e~KteLq[0, 00), which must be orthogonal to the range
of XI - Do. If fe &(\I - A),

(XI - Do)

This is again a convolution operator with an LMεernel, and so (XI — DJjr1

is bounded on &(Xl — Do). It follows that &(Xl — Do) is the subspace
of Lp[0, oo) orthogonal to £~λί, and so is closed and of codimension 1
in LP[Q, oo). Hence Xeρe(D0) and ιc(Xl - Do) = - 1 for ^ ( λ ) > 0.

Since the Fredholm index is constant on each component of pe(DQ),
the line <^(λ) = 0 must be the essential spectrum of Do. Since D is
an extension of Do by one dimension, /c(Xl — D) — 1 if ^*(λ) < 0 and
κ(Xl - D) = 0 if ^E(λ) > 0.

This establishes the theorem for the special case of the operator
D. It suffices now to prove that M = π(D);1 then the general result
follows from Lemma 2. From the inequality of Lemma 5 we derive
the inequality

|| JD /II S K{\\Mf\\ + 11/11} , fe C0~(0, oo) .

Thus, the M-norm and Dw-norm on C0°°(0, oo) are equivalent, and it
follows, that

Since M is an extension of π(D), and since dim £&(π(D))J&(π(D0)) ^ n,
it suffices to show, that dim &(M)/£&(M0) = n.

1 Professor S. Goldberg pointed out, that a proof was missing here.
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Since 2$(M) — 3ί(M — XI), we may assume, by altering the
constant term of TΓ, that M is Fredholm. Then

dim &(M)/£&(M0) = dim ^V(M) + codim έ

— dim ^ί^(M) + dim,

where L is the maximal differential operator associated with the adjoint
expression (cf. [9]).

We may also assume, that the roots λ l f , λΛ of π(z) = 0 have
distinct real parts. Then ^>V(M) is spanned by the exponentials eKit,
and ^4^(L) is spanned by the exponentials e~λit. From this it is easy
to conclude that dim^K(M) + dim^K(L)-= n.

THEOREM 2. Let the Euler differential expression I on the interval
[1, oo) be defined by

n

k=0

where the bk are constants. Let L be the associated maximal operator
in Lp[l, oo), l < p < oo. Let d be the polynomial

d(z) = bo+±bk Π ( * - ( ! - + j
*=i i=o V \p

Then σe(l) = {d(ir): — oo < r < oo}. For Xe pe(l), the Fredholm index
κ(Xl — L) is the number of roots of d(z) — λ = 0, counted according
to their multiplicity, which lie in the half-plane &&(z) < 0.

Proof. For feLp[l, oo), we define

(πf)(s) = eslPf(e8), 0 ^ s < co .

It is easily verified, that τ is an isometric isomorphism of Lp[l, oo)
and Lp[0f oo). Its inverse is given by

f(t) = (τ-1g)(ί) = ί~1/pg(log ί), 1 ^ K oo .

We have

p

ds p

By induction on k, the following formula obtains

dtk

x
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Therefore

ds p

Let lk be the differential expression

(hf)(t) = ("/'"(ί), 1 =S ί < oo ,

and let Lk be the corresponding maximal operator in Lp[l, °°). Then

Consequently,

L = τ-\bol + Σ &*Π (D - (l + i)Y|τ .

Since the essential spectrum and Fredholm index remain invariant
under isometric isomorphisms, the result follows from Theorem 1.

REMARK. The essential spectrum of L could also be computed by
writing L as a polynomial in the operator x(d/dx), which has the
essential spectrum { — (1/p) + ir, — oo < r < oo}. The Euler operator
was originally represented as a polynomial by George Boole.

5* Perturbation of the constant coefficient operator* The
inequalities, on which the results of this section are based, are es-
sentially special cases of similar estimates for elliptic partial defferential
operators (cf [4]). Similar results for perturbation of partial differential
operators are obtained in [3]. For p = 2 theorems of this type for
elliptic operators, including Lemma 7, are proved by Birman (cf. [11]).

LEMMA 4. Given ε > 0, there exists a constant K, depending only
on p and ε, such that

tt ^ { sup \S+I\b(t)\*dt\\e[°\f'(t)\*dt + κ\~\f(t)\>dt\

for all N^O, all functions b locally in Lp[0, °o), and all functions
f in the domain of the maximal operator D in Lp[0, oo).

Proof. Let r be a small positive number Let a be a continuously
differentiate function on [0, r] such that

0 ^ a ^ 1, α(0) = 1 and a(r) = 0 .

If fe ^r(D), then
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= -[a(s)f'(t + s)ds - [a'(s)f(t + s)ds
Jo Jo

[\f'(t + s) \ds + K0[\f(t + s)\ds
Jo Jo

}llp (Cr Λl/p

S ) | P

where (1/p) + (1/ρ) - 1.
If r is chosen so that εllP = r1 / gcp, then

^ ε[\f(t + s) |'ώ» + K[\f(t + s) I
Jo Jo

\~\b(t)f(t)\*dt

- \l S Γ ' δ ( ί ) |!> {ε'f/(s) lP+K{ /(s) γ]dsdt

= Γ (S I 6(ί) I' {ε |/'(β) I"
JiV Jmax(β-r,JV)

sup Γ+" I b(t) \pdt\\ε\" |/'(β) |
V ŝ<oo J s J I JiV

LEMMA 5. Given ε > 0, £/&ere exists K(ε) > 0

|| J 0 * / | | ^ e || D / H + K(ε) \\f\\, fe & φ * \ 0 £ k < n ,

where the norms are taken in Lp[0, °o).

Proof. Let [0, r] be a finite interval. Replacing / by / ' and
proceeding as in the proof of Lemma 4, we arrive at the inequality

\f'(t) I ̂  Cpr^ \f"(t + s) Yds + K0(r)^ \ f'(t + s) \

Suppose {/„} is a J92-bounded sequence in Lp[0, r\. It is easy to
see that the derivatives fl are uniformly bounded and equicontinuous
on the interval [0, r ] . Hence the operator D in Lp[0, r] is compact
with respect to the operator D2 in Z/[0, r ] .

By Lemma 3(d), there exists a Kx{r) > 0 such that

K0(r)[\f'(t + s) \pds ̂  [ \f"(t + s) Yds + Kλ{r)
Jo Jo

If r is chosen so that 0 < r < 1 and ε1/2> = 2Cpr
llg, then the above

inequalities yield the pointwise estimate



764 E. BALSLEV AND T. W. GAMELIN

'(t)|* £ s[\f"(t + 8)\*d8 + K(ε)[\f(t + 8)\>d8 .
Jo Jo

Integrating from 0 to ^ and exchanging the order of integration,
we arrive at the following inequality

This is equivalent to an inequality of the form

l|i>/ll^e||Dy||

Inequalities of the form

follow easily by induction on k. Since Dk+1 is JD*-bounded, we finally
obtain an inequality of the desired form

Let b be a measurable function on the interval [0, <*>), and define
the linear operator B in Lp[0, oo) by

= {/G L'[0, oo): 6/e L [̂0, oo)} ,

J5 is closed and densely-defined.
In the following, LfQC[a, oo) will denote the space of measurable

functions on [a, oo) which are locally in Lp[a, oo).

LEMMA 6. B is D-defined if and only if 6eLfoc[0, oo) and

If B is D -defined, then for every ε > 0, there exists a K{έ) > 0
such that

In particular, D + B is closed on

Proof. Suppose that B is D-defined. Since B is closed, B is D-
bounded. Let / be a C°°-function on (—°°, °°) such that

f(s) = 1, 0 ̂  s ^
f(s) = 0,-oo<s
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Let fs(t) = f(t — s), and let gs be the restriction of /, to the
interval [0, oo).

If s ^ 0, then

Ί b(t)ga(t) \*dt = J ] + 1 | δ ( ί ) I'eZί ^ || bgs \\* £ \\B\\i \\ g8 \\p

Hence 6eLfoc[0, oo), and

limsup \S+I\b(t)\pdt <
S-+CQ J S

Conversely, suppose 6eLfoc[0, oo) and

Then

lim sup \8+1\b(t)\pdt < °° .

sup \'+1\b(t)\pdt < oo .

It follows from Lemma 4, with N = 0, that B is Z)-bounded and

By Lemma 3(a), D + B is closed.

LEMMA 7. I? is Ό-compact if and only if 6eLfoc[0, oo) and

2i = 0 .

Proof. Suppose that B is J9-compact. By Lemma 6, be Lfoc[0, <*>)•
Suppose that there exists a sequence sn —* oo and a K > 0 such that

U^K, n = 1, 2, .

Let {<7SJ be the functions defined in the proof of Lemma 6; since {gSn\
is a D-bounded sequence, and B is D-compact, we can assume that

passing to a subsequence if necessary. On the other hand,

S s+1

I b(t) \p dt = 0.
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Conversely, suppose that 6eLp

oc[0, oo) and that

lim(β + 1 |&(t)|*(it = 0 .
S-»oo Js

Let χN denote the characteristic function of [0, ΛΓ], and define

By Lemma 4, there is a constant K > 0 such that

\\{B- BN)f\\* =\~\b{t)f{t)\*dt

g κ{ sup ( i w i ' d t k l A f l l ' +

Hence || B — BN \\D —> 0 as N—>°°, so it suffices to show that each BN

is D-compact.
For this purpose, let {fk\ be a D-bounded sequence in

Since

I Ms) - Λ(ί) I = I j Vί(r)dr^ 11 - 8 I1"!£ | /'(r) |

the Λ are equicontinuous on [0, N]. If {fkj}T=i is a subsequence which
converges uniformly on [0, N] then {BNfkj}J=1 converges in Lp[0, oo).
Hence BN is D-compact.

THEOREM 3. Let Mbe the maximal operator in Lp[0, oo), l<p< oo,
corresponding to the differential expression

(mf)(t) = 2 ajf{j)(t), aj constants, an Φ 0 .

Lei J5 6e ί/te maximal operator in Lp[0, oo) corresponding to the
differential expression

3=0

where the bj are measurable.
(a) B is M-bounded if and only if b5 e Lfoc[0, oo) and

lim sup [S+1\ bj(t) \pdt < oo, 0 ^ j ^ n - 1 .
S—*oo J g

(b) B is M-compact if and only if 6yeLfoc[0, oo) and

lim (8 + 1 | δ/ί) \'dt = 0, 0 ^ j ^ w - 1 .
S->oo J 8



THE ESSENTIAL SPECTRUM OF A CLASS 767

(c) If B is M-bounded, then for every ε > 0 there exists K{ε) > 0
such that

In particular, M + B is closed on

Proof. Suppose that B is M-bounded. If the functions gs are
constructed as in the proof of Lemma 6, we have

sup ίS+11 bo(t) \p dt = sup Γ+11 Bgs(t) \p dt
s^O Js Js

Hence b0eL?oc[0, <*>) and

Γs+1

limsup 1 \bQ(t)\pdt < ©o.
S->oo J s

Let 1 ^ k ^ n — 1 and assume t h a t b3e Lfoc[0, ©o) and

lim sup (S+11 bj(t) \pdt<oo90^j^k-l

The functions gs can be altered so that

gik)(t) = l , β ^ t ^ 8 + l .

The same type of estimate as used in the preceding paragraph
yields the results

bkeL?oc[0, oo)

and

S s+l
bk(t)\pdt

s

By induction, this holds for all k,0^k^n — l.
Conversely, assume b3(t) e Lfoc[0, oo) and

limsup \8+1\bj(t)\pdt < oo, 0 ^ i g w - 1 .

Let Bj be the maximal operator corresponding to the expression

By Lemma 6,

|| BJ\\ £ ey || D ^ / | | + JΓoίfiy) II Djf\\,
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From Lemma 5 we can deduce an inequality of the form

\\BJ\\ g ε , | | D V | | + JSΓ(ey) 11/11,/€^(D ) .

Summing over j we arrive at an inequality of the form

Since M i s a polynomial in D of order n, &(M) — ^(Dn)9 and the
ikf-topology is equivalent with the DMopology for 3ί(M). Hence we
get an inequality of the desired form,

JB:(6) 11/11.

By Lemma 3(a), M + B is closed on S>{M). This completes the proof
of parts (a) and (c) of the theorem.

If

lim Γ+1 | bάt) \'dt = 0, 0 ^ j ^ n - 1 ,
8-»oo J s

then each B3 is Dy+1-compact, by Lemma 7. And so B3 is D%-compact,
therefore ikf-compact. Hence B is ikf-compact.

Conversely, if B is ikf-compact, then the relations

lim 1 \bk(t)\pdt = 0
S-»oo J 8

can be proved by induction on k as in the proof of part (a) and of
Lemma 7.

THEOREM 4. Let M and L be the maximal operators in Lp[0, oo),
1 < P < °°, corresponding to the differential expressions

(mf)(t) = Σ ajf{j)(t) , α, constants, an Φ 0,

( ) Σ
3=0

Suppose bn is continuous and satisfies

bn{t) Φ -a%, 0 g ί

lim bn(t) = 0 .

Suppose bjeLfo^Oy oo) αt̂ cί satisfies

lim Γ + 1 | &,-(«) | p dέ = 0 , 0 S 3 S n - 1 .
J

Then &{L) = &(M), and σe(l) = σe(m). If \epe(m), κ{\I-M) =
κ{\I - L).
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Proof. Let Bn be the maximal operator corresponding to the
expression bn(t)f{n)(t).2 In view of Theorem 8 and Lemma 3 it suffices
to prove the theorem in the case

(lf)(t) = (m/)(ί) + bn{t)f{n\t) .

So we assume b3(t) = 0, 0 ^ j ^ n — 1. Since the essential spectrum
and the Fredholm index are localizable to the endpoint °o, and since
the graph topologies of ϋ^(L) and 2$(M) are equivalent on compact
subsets of [0, oo), we may assume, by passing to an interval of the
form [N, oo), that | bn(t) | ^ ε , 0 g ί < ^ .

We have

If ε is sufficiently small, Lemma 3(a) applies, and
Also, by Lemma 3(c) and suitable choice of ε, we must have σe(l) =
σe(m).

Now suppose | bn(t) | < | α w | , 0 ^ t < o o , so that the hypotheses of
the theorem are satisfied for

(lβf)(t) = (m/)(ί) + βbn{t)fn)(t) ,

where 0 ^ / 3 ^ 1 . We have shown that σe(lβ) — σe(m), so that the
function β —* κ(Xl — Lβ) is well-defined, Xeρe(m). This function is
continuous and integervalued, hence a constant. In particular,
Λ;(λJ - M) = κ(Xl - L).

6* Perturbation of the Euler operator*

THEOREM 5. Let L be the maximal operator inLp[l, oo
corresponding to the Euler differential expression

(lf)(t) = Σ bjP'f^it) , bj constants, bn Φ 0.
3=0

Let C be the maximal operator in Lp[l, ©o) corresponding to the
expression

n—1

Σ (

where the c3- are measurable.
(a) C is L-bounded if and only if CjeLfoc[lf oo) and

S as I
— I Cj(t) \pdt < oo for some a > I, 0 ^j ^

s t

2 Professor S. Goldberg pointed out, that the proof was incomplete. The remaining
part can be found at the end of the paper.
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(b) C is L-compact if and only if Cj eLfoJl, oo) and

lim ["'— I cό{t) \p dt = 0 for some a > l , 0 ^ j < n —[

(c) / / C is L-bounded, then for every ε > 0 ίΛ^rβ 0#is£s K(ε) > 0

In particular, L + C is closed on

Proof. Let M be the maximal operator in Lp[0, oo) corresponding
to the differential expression

(m/)(t) = 6, + Σ h Π (-^- - ( - + k
j=ι fc=o \ as \p

and let 5 be the maximal operator in Lp[0, oo) corresponding to the
expression

Φ°) + Σ cλe°) ff (-§- -(-
3=1 h=o \ ds \ p

Let τ be the isometry of Lp[l, oo) and Lp[0, oo) introduced in the proof
of Theorem 2. Then

L - r

and

C - τ-

Also,

Combining Theorem 3 and a downward induction argument on the
coefficients cy, we arrive at parts (a) and (b) of Theorem 5. Part (c)
also follows from Theorem 3.

THEOREM 6. Let L and M be the maximal operators in Lp[l, oo)^
1 < p < oo, corresponding to the differential expressions

(?/)(*) = Σ bjP'f^it), bj constants, bn Φ 0 .

±
i0
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Suppose cn is continuous and satisfies

cn(t) Φ -K, 1 ^ t < oo

lim cn(t) = 0 .
ί-*oo

Suppose c3eLfoc[0, oo) and satisfies

lim ("' — I cό(t) \pdt = O for some a > l , 0 ^ j ^ n - l .

), and σe(l) = σe(m). If Xe pe(m),
/r(λJ-L).

Proof. A straightforward verification, as in the proof of Theorem
5, shows that the transform of Theorem 6 under τ is Theorem 4.

7* Some special cases* The perturbation criterion of Theorem 5
includes all functions c(t) such that t~llPc(t) e Lp[l, oo). It includes all
bounded measurable functions with limit zero at oo. The criterion
shows, for instance, that if a < j < n, then t*fU) is compact with
respect to the Euler operator of degree n. If a < n, Theorem 6 shows,
that t"fXn) has no effect on the essential spectrum of I. In particular,
if

(mf)(t) - Σ aMΓ»(t)

is a Fuchsian differential expression, where an(t) = 0(tn), then m can
be written in the form of Theorem 6, and the essential spectrum of
m can be determined from the coefficients as in Theorem 2.

For instance, consider the Riemann differential expression

(m/)(ί) = t(t + l)/»(t) + (at + b)f'(t) + ct2 + d t + e f{t) .
t\t + L)

Except for the change of variable t—> —t this is the equation^investi-
gated by Rota [10]. By Theorem 6, σe(m) = σe(l), where

«"/"(«) + αί/'(ί) + cf(t) .

By Theorem 2,

σe(l) = {d(ir): - oo < r < oo} ,

where
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Hence

σe(m) = \-r2 + irίa — 1 — A ) + J L + ( i _ <χ) JL + c: —<*> < r <
I \ p / p2 p

This is equivalent to the expression obtained by Rota.

8* Remarks*

(a) The Euler operator in Lp(0, 1].
The mapping τ defined as in the proof of Theorem 2 by

τf(s) = es'pf(es)

also establishes an isometric isomorphism of Lp(0, 1] and Lp( — oo, 0].
The Euler operator

in Lp(0,1] is isometric isomorphic via τ to the constant coefficient
operator

M = a0 + Σ a* Π (Z> - (— + fc))

in L p (-oo,0]
The operator D in Lp(— oo, 0] is isometric isomorphic to the operator

(-D) in Lp[0, oo); therefore Z) in Lp(~oo9 o] has the essential spectrum
{it: — oo < f < oo}, and the Fredholm index of λJ — D is 0 for ^ ϋ λ < 0
and 1 for &Λ, > 0.

It follows, that I on the interval (0,1] has the same essential
spectrum as I on the interval [1, °°) and the Fredholm index of XI — L
is the number of roots of the polynomial d(z) — λ of Theorem 2, counted
with multiplicity, which lie in the half-plane &Lz > 0.

The perturbation results also carry over to the interval (0,1]. The

Theorems of § 6 are true for the operator L in LP(Q, 1], when 1 is

substituted for 0 and 0 for oo f in particular we now take the limes and

Urn sup of I (Ifu) \c(u) \pdu as s —> 0.

The Euler operator L in Lp(0, oo) is isometric isomorphic via τ to
the constant coefficient operator considered above in L*(— oo, oo), and
the essential spectrum is given by the same formula. The Fredholm
index is 0, oe{L) — o(L) and Lo = L.

(b) The condition

— I b(t) \pdt < co for some a > 1
s t
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is equivalent to the condition

Also, the condition

lim \"'λ.\b(f) \pdt = O for some a > 1
S-̂ oo Js t

is equivalent to the condition

V ί = 0.

This second set of conditions could just as well have been used
in Theorem 5 and 6.

The proof of these assertions follows from the inequalities

sup \"'—\ b(t) \p dt ^ sup as\"S\\b{t) |* dt
s^N Js t s^N Js t

^ α s u p s Γ — \b(t)\*dt,
s^N Js t

and

sup sΓ-i-1 b(t) V dt = sup s Σ Γ" 1 S 4r I δ^) I"dt

s^N Js ^ s^N «=0 Jαί»s ί^

α — l

(c) A basis of solutions /i(λ, t), , /n(λ, ί) of a differential
equation l(f) — λ/ of order n is said to be a norm-analytic basis at
λ0 if there is a neighborhood N of λ0 such that (i) the functions f{

are analytic in λ for Xe N and (ii) there is an integer k such that
for each Xe N, {/JLi span the set of solutions of l(f) = λ/ which
lie in ZΛ In [10], Rota proved the following criterion:

LEMMA. // at λ either the differential operator I in Lp or its
adjoint I* in Lq, (1/p) + (1/g) = 1 (cf [9], for definition of adjoint),
does not have a norm-analytic basis of solutions, then λ belongs to
the essential spectrum of I.

l(v)
If I is the Euler differential expression of Theorem 2, the equation
= Xy has solutions φ,(t) = t**, where α, is a root of the algebraic
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equation

bnz(z - 1) (z - n + 1) + +b1z +

Now ft eLp[l, oo) if and only if ^ ( α , ) < -(1/p).
Hence I will not have a norm-analytic basis at any point of the

curve

X = bjir - — )(ir - — - l ) (ir - — - n + l)
V pl\ p I V p I

+ + bλir — — ) + &o > — o o < r < o o ^
\ pi

This curve is identical to {d(ir):—°° <r< oo}, where d(z) is the
polynomial defined in Theorem 2.

If λ is not on this curve, then it can be shown that the resolvent
operator (XI — l)~x is a sum of integral operators whose kernels are of
the Hardy-Littlewood-Polya type (cf [7], or [5] pp. 531-532). This
yields another proof of Theorem 2, but the details are more complicated.

This method also shows that the essential spectrum of the Euler
operator is precisely the set of points at which I or £* does not have
a norm-analytic basis of solutions. That this is not true in general
is shown by the following example.

Define

(lf)(t) = f'(t) + (sin t + t cos t)jf(t), 0 ^ t < oo .

The equation If = Xf has the solution

φk(t) = exp [t(X - sin t)] ,

while the adjoint equation l*g ~\g has the solution

Now φkeLp[0, oo) if ^ ( λ ) < - 1 and φλ$Lp[0, oo) if ^ ( λ ) > - 1 ,
so I does not have a norm-analytic basis on the line ^&(λ) = — 1.

Similarly, I* does not have a norm-analytic basis on the line
^E(λ) = 1. I and Z* have norm-analytic bases if ^ii(λ) ^ ± 1 .

Since 0 is a regular endpoint for the differential expression I, a
necessary condition that a point λ be in ρe(l) is that either φλe Lp[0, oo)
or ψλeLq[0, oo)f(l/p) + (l/q) = i (cf [9]). Hence the entire strip
{—1 ^ £&(X) 5̂  1} is contained in the essential spectrum of I. It is
easy to see that σe(l) actually coincides with this vertical strip.

It seems possible that the boundary of the essential spectrum of
an arbitrary differential expression consists of points λ at which either
If — xf or l*g = Xg does not have a norm-analytic basis of solutions.
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(d) The fact that the isomorphism (τf)(έ) = eslPf(es) converts a
resolvent operator of Hardy-Littlewood-Polya type into a resolvent
operator of convolution type is a special case of the following situation.

Let K be a measurable function on [0, °°), and let

(Tf)(x) = ±[κ(l-
X Jo \ X

The mapping τ may be regarded as an isometric isomorphism of
Lp[0, <*>) and Lp(-co9 oo).

The operator S = τTτ~λ in Lp( — oo, oo) is given by

(Sff)(ω) = Γ ίί(^-ω)e((1/ί))

J-eo

£ is a convolution operator with kernel

J(r) = X

Conversely, a convolution operator in Lp(—cof oo) with kernel J de-
termines a Hardy-Littlewood-Polya operator in Lp[0, oo) with kernel

ίΓ(8) = 8(1^-1J(-l0g8) .

The norm of S is at most the ZZ-norm of J. Hence if

Γ I J(r) I dr = Γ | ΛΓ(β) | s"1" ds < co ,
J-oo Jo

then Γ is bounded, and

| | T | | ^ [°\K{s)\s-ιlpds .
Jo

This last statement is just the Hardy-Littlewood-Polya inequality
(cf [7]).

Added in Proof. Professor S. Goldberg has pointed out that the
proof that D(L) = D(M) in Theorem 4 is incomplete, i.e., it must be
shown that feLp and lfeLp imply mfeLp. This follows easily
with the aid of a more general form of theorem 3(c), namely, that
inequalities of the form

l | B / l l ^ e | | m / | | + K\\f\\

obtain, where the norm is taken in Lp[0, N) for 1 ̂  N^ oo, and K
depends on e and p but not on N. These inequalities result from
modifying and sharpening the proofs of § 5.
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