ON THE NORMAL BUNDLE OF A MANIFOLD

MARK MAHOWALD

In the Michigan lecture notes of 1940 [8] Whitney proved that any
manifold in the cobordism class of P, cannot be embedded in R* with
a normal field while non-orientable manifolds in the trivial cobordism
class may or may not have a normal field. We will give a new proof
of this result using some of the recent notions of differential topology.
As one would expect, Whitney’s theorem is a special case of a more
general theorem and for the statement of this theorem we introduce
some notation.

Let M™ be a compact smooth m-manifold. Let w; be the dual
Stiefel Whitney classes of M™.

DEFINITION., Let o(M™) =0 if w,-w,,=0 and o(M") =1 if
Wy Wy 7 0.

Clearly o(M™) is just a Stiefel Whitney number [6]. Note also
that by a result of Massey [5], o(M™) = 0 unless n = 27,

THEOREM 1. For any embedding of M™ in R* the (twisted) Euler
class is congruent to 20 mod 4.

This result is a slight sharpening of the theorem of Massey [4];
the proof is given in § 4 after some preliminary results in §§ 2 and 3.

Let x be the Euler characteristic of M® In Whitney’s theorem
the role of o in Theorem 1 is played by ). It is not hard to verify
that for 2-dimension manifolds ¢ = ¥ mod 2. In addition, for 2-dimen-
sional manifolds we can prove (section 6)

THEOREM 2. For each k and each value of o there is a manifold
M? and an embedding of M? in R* with twisted Euler class 20 + 4k.

We have not been able to show that a single manifold has an
embedding for each k. Whitney exhibited two embeddings of the Klein
bottle, one with a trivial Euler class and one with a non-trivial one.

We also have this weaker result (section 7) for other values of n.

THEOREM 3. For every evem n there exists a manifold M™ and
an embedding of M™ in R™ with no normal field.
It is known that if % = 27 and % > 8, then every n-manifold embeds
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in R*™', Hence this result asserts in addition that some n-manifolds
have inequivalent embeddings in RE™.

It is interesting to note that the principal lemma yielding Theorem
1 also gives a new proof of the following slightly strengthened version
of a result of Levine [2] and Mahowald [3].

THEOREM 4. Suppose M™ is orientable in addition. If there
exists a class d of dimension (n — k — 1)/2 such that dU Sq'd Uw, # 0,
then M* does not embed in Rm™e+,

In [3] only the application of this result to give—P, does not
embed in R*™* if n = 2/ + 1—is given.

2. Some lemmas. In this section we will derive some information
about a particular secondary cohomology operation. Let K be a semi-
simplicial complex and let u € C*(K; Z) such that ou =2v. If w is
an integer (a modj) cocycle we write [w] (Jw];) for the cohomology
class containing w. We have the following results, some of which are
well known.

2.1. S¢'[u]. = [v]. and B.,Ju], = [v] where B; is the Bockstein co-
boundary connected with the sequence 0 — Z — Z — Z; — 0. '

2.2, If p is the Pontriagin square operation p: H*(K; Z,) —
H*™(K; Z,) then p([u])) = [v Uu + % U,0ul..

2.8. If ae H(X; Z) then let @ be its mod 2 restriction. Then
,34p([%]2) = [1) U, v +uU ’U]
and

Bp(ul) = Sg*Sq'[u], + [u], U [v], .

Proof. By the coboundary formula [7] which also holds in s.s.c.
we have o(w Uu + u U,0u) = 4w U,v + w Uv). This gives the first
statement and the second now follows by definition.

2.4. If wUwu + op is an integer cocyecle then w U,v is a mod 2
cocyele and Sq'([w U,v]) = S¢*Sq'[u], + [u], U [v].
Proof. By the coboundary formula we have

owUw)=uUv—ovUu+ duU,v
=2(u U ) + 2(v U,v)
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since o(uw Uu) = 0 implies wu Uv + vUu = 0. Now 2.1 completes the
proof.

25. If uUwu =2b+ dc, then b + u U,v is a mod 2 cocyele and:
Sq'[b + u U,v], = S¢*Sq'[u], + [u]z U Sql[ulz .

Proof. Note that o(u Uu) =2(v Uu + u U v) = 20b. Hence
vUu +uUv=23b

and the result follows as in 2.4,

In 2.4 we require that 4 U« + 0p is an integer coeycle, that is,
we require that GBJu Uwu] = 0. The universal example for such a class
% is obtained by considering a fibering p: X — K(A,, 2k) with fiber
K(Z, Ak) and k-invariant 280(«) where « is the fundamental class of
K(Z,, 2k). Let o = p*(a). Then by 2.4, o’ U,S¢'a’ is a cocycle and
not a coboundary (since &’ U Sg'a’ = 0). Let ¢ = o' U,S¢%’.

Let SA be the suspension of A and let s: Hi(A) — H*(SA) be
the suspension isomorphism. There is a natural map f: SK(Z,, 2k—1)— X
such that f* is an isomorphism in dimension 2k.

2.6. With the above notation there is a class 8 € p*H*(K(Z,, 2k); Z,)
(that is a primary operation) such that f*(8 + &) = s(a U S¢'a) where
s: Hi(K(Z,, 2k — 1)) ~ H"*"(SK(Z,, 2k — 1)). If B satisfies the above
equation then B + S¢* will do so too.

Proof. As a vector space H*(SK; Z,) is generated by

[ *o*H*(K(Z,, 2k)) and s(aU S¢'a) .

Hence f*(e) = As(@ U Sq'a) + B where A = 0 or 1 and B satisfles the
theorem. By direct computation we see that

Sq's(a U S¢*a) = Sq¢**Sq'sa ¢ f*p*Sq*H*(K(Z, 2k); Z,) .
But by 2.4 Sq¢*f*(e) = Sq*Sqg'sx. Since
Sgans(a U Sg'a) + S¢'B = Sq¢*Sq'sa

if and only if A =1 and Sq¢'8 = 0 we are finished.

In 2.5 we required that v U« = Omod 2. The universal example
for such a class w is given by a fiber space p,: Y — K(Z,, 2k) with
K(Z,, 4k — 1) as the fiber and S¢* as the k-invariant. Since there is
no homotopy in dimension 4% we have, letting [u], = pfa:

2.7. The class ¢ =1[b+ wU,v]e H*(Y; Z,) is not spherical and
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hence is the universal example of a nontrivial natural cohomology
operation which we write as ¢ too.

Let ¢g:SK(Z,,2k —1)— Y be the natural map inducing an iso-
morphism ¢* in dimension 2k. By an argument identical to the proof
of 2.6 we have 2.8. In the above notation g*(¢ + B8') = s(a U Sq'«)
where ' e p}H*(K(Z,, 2k), Z;). If (B satisfies the above equation then
B + Sq¢* will do so too.

3. Let v, be the universal n-plane bundle and let I be the trivial
line bundle. The base space of I will usually be clear from the con-
text. If v is any nm-plane bundle we let T(v) be the Thom complex
and Ue H(T; Z,) be the Thom class. Reecall that in T, UU U is equal
to UU @, which is the restriction mod2 of an integer class UU X
where ) is the twisted Euler class (of order 2 if n is odd). Hence
B,Sq"U = 0. By usual obstruction theory, letting n = 2k, we see that
there exists a map ¢: T(v,,) — X such that g* is an isomorphism in
dimension 2Fk.

LEMMA 8.1. In the above notation we can find a B satisfying 2.6
such that g*(B +¢) = UU ®,_, U W, n = 2k.

Proof. Consider the diagram:

ST(aes) = T,y D I) L SK(Zsy m — 1)

I I

T(,) 9, X

where ¢ is the map induced by the natural inclusion of v,, P I in
Y., and ¢’ is defined by requiring ¢'*(sa) = U’, the Thom class of
T(v,—. D I). Letting B be the class of 2.6, we have ¢'*f*(B + ¢) =
s(U,-,U U,,Uw,) = U" U Wy— U W, where U,_, is the Thom class of
T(Ys-). Hence g*(B +¢) = UU W,—, U W, + @ where ackers*. But
ker ¢* is generated by Sq"U = UU w,. Therefore 2.6 completes the
proof.

4. Proof of Theorem 1.

NorATION. In the remaining sections it will be convenient to use
a dot for the cup product.

Let M™ be embedded in R*™ and let T(n) be the Thom complex of
the normal bundle. By [6] M" has a normal field if #» =1 mod 2
(it even embeds in R™') so we suppose 7 is even. The group
H*™(T(n); Z) = Z and is generated by a class b such that 2jb = U-M
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(w0, is zero, hence A is zero mod 2). The cohomology operation g is
defined on U and by 2.7 and 8.1 we have #(U) = [U-@,*@,—, + 5b]..
Since the top cohomology class of the Thom complex of a normal bundle
to an embedding is spherical [6], #(U) = 0. Therefore jb = U-, W,y
(mod 2).

5. Proof of Theorem 4. Suppose we have an embedding of the
kind described. Let E and E, be the normal disk and sphere bundle
respectively. Consider the sequence

T(7) = BJE, —— SE, L, SK(Z,, j) 2> ¥

where ¢ is defined in the paragraph just before 2.8 and Sf is the
suspension of the map f: B, — K(Z,, 7) satisfying f*(a) = a-d where a
is any class such that t*(sa) = U. The map 7 is the natural map.!
Let N = fSfr. Clearly N is a defining map for #. We have g*p =
s(a+Sq'a) by 2.8. By direct computation f*(a-Sq¢'a) = a-w,-d-Sq'd + b
where b is in ker 7*. Finally \V*(¢) = U-,-d-Sq’d which is in the
top cohomology class of 7'(») and hence must be zero. This contra-
diction proves the theorem.

6. Proof of Theorem 2. Let f’': S*— T(v*) be any map. By
Theorem 36 [6] the map f’ is homotopic to a map f: S*— T(¥?) which
is transverse regular on G,,, (the grassmann manifold of 2 planes in
R** which, if k& > 3, is universal for classifying 2 plane bundles over
2-manifolds. Then f%G,,) = M* is a sub-manifold of S* and
fIM?* M*— @G, is the classifying map of the normal bundle to an
embedding of M? in R*c S* All that remains is to investigate the
structure of w(T(v%).

LemMmA 6.1. The first few homotopy groups of T(Y*) are

i 1 2 3 4
(T() 0 Z, 0 Z.

The k-invariant with which the Z group 1s added is 2Bp(c) where
a s the fundamental class of K(Z,, 2).

REMARK. It is interesting to note that this portion of the
Postnikov tower for 7'(v?) is the same as the corresponding portion for
G,, n>4 where G, is the clagsifying space for oriented u-plane
bundles. Indeed the k-invariants computed in [1] agree with these

1 If we realize E/E, by adding a cone over Ej to E, then E is naturally embedded
in EU Eo and z: E U .Eo—~> E U (Ey/E.
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given here. The class w,c H4G,; Z,) is associated with U-w?! in
HYT(?; Z,) while w; and U-w, are similaljly associated.

Proof of the lemma. Since the Thom class of T'(v?) is also the
fundamental class and since Sq¢* U # 0, the Hurewicz isomorphism theorem
proves that 7, (T(¥?)) = Z,. Now H¥XT(¥*);J) = Z, if J = Z or Z,, for
any k and zero for other Z,. Hence any homotopy group in dimension 3
must be attached with a nontrivial k-invtriant. But H*%K(Z, 2); Z,)
is generated by S¢’« and S¢*U = U-w, in H*(T(v*) and so 7*(T(v*)) = 0.

Now HYT(Y?); Z) = Z, generated by U-y where ) is the twisted
Euler class. Hence the rank of w(T'(»?)) is 1. Since the restriction
mod 2 of U-y is S¢*U, the Z component is attached with a nontrivial
k-invariant. Finally H%K(Z, 2); Z) = Z, generated by pBp(a) and
(Bh(@)) = S¢’S¢*a + aSq'a (see 2.3) and since Sq¢°Sq'U + U-Uw, =
U-w,-w, # 0 the k-invariant for the Z component can not be Bp().
Therefore it must be 28.p().

Let p:X — K(Z,, 2) be the fiber map having 28,p(a) as k-invariant
and K(Z, 4) as fiber. By 2.4 we see that HYX; Z,) = Z, + Z, generated
by a new class o’ U ,S¢’@’ and by Sq¢’a’ where o' = p*a. Hence the
natural map f: T'(v*) — X induces an isomorphism f*: H{(X) — H(T(v?)
for all coefficient groups if ¢ =< 4. To complete the proof of the lemma.
we note that f* is also an isomorphism in dimension 5.

Now we can complete the proof of Theorem 2. Since the order
of the k-invariant is 2, f'*(U-y) = 2J% where W is a generator of
H4S* Z) and j = [f’], the homotopy class of f’ in 7, under some
identification with the integers. Let » be the normal bundle for the:
embedding of M? in R* constructed above. Then the composite

St T 25 Tt

(where ), is the natural map and )\, is obtained by collapsi‘ng the com-~
plement of a normal neighborhood of M* to a point) is just f’. Since
A¥ is an isomorphism in dimension 4, the twisted Euler class of the.
embedding is 27 times the twisted fundamental cohomology class.

7. Proof of Theorem 3. Let T(v*) be the Thom complex of
the universal n-plane bundle, n even. Then H, (T(v"); Z) = Z, generated
by the cycle dual to the Thom class U. Since T(v,) is (» — 1)-connected,
we have 7,(T(7) = Z,. Therefore by Serre’s theorem, ([6], page 109)
rank H*(T(v"); Z) = rank m,,(T'(v")). In particular there is a map
f:8% — T(v*) such that f*(U-)) # 0 where ¥ is the twisted Euler class.
Now following the argument of § 6 we construct the desired manifold..
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