KLEENE QUOTIENT THEOREMS
J. D. McKNIGHT, JR.

0. Introduction. The collection of regular subsets of a semigroup
A is the smallest collection of subsets of A having among its members
the finite subsets of A, the collectionwise products EF and unions
EUUF of any members E and F of it, and the subsemigroups E* of
A generated by each of its members E. For convenience, we set
@*= @ for the empty set @ although a semigroup is required to have
at least one element. By a quotient of a semigroup A we shall mean,
as usual, the set of inverse images of elements of a homomorphic
image of A with multiplication so defined that this partition of A is
isomorphic to the homomorphic image in the natural way.

A theorem of S. C. Kleene [3], first proved a dozen years ago,
not only may be regarded as the fundamental theorem of the traditional
theory of finite automata (compare C. C. Elgot [2] and Section 4 below),
but it may be considered a contribution to the theory of quotients of
certain classes of semigroups. Kleene’s results are often summarized
[2] by a statement equivalent to the following: The regular subsets
of a finitely generated free semigroup are the wunions of subsets of
Jfinite quotients of the semigroup. This result has two evident parts.
The first we call the Kleene Quotient Theorem: FEach element of a
Jfinite quotient of a finitely generated free semigroup is a regular
subset of the semigroup. The second is one of several theorems we
call the Converse Theorems: Ewvery regular subset of a finitely
generated free semigroup 1is a wunion of elements of some finite
quotient of the semigroup. This result may be decomposed into two
main parts (Section 3), each of which is also a Converse Theorem:

(a) The collection wise product of unions of elements of finite
quotients of a finitely generated free semigroup is a union of elements
of a finite quotient of the semigroup.

(b) The subsemigroup generated by a union of elements of a
JSinite quotient of a finitely generated free semigroup is a union of
elements of a finite quotient of the semigroup.

Our main purposes have been to remove the word free from the
Kleene Quotient Theorem and to remove the adjective finitely generated
from all the Converse Theorems. We have indeed been able to give
some general inductive formulas (Section 1) which may themselves be
regarded as a generalization of the Kleene Quotient Theorem, and we
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have given a more incisive proposition (Theorem 5) than the Converse
Theorems. But our main contribution is one of method. For example,
we avoid transformation semigroups completely in our proofs of the
Converse Theorems, introducing instead a class of refinements of
quotients. It would be possible to mimic Kleene’s proofs [3] to prove
our major propositions, but the tools we introduce below are much
more transparent.

Section 3 is independent of Sections 1 and 2. It is also easier to
read because there are no long formulas to check and it is more like
conventional algebra.

That part of our terminology which is not simply the language of
general mathematics is found mainly in [1]. Unfortunately, collection-
wise quotients, which are used in almost every branch of algebra, are
not discussed there, but we have no use for any deep properties of
them.

1. Collectionwise quotients of quotient classes. An operation
often associated with the collectionwise product is the collectionwise
quotient a:b defined for each pair of subsets a and b of a semigroup
A. The set a:b consists of all those elements x of A for which xzbCa.
It follows trivially that (a:b6)6Ca; in fact, a:b is the largest of the
subsets ¢ of A for which ¢bCa. The most familiar uses of collection-
wise quotients require that A be the multiplicative semigroup of a
ring and that a and b be left ideals of the ring. Then a:b is an
ideal called the quotient ideal of a by b. We shall use a:b% only when
a and b are elements of a quotient % of the semigroup A. In this
case, a:b contains every element of .& which intersects it nonvacuously;
therefore, a:b is the union of all those quotient classes ce .o for
which ¢bCa.

If B is a subsemigroup of A and <Z is the collection of all non-
empty subsets of B of the form aN B for a in a quotient % of A,
then <# is a quotient of B, the quotient induced by & on B. If
a,be .7, then (a:b) N B is the union of all those ce <# for which
¢bca. If also bNB = @, then (a:0)NB=((anB):(bNB)NB.

If B is a collection of subsemigroups of A and aC A4, we shall
denote by (a)y; the set a N (UB). If ae .97, where .&7 is a quotient
of A, then (a)y is the union of the induced quotient classes a N B for
Be®B and aN B+ @. Ifa,be. o7, then (a:b)y = U {(a:b) N B: Be B},
which is the union of all the induced quotient classes ¢ in the quotients
induced by % on elements of B for which ¢bca. In particular, if
A is generated by B (i.e., if A is the smallest subsemigroup of A
containing every element of B), then for each ae . we have a =
@y UU{(a:b)gb:be . o7}, for each element of a either is an element
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of some element of B or has a left factor which is an element of some
element of B. More explicitly, if x€a and » ¢ (a)g, then & = yz, where
y € B for some Be®B. But then zeb for some be .97 so that x € (a:b)gbh.
This observation may be strengthened by factoring each element of a
completely into factors lying in the elements of B. Thus, if B géner-
ates A and a is an element of the quotient .& of A, then a is the
union of (a)y and all those products of the form (a:a)g(a;:ay)g -
(0,1t 0,)5(0,)g, Where aj, ---,a,€ .9 A factor (b:c)y or (b)y of some
of these products may, of course, be the empty set, but then any such
product is empty.

To simplify our computations we introduce the set ty(a, &2, b) for
each ae . and be # C 7. We define 14(a, £, b) to be the union
of (a:b)y and all sets of the form (a:a)g(a;:a)y ++- (a,:b)y, where
Q, +++,0,eZ. If B generates A, then for any element a of the
quotient .7 we have

(1) a = (0)g U U {rg(a, &, b)(b)g : be 7} .

We intend to write tg(a, <, b) in a convenient form for later use.
To this end we introduce the sets py(a, &Z,b) for ae & and be FC 7.
We define py(a, <&, b) to be the union of all those sets of the form
(a:a)gla; : a)g =+ - (a,: b)y for which a, # a and a,, ++-, a,€ &, where
we count (a:b)y as one of these products if a #b. We then have, if
ae &, the formulas

9@, &, a) = (a:a)g U pgla, &, a) U (a: a)gbgla, &, a)
(2) and
15(a, &, b) = pyla, F, b) U (a: a)ghg(a, &, b) for a =b.

The first of these formulas follows from the fact that the sets
(a:a)g(a;:a)g <+ (a,:a)y may be classified as those for which each
a, is equal to a, those for which a; ## a, and those for which a, =a
with some other a, = a. The second follows from the faet that for
b+ a the sets (a:a)gl(a,: a)g + -+ (a,:b)y and (a:b)y, for a#Db, may
be classified as those, including (a:b)y, for which a, # a and those
for which a, = a.

We also have, if ae <%, the formulas

pp(a, &, a) = [U{rgla, Z\{a}, 0l(c: a)g U (c: a)y(a: a)g] : ce 2 \{ah}]*
(3) and
p;B(av %’ B) = r%(a, .@\{0}, b) U p%(ay g: a)rﬁ(a’ ,@\{a}, b) fOI‘ a $ b .

To show that the first of these equations is valid, we observe
that its right-hand member is the union of all sets of the form
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10a* * *0ay, Where each gy, has the form (a:¢)y or (a:a,)p(a;: )G+ (An:C)g
for some ¢, a, +++,a,€ Z\{a} and qy is either (c:a)y or (c:a)y(a:a)y
for some p. Because of the forms of g, ---, q;, each such g, -+ q,,
is contained in py(a, &Z, a) according to its definition. Conversely, if
(@:a)yg -+ (a,: a)y is one of the sets which, according to our definition,
makes up py(a, &, a), then a; # a. Either a, # a for each k, in which
case (a:a,)g + ++ (a,: ) is of the form q,q; above (i.e., (@:a)g++ (ag: )5 C
tg(a, Z\(a}, a,)(a, : a)g) or there is a smallest & for which a;,, =a.
In the latter case, there is some » = 1 for which a = q;4; = «++ = Q44p
and for which either k¥ + » = q or a;,,4, # a. If k + p = q, then again
(a:a)g -+ (a,: a)g is of the form q,q, above (i.e., (a:a;)g +-+ (a,:0)x C
rg(a, Z\a}, al)(a, :a)g(a: a)g). If &+ p < g, then (a:a)y - (a,:a)g
is of the form qq,(a: Qyipra)g *** (@, @)y, where q; and q, have the
form specified above. The shorter expression (a:aips)g =+ (A;: )y
may be treated exactly as (a: a)g +++ (a,: a)y to produce factors qs
and q,, and by repetition of the above procedure we finally have, for
some 7, (a:a)g -+ (a,:a)g = quy *** 0., Where the g, are as specified
above. Therefore, py(a, &, a) is contained in set expressed in the
right-hand member of the first equation (3).

The second formula of (3) is more easily verified. If a #be 7,
the sets (a:b)y and (a:a)y(a,: Gy ++- (a,: b)y for which a, #a and
a, +++,0,€ Z may be classified as those, including (a:b)y, for which
a, # a for every k and those for which there is a greatest k satisfying
a, = a. The union of those of the former class is simply ry(a, & \{a}, b);
the union of those of the latter is by(a, 2, a)ry(a, Z\{a}, b).

The pairs (2) and (3) of formulas apply only to the case ae 7.
For a¢ &# we have the obvious relationships

(4) ry(a, &, b) = pyla, Z, b) = (a:b)y U U {(a:c)gty(c, &, b):ice Z}.

The formulas (1)-(4) are valid quite generally. Our reasons for
deriving them are apparent only when the quotient .&7, the subset
Z of &7, and the collection B of subsemigroups of A suffer special
joint conditions. Our first lemma, its corollary (Theorem 1), and the
results of the next section make our reasons clear.

LEMMA 1. If &7 48 a quotient of the semigroup A, if <& 1is a
finite subset of &7, if B is a collection of subsemigroups of A, and
if (a:b)y s a regular subset of A for each a,be <7, then t4(a, &, D)
18 a regular subset of A for each a,be <Z. If, moreover, a quotient
class ae 7 has the property that (a:b)y is a regular subset of A
Sfor each be Z, then 14(a, Z,9) is a regular subset of A for each
be &.
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Proof. The second statement follows easily from the first and
formula (4). We prove the first statement by induction on the number
of elements of <Z. The first of formulas (2) reduces to r4(a, {a}, a) =
(a:a)y for & = {a}. If ae &, then & \{a} has fewer elements than
has <7, and, according to formulas (3), py(a, &, b) is regular if each
set tyn(a, &Z\{a}, ) is regular for ce &Z\{fa}. Writing 14(a, & \{a}, ¢) in
the form prescribed by (4) and invoking the induction hypothesis, we
conclude that ry(a, #\{a}, ) is regular; hence, pyla, &, H) is regular.
According to formulas (2), therefore, 1y4(a, &7, b) is regular.

THEOREM 1. If &7 is a finite quotient of the semigroup A, if
B is a collection of subsemigroups of A generating A, and if a N (U B)
18 a regular subset of A for each a€ .7, then each element of &7 1s
a regular subset of A.

Proof. According to Lemma 1, t4(a, %7, b) is regular for a, be &7,
Formula (1) then leads to our conclusion. Here, and in Lemma 2 below,
the referee has saved the author from the error of adjoining an
“obviously redundant” additional hypothesis that such setsas (a:5) N (LU DB)
be regular.

2. Quotients of finitely generated semigroups. The last section
has provided us with the main tools for carrying out a proof that the
elements of a finite quotient of a finitely generated semigroup are
regular subsets of the semigroup. After one more bit of preparation,
we shall use an argument involving the number of generators of the
semigroup.

LEMMA 2. If &7 is a finite quotient of the finitely generated
semigroup A, if B is a collection of subsemigroups of A generating
A, and if aN B is a regular subset of A for each ac€ .S and Be%B,
then each element of .7 is a regular subset of A.

Proof. Each element of a finite set of generators of A is in the
subsemigroup of A generated by some finite subcollection of B. There-
fore, there is a finite subset B’ of B generating A. Sincea N (Y B') =
U{aNB:Be®B'} the set aN (U B') is regular for ac .»”. The con-
clusion then follows from Theorem 1.

LEMMA 3. If &7 4s a quotient of the semigroup A and if A is
generated by one element, then every element of 7 is a regular
subset of A.

Proof. A is either free or finite. That is, every semigroup with
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a single generator is a homomorphic image of the additive semigroup
of positive integers N. If A is finite, the proposition is trivial. If
A is free, it is isomorphic to N. Since the form of quotient classes
of N is well known, we may regard the proposition as well known
for the free case.

THEOREM 2. If &7 is a finite quotient of the finitely gemerated
semigroup A, then every element of &7 1is a regular subset of A.

Proof. If A has several generators, it is generated by a finite
collection B of subsemigroups, each of which has fewer generators
than A. For example, B may be the cellection of subsemigroups of
A generated by the single elements of a finite set of generators of A.
The result then follows from Lemmas 2 and 3.

COROLLARY. FEwvery element of any restriction of a finite quotient
of a semigroup A to a finitely generated subsemigroup of A is a
regular subset of A.

3. Finite quotients of free semigroups. We shall use some
special refinements of quotients to study regular subsets of free semi-
groups. We shall first define them as refinements in the set-theoretic
sense, proving afterward that they are quotients if the semigroups
are appropriate.

The joint refinement of quotients % and <& of A, written
S N &, is the coarsest covering of A which is a refinement of both
7 and &Z; i.e., ¥ A & consists of all nonempty sets of the form
anNb, where ac . and be <Z. The composite refinement of the
quotient & of A, written 7.&7, is the coarsest covering of A by
disjoint subsets which refines .o and which is such that each ab is
a union of its elements for each a,be . i.e., if ¢,y A, then x and
9 are in the same element of 7.7 if and only if they belong to the
same element of &% and the same products ab of elements a and b
of &%7. More generally, if <# is a subset of the quotient & of A,
we define the composite refinement of . modulo <&, written 75 .97:
Elements # and y of A are in the same element of 75.%7 if and only
if they are in the same element of & and the same products ab for
a,be &7, and, for a, be &, x is in ab or ac,- - -¢,b for some ¢, +++,¢,, € F
if and only if y is in ab or ad, - - - d,b for some d,, --+, d, € Z&. Obviously,
T = Tg.

We regard the next result as well known and easily proved.
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LEMMA 4. If & and <& are quotients of a semigroup A, the
joint refinement 7 N\ Z s a quotient of A.

LEMMA 5. If <& is a subset of the quotient 7 of a free semi-
group A, the composite refinement of & modulo <& 1is a quotient
of A.

Proof. We suppose that x and ¥ are in the same element of 7 5.7
and that «’ and %' are in the same element of 75 .%”. Since x2’ and
yy' are obviously in the same element of .9, we only have to show
that zx’ € ab implies yy’ € ab for a, b€ ¥ and that zx'cac, ---¢,b for
some ¢, *++, ¢, €% Iimplies yy'€ab or yy €ad,---9,6 for some
o, -+, b, €, where a,be &7,

If %2’ € ab, then 22’ = ab for some aca,beb., If  =a and 2’ = b,
then yea and ¥’ €b so that yy €ab. If x # a, then, because A is
free, either « is a left factor of @ or «’ is a right factor of b. In
the former case we have a = xa, and 2’ = a,b. There are elements
ay, a, € . for which x€q,and a,€a,. Then aa, Ca and ¥ €ab. Since
Yy Ea, yy €aabC ab. The latter case is analogous.

If 2’ €ac, +--¢,b, then 22’ = ac, -+- ¢,b, where acqa, ¢,€c, and
beb. There are six mutually exclusive cases to consider:

(1) a=za,

(2) a=w,
(8) b=0bya,
(4) b=1,

(5) =z =uac, +-- ¢, for some k < m, and

(6) = =aec ++ c,—c; for some k,1 < k < m, where ¢, = cic;. In
case (1) we have x€aq, a,€q, for some a,a,€.%, with qa,Ca and
2’ eqge <+ c,b. Then either ¥’ €ab or there exist b, --+, D, € & with
y' ead, «-+ d,b, sothat yy' eaabcab or ¥y’ €qad, --- b, ad, -+ d,b.
In case (2) we have xca and «'€c, --+c,b. Then either ¥ €cb or
yeced - d,b for b, +--, b, € &, so that yy €achor yy' €acd, -+ d,b.
Our condition is fulfilled since ¢, € &Z. Cases (8) and (4) are analogous
to cases (1) and (2), respectively. In case (5) we can conclude that
yeac, or yEab, «+- d,c, for some d, -+, b, € Z and that ¥ €¢;..b or
Y ecpq@ oo eb for some ey, ---,e,€ Z, and the desired conclusion
follows easily since ¢, ¢, ., € . In case (6) yeac, or yeabd, --- d,¢}
for some bd,, +++, b, € &, where c,ec;, and y' €c/b or Yy €cjle, ---e,b
for some e, ---,e,€ <Z, where c; cc;. The desired conclusion follows
easily since cic, Cc, € Z.

COROLLARY. If &7 is a quotient of a free semigroup A, the
composite refinement of & is a quotient of A.
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THEOREM 3. If &7 and <& are finite quotients of the free
semigroup A, then there is a finite quotient & of A so that if E =
U and F= &, where &£ C ., F C <&, there is some € C ¥
so that EF = &.

Proof. There exists &', #'C % N % for which E = |J &£’ and
F=U ' If & and & are finite, so is % A &#. Therefore, it
is enough to prove the theorem for & = &7, so that & = ¥ AN &
and the notation is simplified. Then if ae & and be &, ab is a union
of elements of 7.5, as is any product of quotient classes, and EF' is
the union of all the products ab for ae¥,be . If & is finite,
so is .Y because there are then finitely many sets of products ab
for a,be .

THEOREM 4. If &7 s a finite quotient of the free semigroup
A and E=UZE for some & C ., then there is a finite quotient
& of A and some £ C & so that E* = Z.

Proof. For a given subset & of o7, the elements of 7,
contained in some element of . are determined by quadruples of
sets of pairs (a, b) of elements of 9. That is, the element of T, S
with element = is the subset of the element of . with element «
consisting of all those elements y of that element of & satisfying:

(1) vy is in the intersection of all those products ab, a,be o7,
for which xe€ab, (1')y is in the intersection of the complements of all
those products ab, a,be ., for which 2 ¢ ab,

(2) if x¢ab for some a,be &, but « is in the union of those
sets of the form ac, +--,c,b for ¢, ---,c, €%, then ¥ is in the same
union, and (2') if x¢ab for some a,be.” and % is not in the union
of those sets of the form ac, ---,c,b for ¢, +-+,¢, €%, then ¥ is not
in that union. Therefore, if .7 is finite, so is T 7.

If xe E*, then x€ E* for some k=1. If k=1, then xzca for
some a€ &. Then the whole element of 7e. % of which « is an
element is contained in ac EC E*. If k=2, then xcab for some
a,be &. Then the element of 7e % of which x is an element is
contained in abc E*c E*. If k> 2, then ze€ac, +--¢,_,6 for some
ab, ey, 0e&. If y is an element of the element of 7ge. % of
which 2 is an element, theny e aboryeabd, -+« d,b for somed,, ---,d,€ &;
ie., ye E*°C E* or ye E*"*C E* for some n = 1. Therefore, E* is
a union of elements of w97,

THEOREM 5. If 7 is a finite quotient of the free semigroup
A, then there is a finite quotient <& of A with the following properties:
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(i) <& refines 7.

(ii) Products of elements of 7 are unions of elements of Z;
hence, products of unions of elements of &7 are unions of elements
of &#.

(iii) The subsemigroup of A generated by any union of elements
of & s a unton of elements of Z.

Proof. Since there are finitely many subsets of .&7, then according
to Theorems 3 and 4 we have only to form a finite sequence of joint
refinements. In fact, according to the proofs of Theorems 3 and 4
we may use the quotient 7% ¥ ATg ¥ N - A\Tg ¥ if &, 7 ,--., &
are all the subsets of .&7. ,

LEMMA 6. Any finite subset of a free semigroup A is a wunion
of elements of a finite quotient of A.

Proof. We let E bz the smallest subset of A generating A, F
be a finite subset of A, and E, a finite subset of £ so that Fc Ejf.
Then FC E,U E}U +-- U Ep for some » > 0. The partition of A con-
sisting of the singleton subsets of E,U E;U --- U E and the set
A\(E,U --- U Ep) is a finite quotient of 4, and F is a union of some
of its elements

THEOREM 6. FEach regular subset of a free semigroup A is a
union of elements of a finite quotient of A.

Proof. By Lemma 6 the finite subsets of A are unions of elements
of a finite quotient of A. By Theorems 3 and 4 collectionwise products
of such unions and the subsemigroups of A generated by such unions
are also such unions. The conclusion follows directly from the definition
of regular subsets.

4, Transformation semigroups and automata. If % is a homo-
morphism from the semigroup A to the semigroup (under composition)
of transformations on a set X (i.e., if (A4, %) is a transformation
semigroup) and if x,€ X, then we may define the subset 4, of A to
consist of all those elements a € A for which h(a)(x,) = . Each such
A, is a union of elements of the quotient A/h, and the nonempty sets
A, constitute a partition of A which we denote by A/(h, x,). Moreover,
if & is a quotient of the semigroup A, then A acts on the semigroup
&7+ consisting of & and an identity 1¢ .97 as follows: The homo-
morphism h* from A to the semigroup of transformations on 7t is
defined by setting h*(a)(a) equal to the element of . containing
ha)a for ac A, ae 7+, where h is the natural homomorphism from
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A to . Then & = A/(h*,1). Thus, all quotients of A are of the
form A/(h, x,) for some transformation semigroup (A4, #). In particular,
finite quotients may be obtained from finite “phase sets” X.

According to Theorem 6 and these last remarks, if E is a regular
subset of the free semigroup A then there is a finite set X, a homo-
morphism % from A to the semigroup of transformations on X, and
an element z,€ X so that E is a union of elements of A/(h, x,); that
is, there is a set X,C X so that F = J{A4,:2¢c X;}. According to
Theorem 2 and the remarks, if X is a finite set, x, an element of X,
and % a homomorphism from the finitely generated semigroup A to
the semigroup of transformations on X, then each element of A/(h, x,)
is regular; that is, each A, is regular.

A finite automaton (cf. [2]) is a homomorphism % from a finitely
generated free semigroup A to the semigroup of transformations on a
finite set X together with a subset X, of X. Each element x, of X
then determines a regular subset of A consisting of the union of those
elements A, of A/(h, x,) for which € X,. On the other hand, if E
is a regular subset of the finitely generated free semigroup A, there
exist appropriate X, X, and h defining a finite automaton so that E
is the union of all 4, in A/(h, x,) for which x € X,, where 2, is some
element of X. These last statements are obvious consequences of the
remarks above.
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