DERIVATIONS ON B^* ALGEBRAS

PHILIP MILES

1. A derivation D of a B^* algebra A is a linear map of A into itself satisfying the multiplicative rule

$$D(xy) = (Dx)y + x(Dy)$$
.

The obvious examples are the inner derivations D_x (x in A) defined by

$$D_x(y) = [x, y] = xy - yx.$$

All other derivations are called outer. For future use, we call a derivation D self-adjoint if

$$D(x^*) = -(Dx)^*$$

for all x in A. Thus inner derivation by a self-adjoint element is a self-adjoint derivation. Every derivation can be written in the form $D = D_1 + iD_2$ where D_1 and D_2 are self-adjoint; indeed, we may take

$$egin{aligned} D_1(x) &= rac{1}{2} \{ Dx - (Dx^*)^* \} \ D_2(x) &= rac{1}{2i} \{ Dx + (Dx^*)^* \} \,. \end{aligned}$$

The central fact about derivations of B^* algebras is that they are bounded; this is proved by Sakai [6, Theorem 11.1]. Somewhat more may be said when A is weakly closed. In particular, Kaplansky [5] has shown that a derivation of an AW^* algebra of type I is necessarily inner. (It seems to be an open question whether or not this is true of weakly closed algebras of types II and III).

Our purpose is to state a weak sense in which every derivation of a B^* algebra is inner. This cannot be true in a strict sense, as is shown by the following typical example: Let A be all compact operators on some Hilbert space H, with an identity adjoined if desired. Then for any x in $\mathscr{B}(H)$, D_x is a derivation on A. If, for some y in $\mathscr{B}(H)$, $D_x = D_y$ on A, then D_{x-y} is zero on A, so x - ycommutes with all elements of A, and so x - y is a scalar multiple of the identity e. Thus if x is chosen so that $x - \lambda e$ is not in Afor any scalar λ (e.g., if x is a shift), D_x is an outer derivation on A. The reason for calling this example typical is made clear by the following theorem:

Received October 20, 1963. Supported by N.S.F. Grant G-19050.

PHILIP MILES

THEOREM. Let A be a B^* algebra, D a derivation on A. Then there exist a Hilbert space H, a faithful representation φ of A in $\mathscr{B}(H)$, and an operator S in the weak closure of $\varphi(A)$ such that

$$\varphi(Dx) = D_s \varphi(x)$$

for all x in A.

As a sample consequence, we give two generalizations of Wielandt's result that if K is a self-adjoint element of $\mathscr{B}(H)$, there is no X in $\mathscr{B}(H)$ such that KX - XK = iI; we view this as saying that D_K does not take on the value iI.

COROLLARY. (i) (Generalized Putnam's Theorem) If D is a selfadjoint derivation on a B^* algebra A, and if x is an element of A such that $D^2(x) = 0$, then Dx = 0.

(ii) If D is a derivation on the B^* algebra A, then D(x) is not in the interior of the positive cone for any x in A.

2. Proof of the theorem. The following fact is implicit in much of the literature on derivations.

PROPOSITION. Let A be a B^* algebra, D a derivation on A, I a closed, two-sided ideal in A. Then $D(I) \subseteq I$, so D is a derivation on I. If $\varphi: A \to B$ is a *-homomorphism of A into a B^* algebra B, then the operator D_{φ} defined on $\varphi(A)$ by

$$D_{\varphi}(\varphi(x)) = \varphi(Dx)$$

is a derivation on $\varphi(A)$.

One sees this by noticing that any x in I may be written in the form

$$x = h_1^2 - h_2^2 + i(h_3^2 - h_4^2)$$

where the h_i are self-adjoint elements of I. The multiplicative rule for D and the fact that I is a two-sided ideal yield the result that Dx is in I. For φ as above, the kernel of φ is a closed, two-sided ideal, and so $\varphi(x) = 0$ implies $\varphi(Dx) = 0$. It follows that D_{φ} is well defined, and the obvious verifications show it a derivation.

The Gelfand-Naimark representation referred to in the following lemma is standard; it is described in some detail immediately following the proof of the lemma.

LEMMA 1. Let A be a B^* algebra, D a derivation on A. Let \widetilde{A} be the weak closure of (the image of) A in the Gelfand-Naimark

representation formed by using all states of A. Then there is a derivation \tilde{D} on \tilde{A} which agrees with D on (the image of) A.

Proof. Since D is necessarily bounded, the transformation D^* defined on A^* by

$$(D^*f)(x) = f(Dx)$$

is a bounded transformation of A^* into itself. Likewise the transformation D^{**} defined on A^{**} by

$$(D^{**}\xi)(f) = \xi(D^*f)$$

is a bounded transformation of A^{**} into itself. But A^{**} can be identified with \tilde{A} so that Arens multiplication on A^{**} corresponds to ordinary operator multiplication on \tilde{A} (and so that the linear and norm structures of the two spaces coincide) [1, p. 869]. A straightforward verification via the definition of Arens multiplication shows that D^{**} is a derivation on A^{**} , which we identify with the derivation \tilde{D} on \tilde{A} .

To fix notation, we review the construction of the Gelfand-Naimark representation of a B^* algebra A.

Given a state f on A, we form the left ideal

$$I_f = \{x \in A : f(x^*x) = 0\}$$

and the difference space

$$X_f = A \ominus I_f$$
.

We denote by x_f the image of x in X_f . X_f has an inner product

$$(x_f, y_f) = f(y^*x)$$

and the completion of X_f under the norm induced by this inner product is a Hilbert space, denoted by H_f .

Given x in A, the operator $\varphi_f(x)$ defined on X_f by

$$\varphi_f(x)y_f = (xy)_f$$

is bounded, and so has a bounded extension to H_f , also denoted by $\varphi_f(x)$. To obtain the Gelfand-Naimark representation, we form the direct sum of the H_f , extended over all states f; this Hilbert space we call H. We think of its elements ξ as "sequences,"

$$\xi = \{\xi'\}$$

where ξ^{f} is the component of ξ in H_{f} . The Gelfand-Naimark representation φ is then the direct sum of the φ_{f} :

PHILIP MILES

$$\varphi(x)\{\xi^f\} = \{\varphi_f(x)\xi^f\}.$$

Given a pure state f_0 on A, let $\omega = \{\omega^r\}$ be the element of H defined by

$$\omega^{r} = egin{cases} e_{f_0} & f = f_0 \ 0 & f
eq f_0 \ . \end{cases}$$

Define the vector state f_{ω} on A by

$$f_{\omega}(T) = (T\omega, \omega)$$
.

As above, let $I_{\omega} = \{S \in \widetilde{A} : f_{\omega}(S^*S) = 0\}$, let $X_{\omega} = \widetilde{A} \bigoplus I_{\omega}$, let S_{ω} be the image of S in X_{ω} , and let H_{ω} be the completion of X_{ω} in the norm induced by f_{ω} .

LEMMA 2. The map $U: X_{f_0} \to X_{\omega}$ defined by

$$U(x_{f_0}) = x_{\omega}$$

is in fact an isometry of H_{f_0} onto H_{ω} (For simplicity, we have identified A with its image in \widetilde{A}).

Proof. Throughout the proof we replace " f_0 " by "0" in sub- and superscripts.

Identifying A with its image in \widetilde{A} , we have $f_0 = f_{\omega}$ on A. Therefore

$$(U_{x_0}, U_{y_0}) = (x_{\omega}, y_{\omega}) = f_{\omega}(y^*x) = f_0(y^*x) = (x_0, y_0)$$

and U is an isometry on X_0 .

But since f_0 is a pure state, $\varphi_0(A)$ acts irreducibly on H_0 . It follows from the theorem of Kadison [4, Theorem 1] that irreducibility may be taken in a purely algebraic sense: thus, given any ξ in H_0 , there is an x in A such that

$$\xi = arphi_0(x)e_0 = x_0$$
 .

Therefore, $X_0 = H_0$. Since H_0 is complete and U an isometry, UH_0 is complete, and so closed in H_{ω} . Thus any η in H_{ω} may be written uniquely in the form

$$\eta=\eta_1+\eta_2$$
 , $\eta_1arepsilon UH_0$, $\eta_2arepsilon(UH_0)^\perp$.

If η is in X_{ω} then, since $\eta_1 \varepsilon UH_0 \subseteq X_{\omega}$, η_2 is also in X_{ω} , and so there is some S in \widetilde{A} with $\eta_2 = S_{\omega}$. Since $\eta_2 \varepsilon (UH_0)^{\perp}$,

$$0 = (\eta_2, Ux_0) = (S_{\omega}, x_{\omega}) = f_{\omega}(x^*S) = (S\omega, x\omega)$$

1362

for all x in A. On the other hand, since S is in \widetilde{A} , we can find x in A making

$$|(S\omega, (x-S)\omega)|$$

arbitrarily small. It follows that $(S\omega, S\omega) = 0$, so $S \varepsilon I_{\omega}, S_{\omega} = 0$.

Thus $X_{\omega} \subseteq UH_0$. Since X_{ω} is dense, and UH_0 closed, in H_{ω} , we have $UH_0 = H_{\omega}$.

Lemma 3. $\varphi_{\omega}(\widetilde{A}) = \mathscr{B}(H_{\omega})$.

Proof. Evidently the map $\psi: \mathscr{B}(H_0) \to \mathscr{B}(H_{\omega})$ given by $\psi(S) = USU^*$ is a *-isomorphism of $\mathscr{B}(H_0)$ onto $\mathscr{B}(H_{\omega})$, bi-continuous with respect to the weak operator topologies. Thus

$$\psi(ext{weak closure } arphi_0(A)) = ext{weak closure } \psi(arphi_0(A)) \ = ext{weak closure } arphi_o(A) \ .$$

Since $\varphi_0(A)$ acts irreducibly on H_0 , weak closure $\varphi_0(A) = \mathscr{B}(H_0)$. On the other hand, f_{ω} is a vector state on \tilde{A} , and so normal [2, p. 54]. Consequently, $\varphi_{\omega}(\tilde{A})$ is a weakly closed subalgebra of $\mathscr{B}(H_{\omega})$ [2, p. 57]. Thus

weak closure
$$\varphi_{\omega}(A) \subseteq$$
 weak closure $\varphi_{\omega}(A) = \varphi_{\omega}(A)$.

 $\mathscr{B}(H_{\omega}) = \psi(\text{weak closure } \varphi_0(A)) = \text{weak closure } \varphi_{\omega}(A) \subseteq \varphi_{\omega}(\widetilde{A}).$

We now get at the proof of the theorem. By Lemma 1, the derivation D on A extends to a derivation \tilde{D} on \tilde{A} . Since φ_{ω} is a *-homomorphism, \tilde{D} induces a derivation D_{ω} on $\varphi_{\omega}(\tilde{A})$ by

$$D_{\omega}(arphi_{\omega}(T))=arphi_{\omega}(ar{D}(T))$$
 .

As we have just seen, $\varphi_{\omega}(\tilde{A})$ is very much a type I weakly closed algebra, so we may appeal to Kaplansky's result to find an S in $\mathscr{B}(H_{\omega})$ such that

$$D_{\omega}(\varphi_{\omega}(T)) = [S, \varphi_{\omega}(T)]$$

for all T in \widetilde{A} .

Consequently,

Letting $S_0 = U^*SU$, we thus have

(*)
$$\varphi_0(Dx) = S_0\varphi_0(x) - \varphi_0(x)S_0.$$

Assume for the moment that D is self-adjoint; it follows that

$$\varphi_0(D(x^*)) = -(\varphi_0(Dx))^*$$

and so

$$S_0 \varphi_0(x)^* - \varphi_0(x)^* S_0 = S_0^* \varphi_0(x)^* - \varphi_0(x)^* S_0^*$$

for all x in A. In other words, $S_0 - S_0^*$ commutes with $\varphi_0(A)$, and so is a scalar multiple of the identity. Now altering S_0 by adding a scalar multiple of the identity does not affect any of the Lie products $[S_0, T]$. Consequently we may choose S_0 so as to satisfy (*) and to be self-adjoint.

By further addition of a real scalar multiple of the identity, we may assure that the spectrum $\sigma(S_0)$ is centered at the origin. We assert that when this has been done, we have

$$||S_{\mathfrak{o}}|| \leq ||\widetilde{D}|| = ||D||$$
 ,

the norm on the left being the norm in $\mathscr{B}(H_0)$ and the two on the right (whose equality is easily verified via the identification $\tilde{D} = D^{**}$) the norms \tilde{D} and D have as operators on \tilde{A} and A respectively.

For, given any $\varepsilon > 0$, the spectral theorem applied to the selfadjoint S_0 supplies us with vectors ξ and η in H_0 such that

$$egin{aligned} &\|\, arepsilon\, \|\, arepsilon\, \|\, \eta\, \| &= 1\,, \ \ arepsilon\, \perp \eta \ &\|\, S_{_0} arepsilon\, + rac{1}{2}\, \|\, S_{_0}\, \|\, arepsilon\, \|\, arepsilon\, \|\, arepsilon\, \|\, arepsilon\, \|\, arepsilon\, a$$

Since ξ and η are orthogonal, there is a unitary element of $\mathscr{B}(H_0)$ which interchanges them. Appealing again to Kadison's theorem [4, Theorem 1], we have a unitary v in A such that $\mathcal{P}_0(v)$ interchanges ξ and η .

We thus have

$$egin{aligned} &\left\|\left.S_{\scriptscriptstyle 0}arphi_{\scriptscriptstyle 0}(v)\xi-rac{1}{2}\mid\left|\left.S_{\scriptscriptstyle 0}\mid\right|\eta
ight\|=\left\|\left.S_{\scriptscriptstyle 0}\eta-rac{1}{2}\mid\left|\left.S_{\scriptscriptstyle 0}\mid\right|\eta
ight\|$$

Therefore

$$\Big\| \left[S_{\scriptscriptstyle 0}, \, arphi_{\scriptscriptstyle 0}(v)
ight] \! arphi - || \, S_{\scriptscriptstyle 0} \, || \, \eta \, \Big\| < 2 arepsilon$$

and so

1364

$$|| [S_{\scriptscriptstyle 0}, \varphi_{\scriptscriptstyle 0}(v)] \xi || \ge || S_{\scriptscriptstyle 0} || \cdot || \eta || - 2\varepsilon = || S_{\scriptscriptstyle 0} || - 2\varepsilon$$
.

On the other hand,

$$\| [S_{\scriptscriptstyle 0}, arphi_{\scriptscriptstyle 0}(v)] \xi \| = \| arphi_{\scriptscriptstyle 0}(Dv) \xi \| \leq \| arphi_{\scriptscriptstyle 0}\| \cdot \| D \| \cdot \| v \| \cdot \| \xi \| = \| D \| \, .$$

Combining these inequalities, we obtain $||D|| \ge ||S_0|| - 2\varepsilon$ for any positive ε , which proves our assertion.

To obtain the promised representation, let \mathscr{F} be any family of pure states maximal with respect to the property that the representations induced by any two distinct members of \mathscr{F} shall not be unitarily equivalent. Let H be the direct sum of the H_f , extended over all f in \mathscr{F} , and φ the direct sum of the φ_f , also extended over \mathscr{F} . Since the direct sum representation extended over all pure states is faithful, φ must also be faithful. By the argument just finished, there exists for each f in \mathscr{F} an element S^f in $\mathscr{R}(H_f)$ satisfying

$$\varphi_f(Dx) = S^f \varphi_f(x) - \varphi_f(x) S^f$$
, all $x \in A$ $||S^f|| \leq ||D||$.

Thus the operator S defined on H by

$$S\{\xi^{\mathsf{f}}\} = \{S^{\mathsf{f}}\xi^{\mathsf{f}}\}$$

is in $\mathscr{B}(H)$, and indeed $||S|| \leq ||D||$. It is at once verified that for any x in A,

$$\varphi(Dx) = [S, \varphi(x)]$$
.

That S is in the weak closure of $\mathcal{P}(A)$ is a consequence of the fact [3, Cor. 4] that our choice of \mathscr{F} causes the weak closure of $\mathcal{P}(A)$ to be the C^* direct sum $\Sigma \bigoplus (H_f)$ extended over \mathscr{F} .

We have been operating for some time under the assumption that D was self-adjoint. Since any derivation is a linear combination of self-adjoint ones, and since the representation φ did not depend on the derivation, it is clear that the theorem has in fact been proved for any derivation D.

The relation of ||S|| and ||D|| when D is arbitrary remains a loose end.

3. Proof of the corollary. (i) Given the self-adjoint derivation D on the B^* algebra A, we take a faithful representation φ of A in some $\mathscr{B}(H)$ and a self-adjoint S in $\mathscr{B}(H)$ such that

$$\varphi(Dx) = S\varphi(x) - \varphi(x)S$$

for all x in A. If $D^2(x) = 0$, then

PHILIP MILES

$$0 = arphi(D^2x) = arphi(D(Dx)) = [S, [S, arphi(x)]]$$
.

We can now apply the well known theorem of Putnam to conclude that $[S, \varphi(x)] = 0$, and so that Dx = 0.

(ii) If D is self-adjoint and D(x) is self-adjoint, then x = ik for some self-adjoint k. Let φ , S, H be as above: We may also take $\varphi(e)$ to be the identity I on H. If iD(k) is in the interior of the positive cone of A, then $iD(k) \ge \delta e$ for some $\delta > 0$, and consequently $i\varphi(Dk) \ge \delta I$.

Given any state f on $\mathscr{B}(H)$, let $f(S\varphi(k)) = \alpha + i\beta$. Then

 $f(\varphi(k)S) = \alpha - i\beta$

Thus

$$if(arphi(Dk)) = if([S,arphi(k)]) = -2eta \geq \delta f(I) = \delta \; .$$

Consequently

$$f(arphi(k)^2)f(S^2) \geqq |f(Sarphi(k))|^2 \geqq lpha^2 + eta^2 \geqq \delta^2/4$$
 .

Thus $f(\varphi(k)^2)$ is not zero for any state f. Since all multiplicative functionals on the closed (commutative) algebra generated by $\varphi(k)$ and I extend to states of $\mathscr{B}(H)$, this implies $\varphi(k)$ regular.

Now for any scalar λ , $D(k + \lambda e) = D(k)$. We may therefore repeat the argument above with k replaced by $k + \lambda e$, coming to the conclusion that $k + \lambda e$ is regular for all scalars λ , an impossibility. Thus our original assumption was false, and (ii) is proved.

BIBLIOGRAPHY

1. P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math., II (1961), 847-870.

2. J. Dixmier, Les Algebres D'Operateurs dans L'Espace Hilbertien, Paris, Gauthier-Villars 1957.

3. J. G. Glimm and R. V. Kadison, Unitary operators in C* algebras, Pacific J. Math., 10 (1960), 547-556.

4. R. V. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sci., U.S.A. 43 (1957), 304-379.

I. Kaplansky, Modules over operator algebras, Amer. J. Math., 75 (1953), 839-858,
 S. Sakai, The theory of W* algebras, (Mimeographed lecture notes). Yale University, 1962.

UNIVERSITY OF WISCONSIN

1366