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1* Introduction* Let A be a complex Banach algebra with an
involution x—*x*. By the positive cone P of A is meant the closure,
in the set H of self-adjoint elements of A, of the set of all finite
sums of elements of the form x*x. Kelley and Vaught [5] have shown
that, if A has an identity,1 A has a faithful ^representation (as
bounded linear operators on a Hubert space) if and only if (1) x —> x*
is continuous and ( 2 ) P Π ( - P ) = (0). Consider the (incomplete) normed
algebra case. Examples exist with a faithful*-representation and both
conditions false, with (1) true and (2) false, and with (1) false and (2)
true. Moreover, even if (1) holds so that #—>#* extends to the com-
pletion Ac of A, one can have a continuous faithful ^-representation
for A when none exists for Ae. It follows that the results which we
now describe, even for the normed algebra case, can not be deduced
from the theory of Banach algebras.

These facts led us to consider the development of a theory of
^-representations of a complex algebra A with involution (with or
without an identity) under minimal assumptions on A but with results
sufficiently definitive to illuminate the counter-examples mentioned
above. We suppose that the real linear space H has a norm in terms
of which it is a real normed linear space such that

( a ) the real subalgebra generated by each h e H is a normed
algebra and

(b) the Jordan product x k = xh + hx is a continuous function
on H for each fixed he H.

It is shown that A has a faithful *-representation continuous on
H if and only if A is semi-simple and P Π ( - P ) = (0). If A is a
normed *-Q-algebra, any *-representation is automatically continuous
on H so that these conditions are necessary and sufficient there for
a faithful ^-representation. As already noted, this can fail if the
Q-algebra hypothesis is dropped.

For previous work on *-representations we refer to [5], [7], [8],
and [10].

2* Preliminaries* Let A be an algebra over the complex field

Received October 23, 1963. This research was supported by the National Science
Foundation Grant NSF-G-25219.

1 As pointed out in [10, p. 352] this statement is incorrect if A has no identity.
For a version covering that case see [10, Theorem 3.4]. Theorem 4.3 below shows that
A has a faithful ^-representation if and only if A is semi-simple and P n ( - P ) = (0).
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with an involution #—>#*. The set of self-ad joint (s.a.) elements of
A is denoted by H. By a ^-representation of A we mean a homo-
morphism x —> Tx oί A into the algebra of bounded linear operators on
a Hubert space where, for each x, Tx* is the adjoint of Tx. A ^repre-
sentation which is one to one is called faithful. A general repre-
sentation procedure of Gelfand and Naimark [7] which we adapt to
our needs leads to ^-representations via positive linear functionals.

A complex linear functional / on A is called positive if f(x*x) ^ 0
for all x e A. We call / hermitian if f{x*) = f(x) for all x e A or
equivalently if / is a real linear functional when restricted to the
real linear space H. As in [8, p. 200] we define Lf = {x :f(zx) = 0
for all zeA} = {x: f{x*x) = 0}; Lf is a left ideal of A. Let Xf be
the linear space A— Lf and π be the natural homomorphism of A
onto Xf. Then, [8, p. 212], (π(x), π{y)) — f{y*x) defines an inner pro-
duct on Xf in terms of which Xf is a pre-Hilbert space. Let Hf be
the completion of Xf in the pre-Hilbert space norm. As in [7, p. 120]
we associate with y e A a linear operator T{ defined on Xf by the
rule Tζ[π(x)] = π(yx). In order that every Tζ, ye A, be extendable
to a bounded linear operator Z7/ on Hf it is necessary and sufficient
[8, p. 213] that / be admissable, that is, to each xe A there corre-
sponds a number K(x) < c*> such that f(y*x*xy) ^ K(x)f(y*y) for all
ye A. If / is admissable, the mapping #—•£/"/ is a ^-representation
of A.

For any positive linear functional / and any ye A we define the
positive linear functional fy(x) = f(y*xy).

2.1. LEMMA. Let f be a positive linear functional on A. Then
f is admissable if and only if

(2.1) sup [fy(h*n)Γn < oo ,

for each ye A, heH, where the sup is taken over the set of positive
integers.

Suppose that / is admissable. Then, for heH, U[ is a bounded
s.a. operator on the Hubert space Hf. For convenience, let Uί where
z ~ h2n be denoted by Vn. For each ye A,

fv(Wn+1) = \\Vnπ(y)\\2 ^ \\Uί\r+ιf(y*y)

for n = 0,1, 2, . This implies (2-1).
For the converse we make use of an inequality due to Kaplansky

[4, p. 55] concerning a positive linear functional / which asserts that

(2.2) f/φ*χ)
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for all x,yeA and all positive integers w. Assume (2.1). It is clearly-
sufficient to show that T{ is a bounded operator on Xf for each h s.a.
Using (2.2) we have

II T{π{y) | | 2 = fy{¥) <£

so that \\T(\\ cannot exceed the sup of (2.1).

2.2. LEMMA. Suppose H is given a topology in which it is a
real linear topological space. Then the mapping p—*{l + h) x(l + h)
is continuous on H, for each heH, if and only if the Jordan product
x-h = hx + xh is continuous on H for each heH.

Let a(x, h) — x + xh + hx + hxh. Then x h = [a(x, h) — a{x, —h)]/2
and a(x, h) — x + x h + [(x-h)-h — x-h2]/2 from which the lemma is
immediate.

We now state metric requirements which we put on the algebra
A with involution. We suppose given a norm \\h\\ on H in terms of
which H is a real normed linear space and, for each heH, the real
subalgebra generated by h is a normed algebra. No assumptions are
made about the elements not in H nor are there any requirements of
completeness or identity element. We assume that the Jordan product
x-h is continuous on Hfor each heH. We call A a normed *-algebra
if, A is a normed algebra. Following [3] we say that the normed
*-algebra A is a normed Q-*-algebra if the set of quasi-regular ele-
ments of A is open. If A is a Banach algebra it has this property
[3, p. 155].

F o r heH, l im \\hn \\lln = v(h) e x i s t s . Clear ly v{h)<,\\h\\ a n d
v{W) = [v(h)Y (see [8, p. 10]).

2.3. LEMMA. Let f be a positive linear functional on A. The
following statements are equivalent.

( a ) Each fy is continuous on H.
(b) fy(x*x) S v{x*x)f(y*y) for all x,yeA.
(c ) f is admissable and the mapping x-+Tζ is continuous on H.

Suppose (a) holds. From the inequality (2.2) we obtain

*11 (***)" IIΓ*
I f w e l e t n —•> oo w e o b t a i n ( b ) .

S u p p o s e (b) h o l d s . C l e a r l y / i s a d m i s s a b l e . F o r heH we h a v e
Λ ( Λ " ) <£ v{hff(y*y) s o t h a t || T{π(y) \ \ S \ \ h \\ \\ π(y) \\ a n d || T{ \ \ ^ \ \ h \\.

Suppose (c) with \\T{\\^h\\h\\, heH. Then, by the Cauchy-
Schwarz inequality,
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\fy{h)|2 <; f{y*y)fy{h>) = f(y*y)\\ T{π{y)\\>^V\\h\\\f{y*y)Y

so that fy is continuous on H.
We note that, under these conditions, the norm of the mapping

x —> Tζ on H does not exceed one.

2.4. LEMMA. Any *-representation of a normed *-Q-algebra A
is continuous on H.

Let x—>Tx be a *-representation of A. Let p{u) denote the spec-
tral radius of u {8, p. 30]. For heH we have \\Th\\ = ρ(Th) ^ ρ(h) ^
IIAII by [9, p. 373]. Thus in the Q-algebra case the admissable posi-
tive linear functionals are those satisfying (b) of Lemma 2.3; if also
A has an identity the admissable positive linear functionals are those
continuous on H.

2.5. LEMMA. Suppose f is positive linear functional on A which
is continuous on H. Then fy is continuous on H for each ye A.

It follows from Lemma 2.2 that the mapping x —> hxh is con-
tinuous on H for each heH. Therefore the functional fh is continuous
on H for each he H. Now, if y — u + iv, uf ve H we have fy(x) —
fu{%) + Λ(β) + if(uxv — vxu). But, by the Cauchy-Schwarz inequality,
for any xeH, \f(uxv) |2 ^ f(u2)fυ(x>) ^ f(v?) \\fΌ\\\\ x | |2 where | | / J | is

the norm of fυ considered as a linear functional on H. This makes
HΛίαOII^ΛΠIsH, xeH, where

K= IIΛII + 11/. II + 2[/(OI|/J| +/(^2)IIΛI|]1/2.

In view of Lemma 2.3, / is admissable.
We give an example of a normed *-algebra A whose involution

is continuous with the following properties.
( 1 ) A has a faithful *-representation.
( 2 ) Every ^-representation of A other than the zero representa-

tion is discontinuous on H.
( 3 ) The completion Ac of A has only the zero ^representation.
Let A be the set of all polynomials in the complex variable z

which vanish at the origin. For p(z) — Σakz
k we define p*(z) = Σakz

k

and || p(z) \\—Σ\ak \/k\. Then (see [3, p. 158]) A is a normed *-algβbra.
That (1) holds will be pointed out in §4. Let p—*Tp be a ^repre-
sentation of A continuous on H. The polynomial z is s.a.. For each
real scalar λ, | | λ ^ | | - > 0 . Therefore \\\nTz

n \\ = | λ h | Tz\\n->0. This
makes Tz = 0 so that Tp = 0 on A. Now the involution on A, being
bicontinuous, extends to an involution on Ac. Any ^representation
x—>VX of the Banach algebra Ac must be continuous by [8, Theorem
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4.1.20], Therefore, by the above, Vx = 0 for all xe Ae.
Let F be a set of admissable positive linear functionals on A.

We call F a compatible set if for each x e A there exists a real number
K(x) such that | |Ϊ7/| | ^ K(x) for all feF. This is equivalent to
requiring that, for each xeA, there exists C(x) < co, such that
fv(x*x) ^ C(x)f(y*y) for all ye A and all feF. By Lemmas 2.3 and
2.4 the set of all admissable positive linear functionals on a normed
*-Q-algebra is a compatible set.

For each / in the compatible set F consider the Hubert space Hf

and the corresponding ^representation x —• 17/. Let H be the Hubert
space direct sum of the Hubert spaces Hf. Since \\U£\\ ^ K(x) for
all / e F we can take [7, p. 113] the direct sum x-^Ux of the ^repre-
sentations x—>U£, feF where Ux is a bounded operator on H and
11 £7* || ^ î Otf). We call this *-representation the canonical *-representa-
tion of A induced by F. For a left ideal L of A we use the notation
(L :A) as in [8, p. 53] to denote the set of all xe A such that xAaL.
The kernel of the canonical ^-representation induced by F is given by
Π (Lf: A) where the intersection is taken over all feF.

3* On ^representations* For our purposes we wish to define
the ^-radical 9ΐ* of A as the intersection of the kernels of all ^repre-
sentations of A which are continuous on H. Let A* denote the set
of all positive linear functionals on A. At the outset we consider
three subsets of A*. Let 33 - {fe A* :fy{x*x) ^ v{x*x)f{y*y), for all
x,ye A}. Let ® be the set of dual functionals by which we mean
{fe A*:/ is hermitian and /is continuous on H}. Let(S—{feD: \f(x)\2^
f(x*x) for all xeA}. By Lemmas 2.3 and 2.5 we see that 33^2)^©
and that these are compatible sets. Let 330, ®0, and @0 be the kernels
of the canonical *-representations of A induced by 33, 3), and @ respec-
tively. Then @o^®o^^o.

3.1. LEMMA. SR* = (g0 = ®0 = S30. A/3ΐ* is semi-simple.
For any /e33, and α?,»eA, || Γ£π(») ||2 ^ y(a?*α?) ||π(») ||2 so that

;|| T{ || ^ v(tf*α;)1/2. Consequently || T£ || ^ j;(λ) ^ || λ ||, h e H. Therefore
if x-+ Tx is any of the canonical *-representations in question, || Th \\ ^
||Λ||, heH, and the *-representation is continuous on H. This proves
that 3ΐ* c S30 c ®0 c 60. We show that @0 c an*.

Let x-^Vx be any ^-representation of A continuous on H, say as
operators on the Helbert space M. For each ae M the functional
g<*(x) = (Vx(a),a) is continuous on H and is a dual functional. For
a in the unit ball Σ oί M, \ g«{x) |2 ^ || Vm(a) ||2 = ^(α;^) so that g« e (g.
We have
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\= Π (Lf:A)cz Γl
fβE cύβΣ

= Γl {zeA:g«((zy)*(zy)) = 0 for all ye A}

= Γl {zeA:V»(a) = 0 for all ye A}

= {ze A : Vzy = 0 for all j / e i }

Therefore ©ocgt*.
Since A/3ΐ* = A/&0 is algebraically *-isomorphic to a *-subalgebra

of the algebra of all bounded linear operators on a Hubert space, we
see from [8, Theorem 4.1.19] that A/9ΐ* is semi-simple. From this we
see also that the radical of A is contained in 9ΐ*.

3.2. LEMMA. A normed *-algebra A has a faithful ^-representa-
tion continuous on H if and only if 3ΐ* = (0).

Suppose 3ΐ* = (0). The preceding Lemma 3.1 then asserts the
canonical *-representations induced by S3, ©, or Gc are faithful. As
noted above, these ^-representations are continuous on H. We natu-
rally seek conditions on A which force 3ΐ* = (0).

We set forth notation which will be used below. Let Ro be the
collection of all finite sums of elements of A of the form x*x and let
P be the closure of Ro in H. The set P will be considered as a closed
cone in the real normed linear space H. Let Ax be the algebra ob-
tained by adjoining an identity e to A. As usual the involution on
A is extended to A1 by (Xe + x)* = Xe + φ* where λ is a scalar and
x e A. We shall have occasion to consider the sets H, SH*, £), i?0, and
P in A simultaneously with the corresponding sets defined for Alm

When we do so, we denote the latter sets by Hlf 3ΐf, ®2, R01, and Px

respectively. The given norm on H leads to a norm on Hx via
||λβ + ft|| = | λ | + ||fe||, λ real, he H. Aτ satisfies the requirements
of our theory.

We set Z($>) = Π / " 1 ^ ) , / e ® and Z((S) = Π / " 1 ^ ) , feE. We
define two versions of the reducing ideal [7, p. 130] suitable for this
setting. Let Π Lf where / runs over 3)(G?) be denoted by Rli®) and
RI(&) respectively.

Let g be a continuous real linear functional on H, g(P) *> 0. If
we extend g to A by the rule g(x) — g(h^) + ig(h2) for x — hλ + ih2,
hu h2 s.a., we obtain an element of ®. Conversely the restriction to
H of any fe D has the property that g(P) ^ 0. From the theory of
closed cones in a normed linear space [5, Lemma 1.2] it follows that
P Π (-P) is the s.a. part of Z(S>) so that Z(S>) = P Π ( - P ) + iP Π ( - P ) .
In a more restrictive context, this was pointed out and used in [1],
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It will appear that Z(&) can differ from ^(®); Z(<£) does not seem to
have as neat an interpretation as Z(^S>). For that reason the results
of §4 involving SD are more interesting than the theory for Gr.

3.3. LEMMA. 3ΐ* = (RI(®): A) = (BI((g): A)

We see, by Lemma 3.1, that 91* is the kernel of the canonical
^representation induced by S). Thus

$R* = f| (Lf:A)= Π {xixyeLf, for all yeA}
/a® /eS)

= \x:xye f[ Lf, for all y e A \ = (22/(2)): A) .

Let x—>Vβ be the canonical ^representation induced by @. We
show, by direct computation, (see [7, p. 132]) that

(3.1) IIV. ||a = Bupyχa?*»)f a? e A .

Let i8(a?) denote the right hand side of (3.1). Take /e<£. Then
IΛ(») I2 = \f(y*xy) I2 ^ f(y*y)fv(x*x) by the Cauchy-Schwarz inequality.
Therefore / , e g whenever f(y*y)^l. Now || Γίττ(y) ||2 =Λ(α?*α?) so
that || Γί | | 2 ^ /S(flj) from which we see that || Vx ||2 ^ β{x). On the
other hand, for /eGc,

[/(^*^)Γ ^ f(x*xx*x) - II ϊ ^ φ ) ||2 ^ || Γί ||2/(α*α0

which shows that β(x) S \\ Vx \\\
From Lemma 3.1 we observe that ϋl*={x :/(£*#)=(), for all fe @}=

i?/(©). This formula, as we shall see in §4, can be invalid if @ is
replaced by 3).

We consider next a version of Kelley and Vaught's result [5,
Theorem 4.4].

3.4. THEOREM. Let x—>Vx be the conical *-representation of A
induced by @. Then \\ Vx ||2 = dist (-x*x, Px).

Let heH, \\h\\ ^ 1. In the algebra Ax let B be the real sub-
algebra generated by e and h and let Be be its completion. For m =
1, 2, let

(3.2) w =

Clearly wm e H. In i?c we have (e — h) = [lim (e + ι^m)]2 so that, in
Λlf we get

(3.3) e - h = lim (e + wmf .
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This shows that, in Hlf e is an interior point of the cone P1#

The discussion in [6, p. 96] shows that any fed is extendable
to Aλ so as to belong to ®x where f(e) ̂  1. On the other hand if
g e Dl9 g(e) ^ 1 then its restriction to A lies in G? by the Cauchy-Schwarz
inequality. Since | | β | | = 1 and e is an interior point of Px we see,
from Lemma 1.3 of [5], that, for each xe A,

dist(—x*x, Px) = sup/(#*#) = sup/(#*#) .

An application of formula (3.1) completes the proof.

4* Faithful ^-representations*

4.1. THEOREM.

( a ) Z(f£>) is a two-sided ideal of A.
( b ) Z($ΰ) c i?/(S)) c 3ΐ* and the inclusions can be proper.
(c ) If A has an identity, Z($>) = RI(^) = 3ΐ*.
(d) //xeSft* then x'eZ^).
(e) 9ΐ* is £/&# complete inverse image of the radical of

under the natural homomorphism of A onto

We refer to formula (3.2) for notation. For each m = 1, 2,
we define the operator am on H by the rule ocm{x) = (e + wm)x(e + wm).
Since ajx*x) — (x + xwm)*(x + xwm) we see that am(RQ) e Ro. Because
am is continuous on H by Lemma 2.2, we also get α m ( P ) o P .

Suppose next that also he P. Then (e+wm)h(e+wm)=h(e+wm)2e P.
Passing to the limit as m —> o© we see from (3.3) t h a t h — h2 e P. We

have established that , for any heP whatever its norm, f(h)\\h\\>

f(h2) ^ 0, / e S ) . By the Cauchy-Schwarz inequality \f(hx)\2^

f(h2)f(x*x) and | f(xh) |2 ^ f(xx*)f(h2), ΐ e ®. Now P n ( - P) =
{̂/ G i ϊ : /(y) = 0, / e ©}f so that f(yx) = 0 = /(α?») for all a? 6 A, fe S>.
Next let we Z(®). We can write w = y1 + iy2 where each ^ e P ί l ( - P ) .
We then see that f(wx) — 0 — f{xw) for all / e ® , CCG A, so that ^x
and xw lie in Z(®). This establishes (a).

Let x e Z(S)). By (a) we see that x*x e Z(D) so that /(&*&) = 0
for a l l / e ® . Thus Z(®)cJS/(®). Next let xGiίI(®), j/eA. Then
α;̂/ G RI^) so that a? G (i2/(®): A) = 3ΐ* by Lemma 3.3.

We now produce an example for which Z(£>) Φ JS/(®). Let A =
C([0,1]) with the usual norm and involution but considered as a zero
algebra. Then all linear functionals on A are positive. This implies
that i?7(®) = A. On the other hand it is trivial that Z(S)) = (0).

We now provide an instance where Rli®) Φ 9ΐ*. Let q(w) be the
function q(w) = w on [0,1]. Again we take A — C([0,1]) with the



FAITHFUL ^REPRESENTATIONS OF NORMED ALGEBRAS Iϊ 1483

usual norm and involution but define the product by the rule xy —
x(O)y(0)q. Under these definitions A is a Banach algebra and A3 = (0).
Since the radical of A is contained in 3ΐ* by Lemma 3.1, we see that
9ΐ* = A. Now for any linear functional / on A, f(x*x) = | x(0) \2f(q).
By the Hahn-Banach theorem, there exists a continuous real linear
functional g on H such that g(q) = 1. We extend g to A by the rule
g(hx + ih2) = g{hλ) + ig(h2) where hlf h2 e H. Then g e 3). Jίxe u!/(®),
g(x*x) = I x(0) |2 = 0. Thus i?/(®) = {x e A : α(0) = 0}. This completes
the proof of (b).

Suppose that A has an identity e. For any xeίίl*, x = ίceci2/(®)
by Lemma 3.3. Next take xeRI(®). Since \f(x)\2 Sf{e)f{x*x) = 0,
for all / e ® , we see that xeZffi). Combining this information with
the set inequalities of (b) we obtain (c).

By Lemma 3.1 there exists a *-representation of Ax continuous on
Hx with kernel 9t*. By restricting this *-representation to A we see
that

(4.1) 31* c A n 3t? .

Let λ be a scalar and a?, ye A. Then y*(λe + a?)*(λβ + #)y =
(λy + xy)*{Xy + a?2/) e i20. Thus y*R01yaR0 for each ye A. From
Lemma 2.2 it can be seen that, for he H, the mapping x —> hxh is
continuous on H. It is easily shown that x —•> /&#/& is also continuous
on JHΓjL. It then follows that APΛ c P. This shows that h[Pλ Π (-Pi) +
iPx n ( - P ) ] λ c P Π ( - P ) + i P n ( - P ) . By (c) this gives

(4.2) h^hdZ{^))9heH.

From (4.1) and (4.2) we have MR*ftc Z(2)). It follows readily that
uzw + wzu 6 Z(^S)) for all u, w £ H and 2 6 ϊt*. Let x = u + ive 91*,
u, ve Hand note that w, i;e 91*. Writing α?3 = %3 — i'y3 + i(u2/y + vu2) +
i u m — vuv — (v2u + U'y2) we see that the individual terms of the
expansion lie in Z(*£>).

We turn to (β). Let 7 be the natural homomorphism of A onto
A/Z(®). For xei2*, [7(»)]8 = 0 by (d) so that τ(9l*)c W, the radical
of A/Zi®). Inasmuch as A/JB* is semi-simple by Lemma 3.1, so is

Therefore Sft*/Z(S)) 3 W.

4.2. THEOREM. Tfee following statements are equivalent.
( a ) There exists a faithful *-representation of A continuous

on H.
(b) A is semi-simple and P(Ί (—P) = (0).
(c ) A is semi-simple and i2/(®) = (0).

Suppose ( a ) . A is semi-simple by [8, Theorem 4.1.19]. Lemma 3.2
gives 9ΐ* = (0) so that PΠ ( - P ) = (0) from Theorem 4.1 (b).
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Suppose ( b ) . Then Z(3>) = (0) so that, by Theorem 4.1 (d), xz = 0
for each x e 31*. Since A is semi-simple, Sft* = (0). Then Theorem 4.1 (b)
shows that i?/(S)) - (0).

Suppose ( c ) . Again Z(©) = (0) by Theorem 4.1 (b). As just seen
this implies that 3ΐ* = (0) so that (a) follows from Lemma 3.2.

4.3. COROLLARY. Let A be a normed *-Q-algebra. Then A has
faithful *-representation if and only if A is semi-simple and

This follows immediately from Theorem 4.2 and Lemma 2.4.
We now exhibit a normed *-algebra with a faithful *-representa-

tion but for which P Π (—P) Φ (0). Let A be the algebra of all poly-
nomials in the complex variable z. F oτ p(z) = Σanz

n set p*(z) = Σazz*.
First consider A in the norm

= s u p | p ( t ) | .

Here, for each t, 0 :§ t :g 1 the functional /*(p) = p(ί) is a positive
linear functional continuous on A and real-valued on H. Thus ^(®) =
(0). By Theorem 4.2 we see that A has a faithful *-representation.
This also justifies a remark following Lemma 2.5.

Next consider A in the norm \\p\\ — Σ\ak\/k\ (see §2). For
p{z) = α0 + + α%zw let /(p) = a0. This gives us a continuous
*-representation of A as operators on one-dimensional Hubert space
with kernel M = {p : p(0) = 0} so that ikf DSK*. The arguments of §2
following Lemma 2.5 show that any *-representation of A continuous
on H must vanish on M. Therefore M — 31*. Via Theorem 4.1 we
see that PΠ(—P) is the set of all polynomials with real coefficients
vanishing at the origin. We investigate the commutative case more
closely in §5.

4.4. LEMMA. 3ft* = A n 3**.

We already have 3ϊ* c A Π 3ΐf by (4.1). Let St = AΓ\$tf. By
(4.2), hSthczZi^) for each heH. Reasoning exactly as in the proof
of Theorem 4.1 (d) we obtain x3e Z(S>) for each x e S . Let β be the
natural homomorphism of A onto A/91*. Since Z(®)c3ΐ* by Theorem
4.1 (b), we see that [/3(#)]3 = 0 for each x e ^ . From Lemma 3.1 we
obtain β(St) — (0). We now derive another formula for 9t*.

4.5. THEOREM. 3ΐ* = ( )

As noted in the proof of Theorem 3.4, @ is the set of positive
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linear functionals on A which are extendable to positive linear func-
tionals / on A19 lying in 3)lf with f(e) ^ 1. Now any g e S)x is a
multiple of such a functional. Therefore Z(<$) = AΠZ(*£>ύ = AΠ3t? = 9t*
by way of Theorem 4.1 and Lemma 4.4.

We have 3ΐ* = RI(<$) = Z(@), a situation which differs from what
can happen for S). In particular Z(f£) Φ Z^ΰ) can occur.

5* The commutative case* Let A be a commutative algebra
with an involution. By commutativity, H is a real subalgebra of A.
We suppose in § 5 that H has a norm in terms of which it is a real
normed algebra. Let 2JΪ be the set of modular maximal ideals of A1#

We call Meϊΰl symmetric if M = M* and single out for special
attention the set of symmetric M for which M Π H is closed in i ϊ .

5.1. LEMMA. Let μ be a homomorphism of H into the reals.
Define, for each x = h + ik, h, keH the functional μa by the rule
μa{κ) = μ(h) + iμ(k). Then μa is a multiplicative (complex) linear
functional on A.

This can be verified in a straight forward way.

5.2. LEMMA. Let M be a symmetric modular maximal ideal of
A where M Π H is closed in H. Then there exists a continuous homo-
morphism μ of H onto the reals such that μz\0) — M.

Let j be an identity for A modulo M. Then so is (j + i*)/2 so
without loss of generality we can take j s.a. Then ju — ueMdH
for all ue H and therefore MΠ H is a modular ideal of H. Since
M = M Π H 0 i(M n H) it is clear the M Π H Φ H. We claim that
M Π H is a modular maximal ideal of H. For otherwise there exists
a modular maximal ideal K of if containing MPi H, K Φ MΠ H. An
easy computation shows that If 0 iJST is an ideal of A containing M.
Then K@iK= A which is impossible as jίK (otherwise K = H).
Inasmuch as M Π H is closed in H, H/M Π H is a normed field in the
quotient algebra norm. By Mazur's theorem, H/M Π i ϊ is a copy of
the real or complex field. We rule out the latter possibility If
H/M Π H were a copy of the complexes then it would be two-dimen-
sional over the real field and there would be a two-dimensional real
subspace L of H such that H = M ΓΊ H0 L. Then A = ffφ i i ϊ =
Λf φ L 0 iL which compels A/ikf to be four-dimensional over the reals.
But surely A/M is a division algebra over the reals. Thus a well-
known theorem of Frobenius makes A/M a copy of the quaternions.
This is impossible in view of commutativity. Consequently there is a
continuous homomorphism μ of H onto the reals with kernel M Π H.
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5.3. THEOREM. 3t* is the intersection of those symmetric modular
maximal ideals M of A such that M Π H is closed in H.

Take x — u + iv, u, v e H. By commutativity, x*x — (u2 + v2)/2.
Thus P is the closure in H of finite sums of squares of elements of
H. Suppose first that A has an identity e. The proof of Theorem 3.4
shows that e e Int (P). Let Σ represent the set of all continuous real
linear functionals g on H where g(P) ^ 0 and g(e) ̂  1. The arguments
of [5, Theorem 2.1] show that the set Σe of extreme points of Σ is
the set the continuous homomorphisms of H into the reals. As in
[5, Remark 2.3] at follows that Pf](-P) = Π / " 1 ^ ) where / ranges
over Σe. Let S be the intersection of the symmetric modular maximal
ideals M of A with M Π H closed in H. Lemmas 5.1 and 5.2 show
that HΓ\S = Π/'XO) = P Π ( - P ) and Lemma 4.1 (b) shows that
S = 9Ϊ*.

Now suppose that A has no identity. Each multiplicative linear
functional on A which is real and continuous on H extends, as is
easily verified, to a multiplicative linear functional on Ax which is
real and continuous on Hx. Applying the result for the case with the
identity we get S = A Π 9t* = 9ϊ* with the aid of Lemma 4.4.

6* An example* We give an example of a normed *-algebra A
which has a continuous faithful ^representation and a continuous
involution but for which the ccmpletion2 Ac has no faithful ^repre-
sentation. This demonstrates conclusively that our results in the case
of a normed *-algebra (e.g. Theorem 4.2 and Corollary 4.3) cannot
possibly deduced from the theory of Banach algebras.

The algebra A which we use is a subalgebra of an algebra devised
for other purposes by C. Peldman [2]. His algebra is the commutative
algebra B which is the completion of the algebra of all finite sums

Σ ^iβi + βr

where aλ and β are complex, the e{ are mutually orthogonal idempotents,
r2 = 0 = e{r — re{ for all i and

|| Σafii + βr \\ = max {(Σ \ a, I2)1'2, 1 0 - ^ 1 } .

Consider the subalgebra A consisting of all finite sums Σateim The
involution

on A is an isometry. For each integer n > 1 let s(n) be the smallest

The invplution on A extends to an involution on 4c,
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integer of the form n + k such that Σi=o (w + ΰ)"1 > 1. Let zn =
w""1^ + (w + l)"X+i + + [β(w)]"1eβ(n). It is readily verified that
II f — «» 11 —»• 0. Therefore B is the completion of A. For each n =
1, 2, the functional fn defined on A by the rule fJ^Σaφi) — an is a
continuous multiplicative linear functional on A. Moreover Π fn\0) =
(0) so that A is semi-simple and, by Theorem 5.3 and Lemma 3.2, A
has a faithful ^-representation continuous on H. The continuity of
the involution allows us to assert that this *-representation is con-
tinuous on A. However, the completion B of A is not semi-simple
[2] and so has no faithful *-representation [8, Theorem 4.1.19].

REFERENCES

1. P. C. Curtis, Jr., Order and commutativity in Banach algebras, Proc. Amer. Math.
Soc, 9 (1958), 643-646.
2. C. Feldman, The Wedderburn principal theorem in Banach algebras, Proc. Amer.
Math. Soc, 2 (1951), 771-777.
3. I. Kaplansky, Topological rings, Amer, J. Math., 69 (1947), 153-183.
4. , Topological algebra, Dept. of Math. University of Chicago, 1952 (mimeo-
graphed notes).
5. J. L. Kelley and R. L. Vaught, The positive cone in Banach algebras, Trans. Amer.
Math. Soc, 74 (1953), 44-55.
6. L. H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co.,
New York 1953.
7. M. A. Naimark, Involutive Algebren, Sowjetische Arbeiten Zur Funktional-Analysis,
Berlin (1954), 89-196.
8. C. E. Rickart, General theory of Banach algebras, D. Van Nostrand Co., New York,
1960.
9. B. Yood Homomorphisms on normed algebras, Pacific J. Math., 8 (1958), 373-381.
10. , Faithful *-representations of normed algebras, Pacific J. Math., 10 (1960),
345-363.

UNIVERSITY OF OREGON






