ON COVERINGS

J. Schönneim

1. Introduction. Recently [2,3, 4, 5] renewed interest has been aroused in the notion of covering and related problems, originally posed by Steiner [8] and later reformulated by Moore [6] as problems of the existence of tactical configurations.

A tactical configuration $C(k, l, \lambda, n)(n \geqq k \geqq l)$ is a set of unordered k-tuples of n different elements, such that each l-tuple of these elements appears exactly λ times.

In view of the importance of the special cases $\lambda=1$ and $l=2$ the notions of tactical systems $S(k, l, n)$ for $C(k, l, 1, n)$ and balanced incomplete block designs (BIBD) $B(k, \lambda, n)$ for $C(k, 2, \lambda, n)$ have also been used.

A necessary condition [6] for the existence of a tactical configuration $C(k, l, \lambda, n)$ is known to be

$$
\begin{equation*}
\lambda\binom{n-h}{l-h} /\binom{k-h}{l-h}=\text { integer }, \quad h=0,1, \cdots, l-1 \tag{1}
\end{equation*}
$$

For $h=0$ this integer, namely

$$
\begin{equation*}
\lambda\binom{n}{l} /\binom{k}{l} \tag{2}
\end{equation*}
$$

is clearly the number of elements in $C(k, l, \lambda, n)$.
Condition (1) has been proved to be sufficient for $l=2, k=3$, $\lambda=1$ by Moore [6] and Reiss [7], for $l=2, k=3, \lambda=2$ by Bose [1], for $l=2, k=3$ and $k=4$ and every λ, for $l=2, k=5 \lambda=1,4$ and 20, and for $l=3, k=4$ and every λ by Hanani [3,4,5].

These results for $\lambda=1$ show-and we note this here for future references-that necessary and sufficient conditions for the existence of tactical systems $S(4,2, n), S(5,2, n)$ and $S(4,3, n)$ are, respectively

$$
\begin{equation*}
n \equiv 1 \text { or } 4(\bmod 12) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
n \equiv 1 \text { or } 5(\bmod 20) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
n \equiv 2 \text { or } 4(\bmod 6) \tag{5}
\end{equation*}
$$

More general coverings $R(k, l, \lambda, n)$ existing for every n may be defined.

[^0]A covering $R(k, l, \lambda, n)$ ($n \geqq k \geqq l$) is a set of unordered k-tuples of n different elements, such that each l-tuple of these n elements appears at least λ times.

Coverings $R(3,2,1, n)$ have been studied by Fort Jr. and Hedlund [2]. These authors have proved that:
(i) every covering $R(3,2,1, n)$ contains at least

$$
\varphi(n)=\left\{\begin{array}{ll}
n^{2} / 6 & \text { if } n \equiv 0 \\
n(n-1) / 6 & \text { if } n \equiv 1 \text { or } 3 \\
n^{2}+2 / 6 & \text { if } n \equiv 2 \text { or } 4 \\
n^{2}-n+4 / 6 & \text { if } n \equiv 5
\end{array}(\bmod 6)\right.
$$

triples;
(ii) for each n there exists a covering $R(3,2,1, n)$ containing exactly $\varphi(n)$ triples.

In this paper we define the function

$$
\psi(k, l, \lambda, n)=\left\lceil\frac { n } { k } \left\lceil\frac{n-1}{k-1}\left\lceil\cdots\left\lceil\frac{n-l+2}{k-l+2}\left\lceil\frac{\lambda(n-l+1)}{k-l+1}\right\rceil\right\rceil \cdots\right\rceil\right.\right.
$$

where $[x\rceil$ denotes the smallest integer $y, y \geqq x$. This is a generalization of the function $\varphi(n)$. Indeed, $\varphi(n)$ equals $\psi(3,2,1, n)$.

We shall then prove (Theorem I) that every covering $R(k, l, \lambda, u)$ contains at least $\psi(k, l, \lambda, n) k$-tuples.

Further, we denote coverings $R(k, l, \lambda, n)$ containing exactly $\psi(k, l, \lambda, n) k$-tuples as admissible coverings $M(k, l, \lambda, n)$. Tactical configurations are such admissible coverings, because the number (2) of k-tuples in a tactical configuration $C(k, l, \lambda, n)$ equals $\psi(k, l, \lambda, n)$ as a consequence of conditions (1).

Finally, we shall prove (Theorem II) the existence of other admissible coverings, establishing that the existence of a tactical system $S(k, l, n)$ implies the existence of an admissible covering $M(k, l, 1, n+1)$. Thus, particularly (Corollaries $1,2,3$) from conditions (3), (4), (5), derives the existence of admissible coverings $M(k, l, 1, n)$ for

$$
\begin{array}{lll}
k=4, l=2 & \text { if } & n \equiv 2 \text { or } 5(\bmod 12) \\
k=5, l=2 & \text { if } & n \equiv 2 \text { or } 6(\bmod 20) \\
k=4, l=3 & \text { if } & n \equiv 3 \text { or } 5(\bmod 6) .
\end{array}
$$

Our last result means in terms of minimal coverings (coverings containing the least possible number of k-tuples), that a minimal covering $R(k, l, \lambda, n)$ contains exactly $\psi(k, l, \lambda, n) k$-tuples if a tactical system $S(k, l, n-1)$ exists.
2. The lower bound for the number of \boldsymbol{k}-tuples in a covering.

Theorem I. Every covering $R(k, l, \lambda, n)$ contains at least

$$
\begin{equation*}
\left\lceil\frac { n } { k } \left\lceil\frac{n-1}{k-1}\left\lceil\cdots\left\lceil\frac{n-l+2}{k-l+2}\left\lceil\frac{\lambda(n-l+1)}{k-l+1}\right\rceil\right\rceil \cdots\right\rceil\right.\right. \tag{6}
\end{equation*}
$$

k-tuples.
Proof. We denote by $q(R, k, l, \lambda, n)$ the number of k-tuples contained in $R(k, l, \lambda, n)$ and by $\psi(k, l, \lambda, n)$ the expression (6). Under this notation, the statement of Theorem I is

$$
\begin{equation*}
q(R, k, l, \lambda, n) \geqq \psi(k, l, \lambda, n) \tag{7}
\end{equation*}
$$

We prove this inequality by induction on l. Let $l=1$. Obviously $q(R, k, 1, \lambda, n) \geqq\lceil\lambda n / k\rceil=\psi(k, 1, \lambda, n)$. Suppose that inequality (7) is established for each $n \geqq k>l$ and $l \leqq l_{0}$. Now let $l=l_{0}+1$. Consider a $R\left(k, l_{0}+1, \lambda, n\right)$. It will contain $q\left(R, k, l_{0}+1, \lambda, n\right) k$-tuples and therefore $k \cdot q\left(R, k, l_{0}+1, \lambda, n\right)$ elements. But each element must appear at least $q\left(R_{1}, k-1, l_{0}, \lambda, n-1\right)$ times, for otherwise $R\left(k, l_{0}+\right.$ $1, \lambda, n$) could not contain λ times the l_{0}-tuples of n elements containing a given element. According to the hypothesis of the induction

$$
q\left(R_{1}, k-1, l_{0}, \lambda, n-1\right) \geqq \psi\left(k-1, l_{0}, \lambda, n-1\right) .
$$

It follows that

$$
\begin{aligned}
k \cdot q\left(R, k, l_{0}+1, \lambda, n\right) & \geqq n q\left(R_{1}, k-1, l_{0}, \lambda, n-1\right) \\
& \geqq n \psi\left(k-1, l_{0}, \lambda, n-1\right)
\end{aligned}
$$

and, since q must be an integer, and as a consequence of the definition of $\psi\left(k-1, l_{0}, \lambda, n-1\right)$, we have

$$
\begin{aligned}
q\left(R, k, l_{0}+1, \lambda, n\right) & \geqq\left\lceil\frac{n}{k} \cdot \psi\left(k-1, l_{0}, \lambda, n-1\right)\right\rceil \\
& =\psi\left(k, l_{0}+1, \lambda, n\right)
\end{aligned}
$$

This proves the validity of inequality (7) for each l, and the theorem is proved.

Theorem I justifies the following definition :
A covering $R(k, l, \lambda, n)$ may be called an admissible covering $M(k, l, \lambda, n)$ if it contains exactly $\psi(k, l, \lambda, n) k$-tuples.
3. The existence of admissible coverings which are not tactical configurations. The fact that there exist admissible coverings which are not tactical configurations will be shown in Corollaries 1,2
and 3 to Lemma 3, but for the purpose of obtaining the more general Theorem II, we shall prove the following four lemmas:

Lemma 1. If the expression

$$
\binom{n-h-1}{l-h} /\binom{k-h}{l-h}
$$

is an integer for $h=0,1, \cdots, l-1$, and if we denote it by α_{l-h} and 1 by α_{0}, we have, for $i=1, \cdots, l$
(8) $\sum_{j=0}^{i} \alpha_{j}=\left\lceil\frac{n-l+i}{k-l+i}\left\lceil\frac{n-l+i-1}{k-l+i-1}\left\lceil\cdots\left\lceil\frac{n-l+1}{k-l+1}\right\rceil \cdots\right\rceil\right\rceil\right.$.

Proof. We proceed by induction on i. Let $i=1$. Then

$$
\left\lceil\frac{n-l+1}{k-l+1}\right\rceil=\left\lceil\alpha_{1}+\frac{1}{k-l+1}\right\rceil=\alpha_{1}+1=\alpha_{1}+\alpha_{0}=\sum_{j=0}^{1} \alpha_{j}
$$

Let equality (8) be valid for $i=m<l$. This implies

$$
\begin{aligned}
& {\left[\frac{n}{k}\right.}-l+m+m+1 \\
&-l+1-l+m \\
&=\left\lceil\frac{n-l+m+1}{k-l+m+1}\left(\sum_{j=0}^{m} \alpha_{j}\right)\right\rceil \\
&\left.=\left\lceil\frac{\sum_{j=0}^{m}(n-l+j) \alpha_{j}+\sum_{j=0}^{m}(m-j+1) \alpha_{j}}{k-l+m+1}\right\rceil\right\rceil \cdots \\
&=\left\lceil\frac{\sum_{j=0}^{m}(k-l+j+1) \alpha_{j+1}+\sum_{j=0}^{m}(m-j+1) \alpha_{j}}{k-l+m+1}\right] \\
&=\left\lceil\frac{\sum_{j=1}^{m+1}(k-l+j) \alpha_{j}+\sum_{j=0}^{m}(m-j+1) \alpha_{j}}{k-l+m+1}\right\rceil \\
&=\left\lceil\frac{(k-l+m+1) \alpha_{m+1}+m+1+\sum_{j=1}^{m}(k-l+m+1) \alpha_{j}}{k-l+m+1}\right] \\
&=\left\lceil\alpha_{m+1}+\sum_{j=1}^{m} \alpha_{j}+\frac{m+1}{k-l+m+1}\right\rceil=\sum_{j=0}^{m+1} \alpha_{j} .
\end{aligned}
$$

And the lemma is proved.
Lemma 2. If the expression

$$
\begin{equation*}
\binom{n-h-1}{l-h} /\binom{k-h}{l-h} \tag{9}
\end{equation*}
$$

is an integer for $h=0,1, \cdots, l-1$ we have

$$
\begin{align*}
& \frac{(n-1)(n-2) \cdots(n-l)}{k(k-1) \cdots(k-l+1)} \tag{10}\\
& \quad+\left\lceil\frac{n-1}{k-1}\left\lceil\frac{n-2}{k-2}\left\lceil\cdots\left\lceil\frac{n-l+1}{k-l+1}\right\rceil \cdots\right\rceil\right\rceil\right. \\
& \quad=\left\lceil\frac{n}{k}\left\lceil\frac{n-1}{k-1}\left\lceil\cdots\left\lceil\frac{n-l+1}{k-l+1}\right\rceil \cdots\right\rceil\right\rceil\right.
\end{align*}
$$

Proof. Denote the integer (9) by α_{l-h} and $\alpha_{0}=1$. According to Lemma 1 and under this notation, the left hand side of equality (10) becomes

$$
\alpha_{l}+\sum_{j=0}^{l-1} \alpha_{j}=\sum_{j=0}^{l} \alpha_{j}=\left\lceil\frac { n } { k } \left\lceil\frac{n-1}{k-1}\left\lceil\cdots\left\lceil\frac{n-l+1}{k-l+1}\right\rceil \cdots\right\rceil .\right.\right.
$$

Lemma 3. If there exists a tactical system $S(k, l, n-1)$ and an admissible covering $M(k-1, l-1,1, n-1)$, then there also exists an admissible covering $M(k, l, 1, n)$.

Proof. Let N be a fixed element. Let $V=\{(x, N): x \in M(k-1$, $l-1,1, n-1)\}$ and $T=S(k, l, n-1) \cup V$. It will then, be shown that T is an admissible covering.

Indeed, it is a covering $R(k, l, 1, n)$, as all the l-tuples of n elements not containing the element N appear in one of the k-tuples in $S(k, l, n-1)$, while the l-tuples containing the element N appear in at least one of the k-tuples in V. Moreover, the covering $R(k, l, 1, n)$ is an admissible covering $M(k, l, 1, n)$. In fact, it contains

$$
\begin{align*}
& \frac{(n-1)(n-2) \cdots(n-l)}{k(k-1) \cdots(k-l+1)} \tag{11}\\
& \quad+\left\lceil\frac{n-1}{k-1}\left\lceil\frac{n-2}{k-2}\left\lceil\cdots\left\lceil\frac{n-l+1}{k-l+1}\right\rceil \cdots\right\rceil\right\rceil\right.
\end{align*}
$$

k-tuples, which is the sum of the number of k-tuples in $S(k, l, n-1)$ and of ($k-1$)-tuples in $M(k-1, l-1,1, n-1$).

The conditions of Lemma 2 are satisfied, and accordingly, (11) equals $\psi(k, l, 1, n)$, which proves the lemma.

Corollary 1. If

$$
\begin{equation*}
n \equiv 3 \text { or } 5(\bmod 6) \tag{12}
\end{equation*}
$$

then there exists an admissible covering $M(4,3,1, n)$.
Proof. For M satisfying (12), according to (5), there exists a tactical system $S(k, 3, n-1)$, and according to (ii) there also exists an admissible covering $M(3,2,1, n-1)$. Lemma 3 then implies the existence of an admissible covering $M(4,3,1, n)$

Corollary 2. If

$$
\begin{equation*}
n \equiv 2 \text { or } 5(\bmod 12) \tag{13}
\end{equation*}
$$

then there exists an admissible covering $M(4,2,1, n)$.
Proof. For n satisfying (13), according to (3), there exists a $B I B D \quad B(4,1, n-1)$. The existence of an admissible covering $M(3,1,1, n-1)$ being obvious, Lemma 3 implies the existence of an admissible covering $M(4,2,1, n)$.

Corollary 3. If

$$
n \equiv 2 \text { or } 6(\bmod 20)
$$

then there exists an admissible covering $M(5,2,1, n)$.
Proof. Similar to that of the preceding corollary, but using (1) instead of (3).

Lemma 4. The existence of a tactical system $S(k, l, n)$ implies that of an admissible covering $M(k-1, l-1,1, n)$.

Proof. By induction on l. Let $l=2$. The existence of an admissible covering $M(k-1,1,1, n)$ is obvious. Suppose now that the lemma is proved for $l=l_{0}$ and let $l=l_{0}+1$. The existence of a $S\left(k, l_{0}+1, n\right)$ implies that of a $S\left(k-1, l_{0}, n-1\right)$ which, according to the hypothesis of the induction, implies the existence of a $M\left(k-2, l_{0}-1,1, n-1\right)$. The existence of a $S\left(k-1, l_{0}, n-1\right)$ and of a $M\left(k-2, l_{0}-1,1, n-1\right)$ implies, according to Lemma 3 , that of a $M\left(k-1, l_{0}, 1, n\right)$.

Theorem II. If a tactical system $S(k, l, n)$ exists, then there also exists an admissible covering $M(k, l, 1, n+1)$.

Proof. According to Lemma 4, the second hypothesis of Lemma 3 is automatically satisfied if the first hypothesis holds.

References

1. R.C. Bose, On the construction of balanced incomplete block designs, Ann. Eugenics, 9 (1939), 353-399.
2. M. K. Fort Jr. and G. A. Hedlund, Minimal coverings of pairs by triples, Pacific J. Math., 8 (1958).
3. H. Hanani, On quadruple systems, Canadian J. Math., 12 (1960).
4. - The existence and construction of balanced incomplete block designs, Annals of Math. Statistics VI (1961).
5. - On some tactical configurations Canadian J. Math., in print, 1963.
6. E. H. Moore, Tactical Memoranda, Amer. J. Math., 18 (1896), 264-303.
7. (M.) Reiss, Üeber eine Steinersche combinatorische Aufgabe, J. für die reine angewandte Mathematik, 56 (1859), 326-344.
8. J. Steiner, Combinatorische Aufgabe, J. für die reine angewandte Mathematik 45 (1853), 273-280.

[^0]: Received May 15, 1963. This paper will form part of the author's D. Sci. thesis in preparation at the Technion, Israel Institute of Technology, Haifa.

