A REPRESENTATION OF THE BERNOULLI NUMBER B_{n}

Nand Kishore

The function $\sigma_{n}(\nu)$ and the polynomial $\phi_{n}(\nu)$ have been defined in [2] and [3] respectively. Let $J_{\nu}(z)$ be the Bessel function of the first kind, and $j_{\nu, m}$ be the zeros of $z^{-\nu} J_{\nu}(z)$, then

$$
\begin{equation*}
\sigma_{n}(\nu)=\sum_{m=1}^{\infty}\left(j_{\nu, m}\right)^{-2 n}, \quad n=1,2,3, \cdots, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{n}(\nu)=4^{n} \prod_{k=1}^{n}(\nu+k)^{[n / k]} \sigma_{n}(\nu), \tag{2}
\end{equation*}
$$

where $[x]$ is the greatest integer $\leqq x$.
$\sigma_{n}(\nu)$ is a rational function of ν with rational coefficient. $\phi_{n}(\nu)$ is a polynomial in ν with positive integral coefficients, and has degree $1-2 n+\sum_{k=1}^{n}[n / k]$. All real zeros of $\phi_{n}(\nu)$ lie in the interval $(-n$, $-2)$. These polynomials also satisfy certain congruences [3].

Let B_{n} and G_{n} be the Bernoulli and Genocchi numbers:

$$
\begin{equation*}
B_{n}=\sum_{k=0}^{n}\binom{n}{k} B_{k}, \quad n \neq 1, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
G_{n}=2\left(1-2^{n}\right) B_{n} . \tag{4}
\end{equation*}
$$

The symmetric function $\sigma_{n}(\nu)$ can be expressed in terms of the Bernoulli and Genocchi numbers by means of the following formulas:

$$
\begin{align*}
& \sigma_{n}\left(\frac{1}{2}\right)=(-1)^{n-1} \frac{2^{2 n-1}}{(2 n)!} B_{n} \tag{5}\\
& \sigma_{n}\left(-\frac{1}{2}\right)=(-1)^{n} \frac{2^{2 n-2}}{(2 n)!} G_{n} \tag{6}
\end{align*}
$$

where by B_{n} and G_{n} we understand the even-suffix numbers $B_{2 n}$ and $G_{2 n}$ [2].

In a previous paper [4] a structure of $\phi_{n}(\nu)$ has been given. This in turn leads, through (2), to a corresponding structure of $\sigma_{n}(\nu)$. And since for $\nu=1 / 2, \sigma_{n}(\nu)$ is expressible in terms of the Bernoulli number B_{n} it is natural to enquire about a structure of B_{n} corresponding to that of $\sigma_{n}(\nu)$.

Three formulas from a previous paper [4, (8), (15), (18)] will be used here. They are written down as formulas (7), (8) and (9).

$$
\begin{equation*}
\phi_{n}(\nu)=\sum_{k=1}^{[n / 2]} \alpha_{k} \Omega_{k}(\nu) \phi_{k}(\nu) \phi_{n-k}(\nu), \tag{7}
\end{equation*}
$$

where $\alpha_{k}=2, k<[n / 2]$, and for $k=[n / 2]$,

$$
\begin{align*}
& \alpha_{k}=\begin{array}{l}
2 \text { if } n \text { is odd, } \\
1 \text { if } n \text { is even, } \\
\Omega_{k}(\nu)=\prod_{s=1}^{n-1}(\nu+s)^{\varepsilon(s, k, n)}, \varepsilon(s, k, n)=\left[\frac{n}{s}\right]-\left[\frac{k}{s}\right]-\left[\frac{n-k}{s}\right] . \\
\quad \phi_{n}(\nu)=\sum_{i=1}^{c(n)} 2^{n_{i}} \prod_{j=2}^{n-1}(\nu+j)^{n_{i j}},
\end{array}, .
\end{align*}
$$

where (i) $c(n)$ is the number of components of $\phi_{n}(\nu)$,
(ii) at most one $n_{i}=0$,
(iii) $\sum_{i=1}^{c(n)} 2^{n_{i}}=n^{-1}\binom{2 n-2}{n-1}$,
(iv) $\sum_{j=2}^{n-1} n_{i j}=1-2 n+\sum_{s=1}^{n}\left[\frac{n}{s}\right]$, for all i, and
(v) given an integer $s, 1<s<n, n>3$, there exists i such that $0<n_{i s} \leqq[n / s]$.

$$
\begin{equation*}
c(n)=\sum_{k=1}^{[n / 2]} c(k) c(n-k), \quad c(1)=1 \tag{9}
\end{equation*}
$$

We shall obtain specific information about certain components of $\phi_{n}(\nu)$ which will be used later on. We begin with
(10) For $2<s<n$, $(\nu+s)^{[n / s]}$ is a factor of some component of $\phi_{n}(\nu)$, and if $s=2,(\nu+s)^{[n / s]-1}$ is a factor of a component of $\phi_{n}(\nu), n>3$.

Consider the first part of the statement. We observe that if $2<s<n$, the statement is true for $n=4,5,6,7$ (see [3]). Assume the statement to be true for $k=4,5, \cdots, n-1$. Take the k th term of (7), $T_{k}=\alpha_{k} \Omega_{k}(\nu) \phi_{k}(\nu) \phi_{n-k}(\nu), \quad k \geqq 4, \quad n \geqq 8$. Then some component of $\phi_{k}(\nu) \phi_{n-k}(\nu)$ has a factor $(\nu+s)^{[k / s]+[(n-k) / s]}$. However, $\Omega_{k}(\nu)$ has a factor $(\nu+s)$ if and only if $\varepsilon(s, k, n)=1$. Therefore, some component of T_{k} which is a component of $\phi_{n}(\nu)$ has a factor

$$
(\nu+s)^{[k / s]+[(n-k / s)]+\varepsilon(s, k, n)}=(\nu+s)^{[n / s]}
$$

The second part of the statement may be proved by a similar method.
The following may be obtained from (10)

$$
\begin{align*}
\max \left(n_{i j}\right) & =[n / j], 2<j<n \tag{11}\\
& =[n / 2]-1, j=2
\end{align*}
$$

(12) For $s>2$, and m such that $(2 m+1) s+m<n$, the product

$$
\Pi(n, m) \equiv \prod_{\lambda=0}^{m}\{\nu+(2 \lambda+1) s+\lambda\}^{[n /(2 \lambda+1) s+\lambda]}
$$

is a factor of some component of $\phi_{n}(\nu)$.
Proof. We shall use induction. Define the set of integers

$$
\begin{gathered}
I_{m}=\{\text { integers } x:(2 m+1) s+m<x<(2 m+3) s+m+1\}, \\
m=0,1,2, \cdots
\end{gathered}
$$

If $n \in I_{0}, \Pi(n, 0)=(\nu+s)^{[n / s]}$ and $(\nu+s)^{[n / s]}$ is a factor of some component of $\phi_{n}(\nu)$ by (10). Assume that for $k \leqq m-1, n \in I_{k}$ implies $\Pi(n, k)$ is a factor of some component of $\phi_{n}(\nu)$. Let $n \in I_{m}$, and suppose $n=(2 m+1) s+m+i, \quad 1 \leqq i \leqq 2 s$. Then $n-2 i=(2 m+1) s$ $+m-i \in I_{m-1}$. Take formula (7), and consider the ($2 i$)-th term,

$$
T_{2 i}=\alpha_{2 i} \Omega_{2 i}(\nu) \phi_{2 i}(\nu) \phi_{n-2 i}(\nu)
$$

By induction hypothesis there are components V_{1} of $\phi_{2 i}(\nu)$ and V_{2} of $\phi_{n-2 i}(\nu)$ such that Π_{1} and Π_{2} are factors of V_{1} and V_{2} respectively, where

$$
\begin{aligned}
& \Pi_{1}=\prod_{\lambda=0}^{p}\{\nu+(2 \lambda+1) s+\lambda\}^{[2 i /(2 \lambda+1) s+\lambda]}, \\
& \Pi_{2}=\prod_{\lambda=0}^{m-1}\{\nu+(2 \lambda+1) s+\lambda\}^{[n-2 i /(2 \lambda+1) s+\lambda]},
\end{aligned}
$$

and $(2 p+1) s+p<2 i,(2 m-1) s+m-1<n-2 i$. Since the term $T_{2 i}$ yields a component of $\phi_{n}(\nu)$, we have that $\alpha_{2 i} \Omega_{2 i}(\nu) \Pi_{1} \Pi_{2}$ is a factor of $\alpha_{2 i} \Omega_{2 i} V_{1} V_{2}=V$, where V is a component of $\phi_{n}(\nu)$. However,

$$
\Omega_{2 i}(\nu)=\prod_{r=1}^{n-1}(\nu+r)^{\varepsilon(r, 2 i, n)} .
$$

Hence after a simplification, we obtain

$$
\alpha_{2 i} \Omega_{2 i}(\nu) \Pi_{1} \Pi_{2}=P(\nu) \Pi(n, m)
$$

where $P(\nu)$ is a polynomial in ν of degree $\geqq 0$. Thus the term $T_{2 i}$ yields a component V of $\phi_{n}(\nu)$ such that $\Pi(n, m)$ is a factor of V.
$V(n) \equiv 2^{n-2} \prod_{r=2}^{[n / 2]}(\nu+r)^{[n / r]-1}, n \geqq 2$, is a component and the only component of $\phi_{n}(\nu)$ with the greatest numerical factor 2^{n-2}.

Proof. First we shall show that $V(n)$ is a component of $\phi_{n}(\nu)$. Observe that for $n=2,3,4, V(n)$ is a component of $\phi_{n}(\nu)$. Assume: $V(m)$ is a component of $\phi_{m}(\nu), 2 \leqq m \leqq n-1$. Consider the first term
T_{1} of $(7): T_{1}=2 \Omega_{1}(\nu) \phi_{n-1}(\nu)$. There is a component $V(n-1)$ of $\phi_{n-1}(\nu)$ such that

$$
V(n-1)=2^{n-3} \prod_{r=2}^{[n-1 / 2]}(\nu+r)^{[n-1 / r]-1} .
$$

Hence $2 \Omega_{1}(\nu) V(n-1)$ is a component of $\phi_{n}(\nu)$. Substituting the expression for $\Omega_{1}(\nu)$, we obtain

$$
2 \Omega_{1}(\nu) V(n-1)=2^{n-2} \prod_{r=2}^{[n / 2]}(\nu+r)^{[n / r]-1}=V(n) .
$$

The second part of the statement that $V(n)$ is the only component of $\phi_{n}(\nu)$ with the greatest numerical factor 2^{n-2} may be proved by induction.

$$
\begin{equation*}
V_{1}(n) \equiv \frac{(\nu+3) V(n)}{4(\nu+2)}, n \geqq 4, \text { is a component of } \phi_{n}(\nu) . \tag{14}
\end{equation*}
$$

This may be proved by considering the first term T_{1} of (7) and using induction.
(15) For $\nu=1 / 2$, the value of $V_{1}(n)$ is less than the value of any other component of $\phi_{n}(\nu)$.

Proof. Take the k th term T_{k} of (7),

$$
T_{k}=\alpha_{k} \Omega_{k}(\nu) \phi_{k}(\nu) \phi_{n-k}(\nu) .
$$

$V_{1}(n)$ is obtained from T_{1}. For $k=2,3$ and $\nu=1 / 2$, the smallest components of T_{k} correspond to the smallest components of $\phi_{n-k}(\nu)$, because $\alpha_{k} \Omega_{k}(\nu) \phi_{k}(\nu)$ is constant. We observe that for $n=4,5,6,7$, $V_{1}(n)$ is less than any other component of $\phi_{n}(\nu), \nu=1 / 2$. Assume that for $\nu=1 / 2, V_{1}(m)$ is less than any other component of $\phi_{m}(\nu)$, $4 \leqq m<n$. Using the induction hypothesis it is seen that for $\nu=1 / 2$, $V_{1}(n)$ is less than any component obtained from $T_{k}, k=2,3$. For $k \geqq 4, n \geqq 8, \alpha_{k} \Omega_{k}(\nu) V_{1}(k) V_{1}(n-k)$ is a component of $\phi_{n}(\nu)$ and its value at $\nu=1 / 2$ is less than the value of any other component obtained from T_{k}. Thus among all components of $\phi_{n}(\nu)$ there is a set S of exactly [$n / 2$] minimum components

$$
S=\left\{\alpha_{k} \Omega_{k}(\nu) V_{1}(k) V_{1}(n-k): 1 \leqq k \leqq\left[\frac{n}{2}\right]\right\} .
$$

Obviously $V_{1}(n) \in S$. We claim: $V_{1}(n)$ is less than any other element of S. It suffices to show that

$$
\lim _{\nu \rightarrow 1 / 2} \frac{V_{1}(n)}{\alpha_{k} \Omega_{k}(\nu) V_{1}(k) V_{1}(n-k)}<1, k \neq 1 .
$$

A verification of this inequality is left to the reader.
Let (8) be multiplied by $2^{2-n}(\nu+2)^{1-[n / 2]}$. Then considering (7), induction yields the following

$$
\begin{equation*}
n-[n / 2]-1 \geqq n_{i}-n_{i 2} . \tag{16}
\end{equation*}
$$

Theorem. The Bernoulli number B_{n} has the following representation :

$$
\begin{equation*}
B_{n}=\frac{(-1)^{n-1}(2 n)!}{20 \cdot 6^{n} \cdot(2 n+1)} \sum_{i=1}^{c(n)}\left(2^{r i} a_{i}\right)^{-1} \tag{17}
\end{equation*}
$$

where $\quad 1 . \quad \sum_{i=1}^{c(n)}\left(2^{r i} a_{i}\right)^{-1} \equiv \begin{aligned} 30 & \text { if } n=1, \\ 5 & \text { if } n=2, \\ 1 & \text { if } n=3 ; \text { for } n>3,\end{aligned}$
2. $\quad a_{i}=\prod_{m=1}^{n-2}(2 m+3)^{i_{m}}, \quad \sum_{m=1}^{n-2} i_{m}=n-3, \quad 0 \leqq i_{m}<\left[\frac{n}{2}\right]$,
3. $2^{r_{1}} a_{1}=\frac{4}{7} \cdot 5 \cdot 7 \cdot 9 \ldots(2 n-1)$, $\frac{4}{7} \cdot 5 \cdot 7 \cdot 9 \cdots \cdot(2 n-1)>2^{r_{i}} a_{i}>7^{n-3}, \quad i>1$,
4. $\quad r_{1}=2, \quad r_{2}=0 ; \quad r_{i} \neq 0, \quad i \neq 2$,
5. $\sum_{i} 2^{-r_{i}}=2^{2-n} \cdot n^{-1}\binom{2 n-2}{n-1}$,
6. the g.c.d. $\left(2^{r_{1}} a_{1}, 2^{r_{2}} a_{2}, \cdots\right)=1$, and
7. given an odd integer $s, 5<s \leqq 2 n-1$, there is i such that $s^{[2 n / s-1]}$ divides a_{i}; if $s=5$ then $s^{[2 n / s-1]-1}$ divides a_{i}, for some i.

Proof. Substitute (2) in (8) and let $\nu=1 / 2$, then in view of (5) the following is obtained after some simplification

$$
B_{n}=\frac{(-1)^{n-1}(2 n)!}{20 \cdot 6^{n} \cdot(2 n+1} \sum_{i=1}^{c(n)}\left\{2^{r_{i} \cdot 5^{-1}} \prod_{k=2}^{n-1}(2 k+1)^{[n / k]-n_{i k}}\right\}^{-1}
$$

where $r_{i}=n-2-n_{i} \geqq 0$ by (13). Note that

$$
\prod_{k=2}^{n-1}(2 k+1)^{[n / l k]-n_{i k}}
$$

is divisible by 5 for each i, because by (11) $[n / 2]-n_{i 2} \geqq 1$. And $-1+\sum_{k=2}^{n-1}\left\{[n / k]-n_{i k}\right\}=n-3$ by (8, (iv)). Therefore, we may write

$$
a_{i} \equiv 5^{-1} \prod_{k=2}^{n-1}(2 k+1)^{[n / k]-n_{i k}}=\prod_{m=1}^{n-2}(2 m+3)^{i_{m}}
$$

where $\sum_{m=1}^{n-2} i_{m}=n-3,0 \leqq i_{m}<[n / 2]$ by (11).

$$
\begin{array}{ll}
\text { and } & i_{1}=[n / 2]-1-n_{i 2}, \\
& i_{m}=[n / h]-n_{i h}, \quad h=m+1, \quad m>1
\end{array}
$$

Thus property 2 is verified.
By (13) and (14), $V(n)$ and $V_{1}(n)$ are components of $\phi_{n}(\nu)$. If the components of $\phi_{n}(\nu)$ are ordered in such a way that $V_{1}(n)$ is the first and $V(n)$ is the second component, then for $\nu=1 / 2$, the values of $V_{1}(n)$ and $V(n)$ correspond to $2^{r_{1}} a_{1}$ and $2^{r_{2}} a_{2}$. By actual calculation it is seen that $2^{r_{1}} a_{1}=4 / 7 \cdot 5 \cdot 7 \cdot 9 \cdots(2 n-1), r_{1}=2, r_{2}=0$. Therefore, by (15) $2^{r_{i}} a_{i}<4 / 7 \cdot 5 \cdot 7 \cdot 9 \cdots(2 n-1), i>1$. Since $r_{i}=n-2-n_{i}$, it follows from (13) that $r_{i} \neq 0$, if $i \neq 2$. By (16),

$$
r_{i}=n-2-n_{i} \geqq[n / 2]-1-n_{i 2}=i_{1}
$$

Hence for each i,

$$
\begin{aligned}
2^{r_{i}} a_{i} & =2^{r_{i}} \sum_{m=1}^{n-2}(2 m+3)^{i_{m}} \\
& =2^{r_{i}-i_{1}} 10^{i_{1}} \sum_{m=2}^{n-2}(2 m+3)^{i_{m}}>7^{n-3}
\end{aligned}
$$

Properties 3 and 4 are proved. Property 5 is derived from (8, (iii));

$$
\sum_{i} 2^{-r_{i}}=\sum_{i} 2^{2-n+n_{i}}=2^{2-n} \sum_{i} 2^{n_{i}}=2^{2-n} n^{-1}\binom{2 n-2}{n-1}
$$

Concerning property 6, in view of 4 , it suffices to prove that g.c.d. $\left(a_{1}, a_{2}, \cdots\right)=1$. Note that each a_{i} is a product of odd integers. By (12), $\Pi(n, m)$ is a factor of a component, say V_{p}, of $\phi_{n}(\nu)$. However,

$$
V_{p} 2^{2-n} \prod_{k=2}^{n-1}(\nu+k)^{-[n / k]}=\{P(\nu)\}^{-1}
$$

where $P(\nu)$, a product of linear factors, is a polynomial in ν of degree >0. $P(\nu)$ is not divisible by any factor of $\Pi(n, m)$. For $\nu=1 / 2$, $\Pi(n, m)$ is divisible by all odd factors $q(2 s+1), q=1,3,5, \cdots$, which are less than n. Therefore, for $\nu=1 / 2, P(\nu)$ is not divisible by any factor $q(2 s+1)$. Since $P(\nu)$, for $\nu=1 / 2$, corresponds to some a_{i} the latter does not contain any factor $q(2 s+1)$. Thus for each $s>2$, there is a_{i} which is not divisible by $q(2 s+1), q=1,3,5, \cdots$. Hence the g.c.d. $\left(a_{1}, a_{2}, \quad\right)=1$.

Suppose $s=2 m+1$. Take a component V^{\prime} of $\phi_{n}(\nu)$ which does not have the factor $(\nu+m)$. It may be shown that there exists such a component V^{\prime}. Then

$$
V^{\prime} 2^{2-n} \prod_{k=2}^{n-1}(\nu+k)^{[n / k]}=\{Q(\nu)\}^{-1}
$$

where the polynomial $Q(\nu)$ has a factor $(\nu+m)^{[n / m]}, m>2$. For $\nu=1 / 2, Q(\nu)$ corresponds to some a_{i} and $(\nu+m)^{[n / m]}$ corresponds to the factor $(2 m+1)^{[n / m]}$ of a_{i}. However, if $m=2$ than $5^{[n / 2]-1}$ is a factor of a_{i} for some i. This completes the proof of the theorem.

We remark that the Genocchi number G_{n} and the numbers defined by L. Carlitz (see [1]).

$$
a_{r}=2^{2 r} r!(r-1)!\sigma_{r}(0)
$$

may be expressed in a manner similar to (17). In fact, for the numbers a_{r} we have the following

$$
\begin{equation*}
a_{r}=\{(r-1)!\}^{2} \sum_{i=1}^{c(r)} 2^{r_{i}} \prod_{k=2}^{r-1} k^{k_{i k-[r / k]}} \tag{18}
\end{equation*}
$$

A list of first few Bernoulli numbers expressed according to the theorem is given below.

$$
\begin{aligned}
& B_{1}= \frac{2!}{20 \cdot 6 \cdot 3}(30), \\
& B_{2}=-\frac{4!}{20 \cdot 6^{2} \cdot 5}(5), \\
& B_{3}= \frac{6!}{20 \cdot 6^{3} \cdot 7}(1), \\
& B_{4}=-\frac{8!}{20 \cdot 6^{4} \cdot 9}\left(\frac{1}{2^{2} \cdot 5}+\frac{1}{7}\right), \\
& B_{5}= \frac{10!}{20 \cdot 6^{5} \cdot 11}\left(\frac{1}{2^{2} \cdot 5 \cdot 9}+\frac{1}{7 \cdot 9}+\frac{1}{2 \cdot 5 \cdot 7}\right), \\
& B_{6}=-\frac{12!}{20 \cdot 6^{6} \cdot 13}\left(\frac{1}{2^{2} \cdot 5 \cdot 9 \cdot 11}+\frac{1}{7 \cdot 9 \cdot 11}+\frac{1}{2 \cdot 5 \cdot 7 \cdot 9}+\frac{1}{2 \cdot 5 \cdot 7 \cdot 11}\right. \\
&\left.\quad+\frac{1}{2^{2} \cdot 5 \cdot 7^{2}}+\frac{1}{2^{3} \cdot 5^{2} \cdot 9}\right), \\
& B_{7}= \frac{14!}{20 \cdot 6^{7} \cdot 15}\left(\frac{1}{2^{2} \cdot 5 \cdot 9 \cdot 11 \cdot 13}+\frac{1}{7 \cdot 9 \cdot 11 \cdot 13}+\frac{1}{2 \cdot 5 \cdot 7 \cdot 9 \cdot 11}\right. \\
& \quad+\frac{1}{2 \cdot 5 \cdot 7 \cdot 11 \cdot 13}+\frac{1}{2 \cdot 5 \cdot 7 \cdot 9 \cdot 13}+\frac{1}{2 \cdot 5 \cdot 7^{2} \cdot 9} \\
& \quad+\frac{1}{2^{2} \cdot 5^{2} \cdot 7 \cdot 11}+\frac{1}{2^{2} \cdot 5 \cdot 7^{2} \cdot 13}+\frac{1}{2^{3} \cdot 5^{2} \cdot 7 \cdot 9} \\
&\left.\quad+\frac{1}{2^{3} \cdot 5^{2} \cdot 9 \cdot 11}+\frac{1}{2^{3} \cdot 5^{2} \cdot 9 \cdot 13}\right) \cdot
\end{aligned}
$$

Bibliography

1. L. Carlitz, A sequence of integers related to the Bessel functions, Proc. Amer. Math. Soc., 14 (1963), 1-9.
2. N. Kishore, The Rayleigh function, Proc. Amer. Math. Soc., 14 (1963), 527-533.
3. ——, The Rayleigh polynomial, to appear in Proc. Amer. Math. Soc..
4. -, A structure of the Rayleigh polynomial, Duke Math. Journal, 31 (1964), 513-518.

University of Toledo

