DERIVATIONS ON B^{*} ALGEBRAS

Philif Miles

1. A derivation D of a B^{*} algebra A is a linear map of A into itself satisfying the multiplicative rule

$$
D(x y)=(D x) y+x(D y)
$$

The obvious examples are the inner derivations $D_{x}(x$ in $A)$ defined by

$$
D_{x}(y)=[x, y]=x y-y x
$$

All other derivations are called outer. For future use, we call a derivation D self-adjoint if

$$
D\left(x^{*}\right)=-(D x)^{*}
$$

for all x in A. Thus inner derivation by a self-adjoint element is a self-adjoint derivation. Every derivation can be written in the form $D=D_{1}+i D_{2}$ where D_{1} and D_{2} are self-adjoint; indeed, we may take

$$
\begin{aligned}
& D_{1}(x)=\frac{1}{2}\left\{D x-\left(D x^{*}\right)^{*}\right\} \\
& D_{2}(x)=\frac{1}{2 i}\left\{D x+\left(D x^{*}\right)^{*}\right\}
\end{aligned}
$$

The central fact about derivations of B^{*} algebras is that they are bounded; this is proved by Sakai [6, Theorem 11.1]. Somewhat more may be said when A is weakly closed. In particular, Kaplansky [5] has shown that a derivation of an $A W^{*}$ algebra of type I is necessarily inner. (It seems to be an open question whether or not this is true of weakly closed algebras of types II and III).

Our purpose is to state a weak sense in which every derivation of a B^{*} algebra is inner. This cannot be true in a strict sense, as is shown by the following typical example: Let A be all compact operators on some Hilbert space H, with an identity adjoined if desired. Then for any x in $\mathscr{B}(H), D_{x}$ is a derivation on A. If, for some y in $\mathscr{B}(H), D_{x}=D_{y}$ on A, then D_{x-y} is zero on A, so $x-y$ commutes with all elements of A, and so $x-y$ is a scalar multiple of the identity e. Thus if x is chosen so that $x-\lambda e$ is not in A for any scalar λ (e.g., if x is a shift), D_{x} is an outer derivation on A. The reason for calling this example typical is made clear by the following theorem:

[^0]Theorem. Let A be a B^{*} algebra, D a derivation on A. Then there exist a Hilbert space H, a faithful representation φ of A in $\mathscr{B}(H)$, and an operator S in the weak closure of $\varphi(A)$ such that

$$
\varphi(D x)=D_{s} \varphi(x)
$$

for all x in A.
As a sample consequence, we give two generalizations of Wielandt's result that if K is a self-adjoint element of $\mathscr{B}(H)$, there is no X in $\mathscr{B}(H)$ such that $K X-X K=i I$; we view this as saying that D_{K} does not take on the value $i I$.

Corollary. (i) (Generalized Putnam's Theorem) If D is a selfadjoint derivation on a B^{*} algebra A, and if x is an element of A such that $D^{2}(x)=0$, then $D x=0$.
(ii) If D is a derivation on the B^{*} algebra A, then $D(x)$ is not in the interior of the positive cone for any x in A.
2. Proof of the theorem. The following fact is implicit in much of the literature on derivations.

Proposition. Let A be a B^{*} algebra, D a derivation on A, I a closed, two-sided ideal in A. Then $D(I) \subseteq I$, so D is a derivation on I. If $\varphi: A \rightarrow B$ is a $*$-homomorphism of A into a B^{*} algebra B, then the operator D_{φ} defined on $\varphi(A)$ by

$$
D_{\varphi}(\varphi(x))=\varphi(D x)
$$

is a derivation on $\varphi(A)$.
One sees this by noticing that any x in I may be written in the form

$$
x=h_{1}^{2}-h_{2}^{2}+i\left(h_{3}^{2}-h_{4}^{2}\right)
$$

where the h_{i} are self-adjoint elements of I. The multiplicative rule for D and the fact that I is a two-sided ideal yield the result that $D x$ is in I. For φ as above, the kernel of φ is a closed, two-sided ideal, and so $\varphi(x)=0$ implies $\varphi(D x)=0$. It follows that D_{φ} is well defined, and the obvious verifications show it a derivation.

The Gelfand-Naimark representation referred to in the following lemma is standard; it is described in some detail immediately following the proof of the lemma.

Lemma 1. Let A be a B^{*} algebra, D a derivation on A. Let \widetilde{A} be the weak closure of (the image of) A in the Gelfand-Naimark
representation formed by using all states of A. Then there is a derivation \widetilde{D} on \widetilde{A} which agrees with D on (the image of) A.

Proof. Since D is necessarily bounded, the transformation D^{*} defined on A^{*} by

$$
\left(D^{*} f\right)(x)=f(D x)
$$

is a bounded transformation of A^{*} into itself. Likewise the transformation $D^{* *}$ defined on $A^{* *}$ by

$$
\left(D^{* *} \xi\right)(f)=\xi\left(D^{*} f\right)
$$

is a bounded transformation of $A^{* *}$ into itself. But $A^{* *}$ can be identified with \widetilde{A} so that Arens multiplication on $A^{* *}$ corresponds to ordinary operator multiplication on \widetilde{A} (and so that the linear and norm structures of the two spaces coincide) [1, p. 869]. A straightforward verification via the definition of Arens multiplication shows that $D^{* *}$ is a derivation on $A^{* *}$, which we identify with the derivation \tilde{D} on \tilde{A}.

To fix notation, we review the construction of the GelfandNaimark representation of a B^{*} algebra A.

Given a state f on A, we form the left ideal

$$
I_{f}=\left\{x \in A: f\left(x^{*} x\right)=0\right\}
$$

and the difference space

$$
X_{f}=A \ominus I_{f}
$$

We denote by x_{f} the image of x in $X_{f} . \quad X_{f}$ has an inner product

$$
\left(x_{f}, y_{f}\right)=f\left(y^{*} x\right)
$$

and the completion of X_{f} under the norm induced by this inner product is a Hilbert space, denoted by H_{f}.

Given x in A, the operator $\varphi_{f}(x)$ defined on X_{f} by

$$
\varphi_{f}(x) y_{f}=(x y)_{f}
$$

is bounded, and so has a bounded extension to H_{f}, also denoted by $\varphi_{f}(x)$. To obtain the Gelfand-Naimark representation, we form the direct sum of the H_{f}, extended over all states f; this Hilbert space we call H. We think of its elements ξ as "sequences,"

$$
\xi=\left\{\xi^{\jmath}\right\}
$$

where ξ^{f} is the component of ξ in H_{f}. The Gelfand-Naimark representation φ is then the direct sum of the φ_{f} :

$$
\varphi(x)\left\{\xi^{\jmath}\right\}=\left\{\varphi_{f}(x) \xi^{\jmath}\right\}
$$

Given a pure state f_{0} on A, let $\omega=\left\{\omega^{r}\right\}$ be the element of H defined by

$$
\omega^{\rho}= \begin{cases}e_{f_{0}} & f=f_{0} \\ 0 & f \neq f_{0}\end{cases}
$$

Define the vector state f_{ω} on \widetilde{A} by

$$
f_{\omega}(T)=(T \omega, \omega) .
$$

As above, let $I_{\omega}=\left\{S \in \tilde{A}: f_{\omega}\left(S^{*} S\right)=0\right\}$, let $X_{\omega}=\tilde{A} \ominus \Lambda_{\omega}$, let S_{ω} be the image of S in X_{ω}, and let H_{ω} be the completion of X_{ω} in the norm induced by f_{ω}.

Lemma 2. The map $U: X_{f_{0}} \rightarrow X_{\omega}$ defined by

$$
U\left(x_{f_{0}}\right)=x_{\omega}
$$

is in fact an isometry of $H_{f_{0}}$ onto H_{ω} (For simplicity, we have identified A with its image in \widetilde{A}).

Proof. Throughout the proof we replace " f_{0} " by " 0 " in sub- and superscripts.

Identifying A with its image in \widetilde{A}, we have $f_{0}=f_{\omega}$ on A. Therefore

$$
\left(U_{x_{0}}, U_{y_{0}}\right)=\left(x_{\omega}, y_{\omega}\right)=f_{\omega}\left(y^{*} x\right)=f_{0}\left(y^{*} x\right)=\left(x_{0}, y_{0}\right)
$$

and U is an isometry on X_{0}.
But since f_{0} is a pure state, $\varphi_{0}(A)$ acts irreducibly on H_{0}. It follows from the theorem of Kadison [4, Theorem 1] that irreducibility may be taken in a purely algebraic sense: thus, given any ξ in H_{0}, there is an x in A such that

$$
\xi=\varphi_{0}(x) e_{0}=x_{0}
$$

Therefore, $X_{0}=H_{0}$. Since H_{0} is complete and U an isometry, $U H_{0}$ is complete, and so closed in H_{ω}. Thus any η in H_{ω} may be written uniquely in the form

$$
\eta=\eta_{1}+\eta_{2}, \quad \eta_{1} \varepsilon U H_{0}, \quad \eta_{2} \varepsilon\left(U H_{0}\right)^{\perp}
$$

If η is in X_{ω} then, since $\eta_{1} \varepsilon U H_{0} \subseteq X_{\omega}, \eta_{2}$ is also in X_{ω}, and so there is some S in \widetilde{A} with $\eta_{2}=S_{\omega}$. Since $\eta_{2} \varepsilon\left(U H_{0}\right)^{\perp}$,

$$
0=\left(\eta_{2}, U x_{0}\right)=\left(S_{\omega}, x_{\omega}\right)=f_{\omega}\left(x^{*} S\right)=(S \omega, x \omega)
$$

for all $x \operatorname{in}^{\prime} A$. On the other hand, since S is in \tilde{A}, we can find x in A making

$$
|(S \omega,(x-S) \omega)|
$$

arbitrarily small. It follows that $(S \omega, S \omega)=0$, so $S \varepsilon I_{\omega}, S_{\omega}=0$.
Thus $X_{\omega} \subseteq U H_{0}$. Since X_{ω} is dense, and $U H_{0}$ closed, in H_{ω}, we have $U H_{0}=H_{\omega}$.

Lemma 3.

$$
\varphi_{\omega}(\tilde{A})=\mathscr{B}\left(H_{\omega}\right) .
$$

Proof. Evidently the map $\psi: \mathscr{B}\left(H_{0}\right) \rightarrow \mathscr{B}\left(H_{\omega}\right)$ given by $\psi(S)=$ USU* is a $*$-isomorphism of $\mathscr{B}\left(H_{0}\right)$ onto $\mathscr{B}\left(H_{\omega}\right)$, bi-continuous with respect to the weak operator topologies. Thus

$$
\begin{aligned}
\psi\left(\text { weak closure } \varphi_{0}(A)\right) & =\text { weak closure } \psi\left(\varphi_{0}(A)\right) \\
& =\text { weak closure } \varphi_{\omega}(A) .
\end{aligned}
$$

Since $\varphi_{0}(A)$ acts irreducibly on H_{0}, weak closure $\varphi_{0}(A)=\mathscr{B}\left(H_{0}\right)$. On the other hand, f_{ω} is a vector state on \widetilde{A}, and so normal [2, p. 54]. Consequently, $\varphi_{\omega}(\widetilde{A})$ is a weakly closed subalgebra of $\mathscr{B}\left(H_{\omega}\right)[2$, p. 57]. Thus
weak closure $\varphi_{\omega}(A) \subseteq$ weak closure $\varphi_{\omega}(\widetilde{A})=\varphi_{\omega}(\widetilde{A})$.
$\mathscr{B}\left(H_{\omega}\right)=\psi\left(\right.$ weak closure $\left.\varphi_{0}(A)\right)=$ weak closure $\varphi_{\omega}(A) \cong \varphi_{\omega}(\widetilde{A})$.
We now get at the proof of the theorem. By Lemma 1, the derivation D on A extends to a derivation \widetilde{D} on \widetilde{A}. Since φ_{ω} is a *-homomorphism, \widetilde{D} induces a derivation D_{ω} on $\varphi_{\omega}(\widetilde{A})$ by

$$
D_{\omega}\left(\varphi_{\omega}(T)\right)=\varphi_{\omega}(\widetilde{D}(T)) .
$$

As we have just seen, $\varphi_{\omega}(\widetilde{A})$ is very much a type I weakly closed algebra, so we may appeal to Kaplansky's result to find an S in $\mathscr{B}\left(H_{\omega}\right)$ such that

$$
D_{\omega}\left(\varphi_{\omega}(T)\right)=\left[S, \varphi_{\omega}(T)\right]
$$

for all T in \widetilde{A}.
Consequently,

$$
\begin{aligned}
\varphi_{0}(D x) & =U^{*} \varphi_{\omega}(D x) U=U^{*} D_{\omega}\left(\varphi_{\omega}(x)\right) U \\
& =\left(U^{*} S U\right)\left(U^{*} \varphi_{\omega}(x) U\right)-\left(U^{*} \varphi_{\omega}(x) U\right)\left(U^{*} S U\right) .
\end{aligned}
$$

Letting $S_{0}=U^{*} S U$, we thus have

$$
\begin{equation*}
\varphi_{0}(D x)=S_{0} \varphi_{0}(x)-\varphi_{0}(x) S_{0} . \tag{*}
\end{equation*}
$$

Assume for the moment that D is self-adjoint; it follows that

$$
\varphi_{0}\left(D\left(x^{*}\right)\right)=-\left(\varphi_{0}(D x)\right)^{*}
$$

and so

$$
S_{0} \varphi_{0}(x)^{*}-\varphi_{0}(x)^{*} S_{0}=S_{0}^{*} \varphi_{0}(x)^{*}-\varphi_{0}(x)^{*} S_{0}^{*}
$$

for all x in A. In other words, $S_{0}-S_{0}^{*}$ commutes with $\varphi_{0}(A)$, and so is a scalar multiple of the identity. Now altering S_{0} by adding a scalar multiple of the identity does not affect any of the Lie products [$\left.S_{0}, T\right]$. Consequently we may choose S_{0} so as to satisfy (*) and to be self-adjoint.

By further addition of a real scalar multiple of the identity, we may assure that the spectrum $\sigma\left(S_{0}\right)$ is centered at the origin. We assert that when this has been done, we have

$$
\left\|S_{0}\right\| \leqq\|\widetilde{D}\|=\|D\|
$$

the norm on the left being the norm in $\mathscr{B}\left(H_{0}\right)$ and the two on the right (whose equality is easily verified via the identification $\widetilde{D}=D^{* *}$) the norms \widetilde{D} and D have as operators on \widetilde{A} and A respectively.

For, given any $\varepsilon>0$, the spectral theorem applied to the selfadjoint S_{0} supplies us with vectors ξ and η in H_{0} such that

$$
\begin{aligned}
& \|\xi\|=\|\eta\|=1, \quad \xi \perp \eta \\
& \left\|S_{0} \xi+\frac{1}{2}\right\| S_{0}\|\xi\|<\varepsilon \\
& \left\|S_{0} \eta-\frac{1}{2}\right\| S\|\eta\|<\varepsilon
\end{aligned}
$$

Since ξ and η are orthogonal, there is a unitary element of $\mathscr{B}\left(H_{0}\right)$ which interchanges them. Appealing again to Kadison's theorem [4, Theorem 1], we have a unitary v in A such that $\varphi_{0}(v)$ interchanges ξ and η.

We thus have

$$
\begin{gathered}
\left\|S_{0} \varphi_{0}(v) \xi-\frac{1}{2}\right\| S_{0}\|\eta\|=\left\|S_{0} \eta-\frac{1}{2}\right\| S_{0}\|\eta\|<\varepsilon \\
\left\|\varphi_{0}(v) S_{0} \xi+\frac{1}{2}\right\| S_{0}\|\eta\|=\left\|\varphi_{0}(v)\left(S_{0} \xi+\frac{1}{2}\left\|S_{0}\right\| \xi\right)\right\| \\
\leqq\left\|\varphi_{0}(v)\right\| \cdot\left\|S_{0} \xi+\frac{1}{2}\right\| S_{0}\|\xi\|<\varepsilon
\end{gathered}
$$

Therefore

$$
\left\|\left[S_{0}, \varphi_{0}(v)\right] \xi-\right\| S_{0}\|\eta\|<2 \varepsilon
$$

and so

$$
\left\|\left[S_{0}, \varphi_{0}(v)\right] \xi\right\| \geqq\left\|S_{0}\right\| \cdot\|\eta\|-2 \varepsilon=\left\|S_{0}\right\|-2 \varepsilon .
$$

On the other hand,

$$
\left\|\left[S_{0}, \varphi_{0}(v)\right] \xi\right\|=\left\|\varphi_{0}(D v) \xi\right\| \leqq\left\|\varphi_{0}\right\| \cdot\|D\| \cdot\|v\| \cdot\|\xi\|=\|D\| .
$$

Combining these inequalities, we obtain $\|D\| \geqq\left\|S_{0}\right\|-2 \varepsilon$ for any positive ε, which proves our assertion.

To obtain the promised representation, let \mathscr{F} be any family of pure states maximal with respect to the property that the representations induced by any two distinct members of \mathscr{F} shall not be unitarily equivalent. Let H be the direct sum of the H_{f}, extended over all f in \mathscr{F}, and φ the direct sum of the φ_{f}, also extended over \mathscr{F}. Since the direct sum representation extended over all pure states is faithful, φ must also be faithful. By the argument just finished, there exists for each f in \mathscr{F} an element S^{r} in $\mathscr{B}\left(H_{j}\right)$ satisfying

$$
\varphi_{f}(D x)=S^{\jmath} \varphi_{f}(x)-\varphi_{f}(x) S^{\jmath}, \quad \text { all } x \varepsilon A \quad\left\|S^{\jmath}\right\| \leqq\|D\| .
$$

Thus the operator S defined on H by

$$
S\left\{\xi^{\top}\right\}=\left\{S^{\top} \xi^{r}\right\}
$$

is in $\mathscr{B}(H)$, and indeed $\|S\| \leqq\|D\|$. It is at once verified that for any x in A,

$$
\varphi(D x)=[S, \varphi(x)] .
$$

That S is in the weak closure of $\varphi(A)$ is a consequence of the fact [3, Cor. 4] that our choice of \mathscr{F} causes the weak closure of $\varphi(A)$ to be the C^{*} direct sum $\Sigma \oplus\left(H_{f}\right)$ extended over \mathscr{F}.

We have been operating for some time under the assumption that D was self-adjoint. Since any derivation is a linear combination of self-adjoint ones, and since the representation φ did not depend on the derivation, it is clear that the theorem has in fact been proved for any derivation D.

The relation of $\|S\|$ and $\|D\|$ when D is arbitrary remains a loose end.
3. Proof of the corollary. (i) Given the self-adjoint derivation D on the B^{*} algebra A, we take a faithful representation φ of A in some $\mathscr{B}(H)$ and a self-adjoint S in $\mathscr{B}(H)$ such that

$$
\varphi(D x)=S \varphi(x)-\varphi(x) S
$$

for all x in A. If $D^{2}(x)=0$, then

$$
0=\varphi\left(D^{2} x\right)=\varphi(D(D x))=[S,[S, \varphi(x)]] .
$$

We can now apply the well known theorem of Putnam to conclude that $[S, \varphi(x)]=0$, and so that $D x=0$.
(ii) If D is self-adjoint and $D(x)$ is self-adjoint, then $x=i k$ for some self-adjoint k. Let φ, S, H be as above: We may also take $\varphi(e)$ to be the identity I on H. If $i D(k)$ is in the interior of the positive cone of A, then $i D(k) \geqq \delta e$ for some $\delta>0$, and consequently $i \varphi(D k) \geqq \delta I$.

Given any state f on $\mathscr{B}(H)$, let $f(S \varphi(k))=\alpha+i \beta$. Then

$$
f(\varphi(k) S)=\alpha-i \beta
$$

Thus

$$
i f(\varphi(D k))=i f([S, \varphi(k)])=-2 \beta \geqq \delta f(I)=\delta .
$$

Consequently

$$
f\left(\varphi(k)^{2}\right) f\left(S^{2}\right) \geqq \mid f\left(\left.S \varphi(k)\right|^{2} \geqq \alpha^{2}+\beta^{2} \geqq \delta^{2} / 4 .\right.
$$

Thus $f\left(\varphi(k)^{2}\right)$ is not zero for any state f. Since all multiplicative functionals on the closed (commutative) algebra generated by $\varphi(k)$ and I extend to states of $\mathscr{B}(H)$, this implies $\varphi(k)$ regular.

Now for any scalar $\lambda, D(k+\lambda e)=D(k)$. We may therefore repeat the argument above with k replaced by $k+\lambda e$, coming to the conclusion that $k+\lambda e$ is regular for all scalars λ, an impossibility. Thus our original assumption was false, and (ii) is proved.

Bibliography

1. P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math., II (1961), 847-870.
2. J. Dixmier, Les Algebres D'Operateurs dans L'Espace Hilbertien, Paris, GauthierVillars 1957.
3. J. G. Glimm and R. V. Kadison, Unitary operators in C^{*} algebras, Pacific J. Math., 10 (1960), 547-556.
4. R. V. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sci., U.S.A. 43 (1957), 304-379.
5. I. Kaplansky, Modules over operator algebras, Amer. J. Math., 75 (1953), 839-858, 6. S. Sakai, The theory of W^{*} algebras, (Mimeographed lecture notes). Yale University, 1962.

University of Wisconsin

[^0]: Received October 20, 1963. Supported by N. S. F. Grant G-19050.

