NETS WITH CRITICAL DEFICIENCY

T. G. Ostrom

This paper is a sequel to a paper of Bruck [2]. With only minor variations, we shall use Bruck's notation and terminology. All references to Bruck should be understood as references to [2].

For a net N of order n and deficiency d, the deficiency is said to be critical if $n=(d-1)^{2}$. If d is less than the critical deficiency, Bruck shows that
(1) N can be extended to an affine plane of order n in at most one way.
(2) The number of distinct transversals is less than or equal to $d n$.
(3) N can be embedded in an affine plane of order n if equality holds in (2).

In this paper, we show that if the deficiency is critical, then
(1') N can be extended to an affine plane of order n in at most two ways. If two planes are obtained, they are related to each other by a construction due to the author.
(2') The number of distinct transversals is less than or equal to $2 d n$.
(3^{\prime}) N can be extended to a plane in two different ways if equality holds in (2^{\prime}).

We also show that N can be extended to a plane in at most one way if the critical value is exceeded only slightly.

We are concerned with the possibility that N may be extended to an affine plane in more than one way. Suppose that N can be extended to a plane π by adjoining the lines of a complementary net N_{1}. Then, if T is a transversal which is not a line of N_{1}, we shall say that T is an extra transversal (with respect to N_{1}).

Theorem 1. If T is an extra transversal with respect to N_{1} and $n>(d-1)^{2}-\frac{1}{2}(d-1)$ then
(1) $n=(d-1)^{2}$
(2) T is a subplane of N_{1} of order $d-1$.

Proof. Let p be a point belonging to T. We assert that every line of N_{1} which goes through p must contain more than $\frac{1}{2}(d-1)$ points of T : The lines of N_{2} are transversals (of N) ; by Bruck's Lemma 3.2, no line of N_{1} can contain more than $d-1$ points of T. In the extreme case, suppose that $d-1$ lines of N_{1} through p were to each

[^0]contain $d-1$ points of T. This would account for $(d-1)(d-2)$ points of T distinct from p. The remaining line of N_{1} which goes through p would then have to account for more than $(d-1)^{2}-\frac{1}{2}(d-1)-$ $(d-1)(d-2)=\frac{1}{2}(d-1)$ points of T. This establishes our assertion.

Let L_{1} and L_{2} be two lines of N_{1} which intersect in the point s. Suppore that L_{1} and L_{2} each contain points of T. Now s is not joined (by lines of N) to any point of $L_{1} \cap T$ or $L_{2} \cap T$. By Bruck's Lemma 3.1, a point not in T is joined to all but $d-1$ points of T. Since $\left|L_{1} \cap T\right|+\left|L_{2} \cap T\right|>d-1$, we conculude that s must belong to T.

It is now readily verified that the points of T and the lines of N_{1} which intersect T satisfy the postulates for an affine plane. This affine plane contains n points and d parallel classes; hence we must have $n=(d-1)^{2}$.

Corollary. If $(d-1)^{2}>n>(d-1)^{2}-\frac{1}{2}(d-1)$ and N has more than a dn transversals, N cannot be embedded in an affine plane of order n.

Theorem 2. If $n=(d-1)^{2}$ and N can be embedded in two affine planes π_{1} and π_{2} by adjoining complementary nets N_{1} and N_{2} respectively, then each line of N_{2} is a subplane of N_{1}.

Proof. If π_{1} and π_{2} are distinct, some line S of N_{2} is not a line of π_{1}. By Theorem $1, S$ is a subplane of N_{1}. It was shown in the first part of the proof of Theorem 1 that a line of N_{1} connot intersect S in just one point. Since the lines of N_{2} not parallel to S do intersect S in one point, they must also be subplanes of N_{1}. It readily follows that the lines of N_{2} parallel to S must also be subplanes of N_{1}.

Remark. The relation between the two planes is precisely that given in [4].

Corollary. A net with critical deficiency can be embedded in an affine plane in at most two ways.

Proof. Given π_{1} and N_{1}, it follows from Lemma 9 of [4] that, for any pair of points p and q, there is at most one subplane of order $d-1$ which contains p and q. Hence the lines of π_{2} if it exists, are uniquely determined.

Lemma 1. [Bruck's Lemma 3.3]. Let N be a finite net of order $n=m^{2}$, deficiency $d=m+1$. Assume $m>2$, so that N is nontrivial and nondegenerate.
(i) If S, T are distinct transversals with more than one common
point, then they have exactly $d-1=m$ common points. Moreover (a) each point of $S-T$ is joined to each point of $T-S$ and (b) if p, q are any two distinct points in $S \cap T$ then every point not in $S \cup T$ is joined to at least one of p, q.
(ii) If S, T, V are three distinct transversals such that S has m points in common with each of T, V then T, V have at most one common point.

Lemma 2. Under the hypotheses of Lemma 1, no point is on more than $2(m+1)$ transversals.

Proof. Suppose that the point p is contained in $m+1+i$ transversals and that h pairs of these transversals intersect in m points. By part (ii) of Lemma 1, no point distinct from p can be in more than two of these transversals. The number of points distinct from p in the union of all the transversals through d will be ($m+1+i)\left(m^{2}-1\right)-h(m-1)$. But the number of points not joined to p is $d(n-1)=(m+1)\left(m^{2}-1\right)$. [See Bruck's Lemma 3.1].

Hence $(m+1)\left(m^{2}-1\right) \geqq(m+1+i)\left(m^{2}-1\right)-h(m-1)$, or $h \geqq$ $i(m+1)$. But the "overlaps" account for $h(m-1)$ points, each belonging to two transvervals through p, so we must also have $(m+1)\left(m^{2}-1\right) \geqq h(m-1)$ or $(m+1)^{2} \geqq h$.

Hence $(m+1)^{2} \geqq i(m+1),(m+1) \geqq i$. Lemma 2 then follows from the definition of i.

Lemma 3. Under the hypotheses of Lemma 1, suppose that there is a transversal T with the property that every pair of points in T belongs to another transversal. Then the number of transversals intersecting T in m points is equal to $m^{2}+m$.

Proof. Consider the subsets of T formed by intersecting T with those other transversals which intersect T in m points. These subsets, and the points of T, define an affine plane of order m. (See Lemma 8 in [4].) The number of transversals intersecting T in m points is then equal to the number of lines in an affine plane of order m.

Theorem 3. If $n=m^{2}, d=m+1$, and N has $2 d n=2(m+1) m^{2}$ transversals, and $m>3$, then N can be extended to two different affine planes of order n.

Proof. Since there are $2(m+1) m^{2}$ transversals, each containing m^{2} points, the number of point-transversal incidences is $2(m+1) m^{4}$. There are m^{4} points; if $t(p)$ is the number of transversals through p, we have $2(m+1) m^{4}=\Sigma t(p)$, where p ranges over all m^{4} points.

Since $t(p) \leqq 2(m+1)$ for each p, we must have $t(p)=2(m+1)$ for each point.

We may now apply a similar argument to the set of transversals through a fixed point p and the $(m+1)\left(m^{2}-1\right)$ points to which p is not joined. From the fact that no two points can be on more than two transversals (Lemma 1) we arrive at the conclusion that each pair of points which are not joined will be on exactly two transversals. Now let p be any point and let S be some transversal which contains p. For each point $q \neq p$ in S, there is another transversal T which contains p and q. Thus T contains $m-1$ points of S different from p. Applying Lemma 1 and using the fact that S contains m^{2} points, we obtain $m+1$ transversals $T_{1}, T_{2}, \cdots, T_{m+1}$, where

$$
\begin{aligned}
\left|T_{i} \cap S\right| & =m, i=1, \cdots, m+1 \\
T_{i} \cap T_{j} & =p \text { if } i \neq j
\end{aligned}
$$

Each point of S distinct from p is on exactly one of the T_{i}. Furthermore,

$$
\left|T_{1} \cup T_{2} \cup \cdots \cup T_{m+1}-p\right|=(m+1)\left(m^{2}-1\right)
$$

No transversal contains two points which are joined; $(m+1)\left(m^{2}-1\right)$ is the number of points not joined to p. Hence each point not joined to p is on exactly one of the T_{i}.

We are now ready to define the lines of a complementary net N_{1} so that the lines of N_{1} together with the lines of N form an affine plane π_{1}. The point p is on $2(m+1)$ transversals. Let $S=$ $S_{1}, S_{2}, \cdots, S_{m+1}$ be the transversals through p which are distinct from the T_{i}.

Definition. L is a line of N_{1} if and only if L is a transversal of N which intersects one of the S_{i} in m points.

Now each T_{i} intersects $S=S_{1}$ in m points. Thus the T_{i} are lines through p. Consider the intersections of the T_{i} with the other S_{i}, say S_{2}. Since no point $(\neq p)$ of S_{2} is joined to p by a line of N, each point of S_{2} is on one of the T_{i}. (Recall that every point not joined to p is on one of the T_{i}). It readily follows that the $m^{2}-1$ points of S_{2} distinct from p occur in $m+1$ sets of $m-1$ each, one set of $m-1$ for each T_{i}. That is, $\left|T_{i} \cap S_{j}\right|=m$ for each i and j.

Now any transversal which goes through p is either one of the S_{i} or one of the T_{i}. Thus we have exactly $m+1$ lines of N_{1} which go through p : namely, the T_{i}. (Note that S_{i} and S_{j} both intersect T_{1} in m points implies that S_{1} cannot intersect S_{j} in m points.)

We wish to show that two lines of N_{1} can have at most one point in common. Let L_{1} and L_{2} be two lines of N_{1}. If L_{1} and L_{2} both
intersect the same S_{i} in m points, then $\left|L_{1} \cap L_{2}\right|=1$ or 0 by Lemma 1. If either L_{1} or L_{2} goes through p, there is some S_{1} which is intersected in m points by both L_{1} and L_{2}. Hence assume that neither L_{1} nor L_{2} goes through p, that L_{1} intersects S_{i} in m points while L_{2} intersects S_{j} in m points, where $i \neq j$. Moreover, we may assume that L_{1} does not intersect S_{j} in m points and L_{2} does not intersect S_{i} in m points.

Now S_{i} is included in the union of T_{1}, \cdots, T_{m+1}. Since L_{1} can intersect each of these in at most one point, the m points of $L_{1} \cap S_{i}$ must be located, one each, on m of the transversals T_{1}, \cdots, T_{m+1}. The points of L_{2} must be similarly distributed among T_{1}, \cdots, T_{m+1}.

Since L_{2} does not contain two points of S_{i}, at most one point of $L_{1} \cap L_{2}$ can belong to S_{i}. Similarly, at most one point of $L_{1} \cap L_{2}$ can belong to S_{j}. Thus we have at least $m-1$ points of $L_{1}-L_{2}$ which are in S_{i} and are distributed, one each, to $m-1$ of T_{1}, \cdots, T_{m+1}. A similar remark holds for the points of $\left(L_{2}-L_{1}\right) \cap S_{j}$. If $m>3$, there must exist T_{k} which contains a point of $L_{1}-L_{2}$ and a point of $L_{2}-L_{1}$. That is, some point of $L_{1}-L_{2}$ is not joined to some point of $L_{2}-L_{1}$.

By Lemma 1, this cannot happen if $\left|L_{1} \cap L_{2}\right|=m$. We conclude that $\left|L_{1} \cap L_{2}\right|=1$ or 0 . Thus, in general, distinct lines of N_{1} have 1 or 0 points in common.

Now let us see how many lines we have defined for N_{1}. By Lemma 3 , there are $m^{2}+m$ lines intersecting each of S_{1}, \cdots, S_{m+1} in m points. However, T_{1}, \cdots, T_{m+1} intersect each of the S_{i} in m points. Assuming for the moment that there are no further duplications, we get a total of $(m+1)\left[\left(m^{2}+m\right)-(m+1)\right]+(m+1)=(m+1) m^{2}=d n$ lines in N_{1}. By further counting arguments of a standard nature and making use of the fact that lines of N_{1} do not intersect in more than one point, it readily follows that N_{1} is a complementary net in terms of which we can define an affine plane π_{1}.

We have yet to show that no transversal not through p can intersect S_{i} and $S_{j}(i \neq j)$ each in m points, i.e. that there are no further duplications in the previous paragraph. Suppose that there were such a transversal L. Since L intersects S_{i} in m points and since each of T_{1}, \cdots, T_{m+1} intersects S_{i} in m points, we have (as before) that $L \cap S_{i}$ must have one point each on some m of T_{1}, \cdots, T_{m+1}. A similar remark holds for $L \cap S_{j}$. By Lemma 1, L can intersect each T_{k} in at most one point. We conclude that $\left|L \cap S_{i} \cap S_{j}\right| \geqq m-1$, contrary to the condition that $S_{i} \cap S_{j}=p$.

Applying Theorem 1 of this paper and Theorem 6 of [4], the extra transversals with respect to N_{1} enable us to define a second complementary net N_{2} and a second plane π_{2}.

Corollary. If $n=(d-1)^{2}$, there are at most $2 d n$ transversals.

Proof. Applying Theorem 1, every transversal is either a line of N_{1} or a line of N_{2}.

Now many of the known finite non-Desarguesian planes are constructed by a process which amounts to extending the same net in more than one way. The construction in [4] is an example; see [3] for other cases. Consider the following situation: Let π be an affine Desarguesian plane of order n and let T be a set of n points of π such that not all of the points of T lie on any one line. Let N be the (possibly degenerate) net consisting of all parallel classes which have no lines intersecting T in more than one point. If N contains three or more parallel classes, then T is a transversal of the nondegenerate net N. Henceforth, assume that this is the case-i.e., $d \leqq n-2$.

Now every collineation of N carries transversals into transversals. Let G be the group of central collineations of π with axis L_{∞}. Let us say that a pair of points belongs to a parallel class if the line through them belongs to this parallel class. Let p_{1}, q_{1} and p_{2}, q_{2} be two point-pairs such that p_{1}, q_{1} and p_{2}, q_{2} both belong to the same parallel class. Then there is exactly one element of G which carries p_{1} into p_{2}, q_{1} into q_{2}-i.e., G is transitive on point-pairs in each parallel class of N_{1}.

Let \mathfrak{I} be the set of transversals which are images of T under the collineations in G. For every parallel class in the complementary net N_{1}, there is at least one pair of points in T which belongs to this parallel class. It follows that every pair of points which belongs to a parallel class in N_{1} belongs to at least one transversal in \mathfrak{I}.

Now G is of order $n^{2}(n-1)$. If the subgroup of G which leaves T invariant has order $n(n-1) / d$, then \mathfrak{T} will contain exactly $n d$ transversals. In this case, each pair not joined in N will belong to exactly one member of \mathfrak{T}; the members of \mathfrak{I} can be taken as the lines of a new complementary net N_{2} permitting N to be extended to a new affine plane π_{2}.

The above argument will go through for more general planes and more general groups of collineations.

Theorem 4. Let π be an affine plane of order n, consisting of two complementary nets N and N_{1}, where N is of deficiency d. Let T be a transversal of N which contains at least one point-pair in each parallel class of N_{1}. Suppose that either N or N_{1} admits a group G of collineations such that
(1) G has order $n^{2}(n-1) g$ and is transitive on point-pairs in each parallel class of N_{1}
(2) The subgroup of G which leaves T invariant has order $n(n-1) g / d$. Then the images of T under G define a new net N_{2} such
that N and N_{2} form an affine plane.
Proof. The argument is essentially the same as the one already given. G will carry transversals into transversals if it acts as a collineation group on either N or N_{1}, whether or not G acts as a collineation group on the full plane.

The discussion given in [3] shows, in effect, that the Andre planes are obtained by a process which one may interpret as a matter of successive applications of Theorem 4. Furthermore, the hypotheses of Theorem 3 are satisfied in all known cases for which the situation described in Theorem 2 occurs. This corresponds to the fact that in these cases an appropriate coordinate system for π_{1} is a right vector space over a field of order m.

References

1. J. Andre, Über nicht-Desarguerche Ebenen mit transitiver Translationsgruppe, Math., Z., 60 (1954), 156-186.
2. R. H. Bruck, Finite Nets, II. Uniqueness and Embedding, Pacific J. Math., 13 (1963) 421-457.
3. T. G. Ostrom, Translation planes and configurations in Desarguesian planes, Arch. Math., 11 (1960) 457-464.
4. -, Semi-translation planes, Trans. Amer. Math. Soc., 111 (1964), 1-18.

Washington State University

[^0]: Received November 14, 1963. This work was supported (in part) by Grant No. GP-1623 from the National Seience Foundation.

