
OPEN IDEALS IN C{X)

LOWELL A. HINRICHS

A group topology on the ring C(X), of all real-valued, continuous
functions on X, is said to have the ideal closure property, (I.C.P),
in case the closure of any ideal is simply the intersection of all maximal
ideals containing it. In this paper we consider which ideals of C(X)
can be open with respect to such a topology.

In § 2, a characterization of such ideals is given and it is shown
that the family £f9 of all such ideals, is itself a fundamental system
of neighborhoods of zero with respect to a ring topology having I.C.P
In § 3 we consider the two extremes, where S^ is the family of all
ideals and where £f consists only of finite intersections of maximal
ideals. The former class is characterized as the class of p-space (spaces
for which every prime ideal of C(X) is maximal) and the latter as
the class of pseudo-compact spaces (spaces for which every feC(x) is
bounded). In the final section it is shown that if P is a countable
discrete subset of the Stone-Cech compactification of X, then
Π{Mp;peP}eS^ if and only if P is C-embedded i n l U P .

l The notation and terminology will be that of [1]. Many of
the arguments will depend upon theorems and exercises of [1]. In
order to avoid lengthy restatements of these results, when such results
are used, we will simply give a reference to the appropriate statement.
To simplify the reader's task all references will be given to [1], The
original source of these results can be determined by consulting the
notes at the end of this book.

Throughout the paper X will denote a topological space and C(X)
the ring of all real-valued continuous functions on X. The term
"topology", unless explicitly stated to the contrary, will always mean
Hausdorίf topology.

Although it is assumed that the reader is familiar with the ma-
terial in the first few chapters of [1], we will recall some of the basic
definitions and results which will be used throughout. For fe C(X)
we set Z(f)=f((j) and for an ideal I we set Z[I] = {Z(f);fe I}.
An ideal I is called a 2-ideal if Z(g) e Z[I] implies gel. It will be
recalled that there is a one-to-one correspondence between the maximal
ideals of C(X) and the points of the Stone-Cech compactification, βX,
of X. Explicitly this correspondence, p —> Mp, is given by the Gelfand-
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Kolmogorff theorem, [1; p. 120], which states that for each peβX

Mp = {feC(X);peclβzZ(f)}.

A second class of ideals which will be of importance for our purposes
is the class of ideals of the form

Op = {fe C(X); P e int. clβΣZ{f)} .

We will frequently make use of the fact that every fe C(X) has
a unique continuous extension to a function /* of βX into the one-
point . compactification of the real number system. In particular it
should be noted that i f l g T g β l and feC(T) then (f\X)*(t) =
f(t) and that if f, geC(X), qe βX with f*(q) and g*(q) real numbers
then (/ + fif)*(β) = f*(q) + g*{q) and (fg)* = /*(<?) g*(q). Finally, we
recall that there exists a largest subspace υX of βX such that for
every /e C(X), (/* | υX) e C(υX).

If A is a subset of βX9 the symbol A will always refόr to the
closure of A in βX and A0 will always denote the interior of A in
βX. The symbol N will be reserved throughout to denote the set of
nonnegative integers.

2* If I is an ideal of C(X) we will set Θ(I) = {peβX;I^ Mp}
and if P is a subset of βX we will set J(P) = Π {Mp; p e P}. It is
apparent that a topology J7~ on C(X) will have I.C.P. if and only if
for every ideal I of C(X), cl^I — Jo 0(1). We begin our investigation
with a straightforward observation regarding the restrictions placed
on open ideals by this condition.

2.1. LEMMA. Suppose that an ideal I is open with respect to
some group topology on C(X) having I.C.P. Then I=Joθ(I) and
hence I is a z-ideal. Moreover, for every peβX and every feMp,
[/+I]ΠO^ φ.

Proof. Suppose I is an ideal of C(X) and ^ is a topology,
having I.C.P., for which I is open. Since I is open and cl^rl— Joθ(I),
for any fe Joθ(I) we must have [f+I]Γ\IΦΦ. Let g,hel such

t h a t f+h = g. Thus f=g - h e l and hence I = Jo Θ(I). That I

is a z-ideal now follows from the fact that every maximal ideal is a
2-ideal and an intersection of 2-ideals is a z-ideal. The final asssertion
follows from the fact that, for every p e βX, Mv is the unique maximal
ideal containing O, [1; 7.13, page 106], and hence cl^Op = Mp.

In the last lemma we saw that, if ^ has I.C.P., then for every
p e βX, clj Op — Mp. The following theorem shows that under certain
conditions the converse holds. In particular we have:
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2.2. THEOREM. Suppose ^~ is a group topology for C(X) pos-
sessing a basis for the neighborhood system of zero consisting of ideals.
Then ^~ has I.C.P. if and only if for every pe βX, cltT0

p = Mp.

Proof. The necessity is obvious, in view of the fact that, for
each p e βX, Mp is theunique maximal ideal containing Op. On the
other hand if the condition is statisίied then every maximal ideal is
closed and hence cl^I £ Jo Θ{I) for every ideal I. To complete the
proof it is sufficient to show that, if I is an ideal, feJoθ(I) and V
a ^-open ideal, then [f+V]ΠlΦΦ.

We begin by considering the case where / is a nonnegative function.
For each peθ(I), there exists hpeV such that f — hpe0p; i.e.,
Z(f — hp)° is a neighborhood of p. Let us suppose that, for each
p e Θ{I), we have chosen such a function hp e V. Then {Z(f — hp)°;
peθ(I)} is an open cover of Θ(I) and Θ(I) is compact [1; 7.0, p. 112].
Thus there exists a finite subcover, say {Z(f — hi)0; i = 1, •• fn}.
Without loss of generality we may assume that each h{ is nonnegative;
for since V is a z-ideal and / is nonnegative we have | ht \ e V and
Z(f - h^ £ Z(f - I hi I). Thus the functions /1/%, hlln, , h][n are
well-defined continuous functions Moreover Z(h\ln) = Z(hi) and hence
h]'n e V for i = 1, , n. Now, (flln - h\ln)(f1In~hlln). . {fιln-h)ln) ef +
V; i.e., there exists h e V such that / + h = (fln - h\/n) (f1/n - hllln).
In addition,

Z(f +h)

= n z(f^ - λj/ ) = ύ z(f-

and hence

U
ί = l

= (U Z(f - AoY S U Z{f-h<γ 2
\ί l / l

By [1; 7.0, p. 112] we have f+hel.
Now if / is arbitrary in Joθ(I) we decompose /, in the usual

manner, into the difference of two positive functions. Explicitly, let
f = f+~f~ where / + = i ( | / | + / ) and / - = i ( l / | - / ) . Since
Z(f+)^Z(f) and Z(f-)3Z(f), we have /+,/~e Joθ(I). Using
the first part of the proof we choose functions glf g2e V and klf k2e I
such that / + + ft = &! and / " + ̂ 2 = fca. Thus / + (flrx — Λ) =
(/ + ffi) - (/" + A) = Λi - &2e /. Since F is an ideal g1- g2^ V and 1
hence [ / + F ] f l I ^ ί .

We now turn our attention to whether or not there exists any
topologies satisfying the conditions of the above theorem. The next
lemma will lay the basis for such an example
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2.3. LEMMA. Suppose Iλ and I2 are ideals of C(X) suck that
for every peβX and every fe Mp, [f + JJ Πθp Φ Φ,j = 1, 2. Then
[f + Oi n i,)] ΠOPΦΦ.

Proof. As in the last proof, we begin by supposing that / is
nonnegative. Then /1/2 e Mp and hence there exists ft e Ix and g2 e 72

such that f1'2 + g1e0p and /1/2 + g2 e Op. But Z ( / - g1g2) 2 ^ ( / 1 / 2 +
ft) Π £(/ 1 / 2 + ft) e £[OP] and hence / - gλg2 e Op. Since -gλg2 e I± f] I2

we have [/ + (Iλ Π 72)] f)Op Φ φ. If / is arbitrary in Mp, we express
/ as / + — /"* and proceed as in the proof of the last theorem.

2.4. THEOREM. The family of all maximal ideals of C(X) is a
subbase for the neighborhood system of zero, with respect to a ring
topology on C(X) having I.C.P. Moreover, an ideal is open with
respect to this topology if and only if it is a finite intersection of
maximal ideals.

Proof. It is easily seen that any nonvoid family of ideals of C(X)
is a subbase for the neighborhood system of zero, with respect to a
(possibly not Hausdorff) ring topology on C(X). That the topology
described in the theorem is Hausdorff follows from the fact C{X) is
semi-simple; i.e., the singleton zero is closed.

In view of Theorem 2.2 and Lemma 2.3, to see that this topology
has I.C.P. it is sufficient to see that, if pfqeβX and feMq, then
[/ + Mp] n θ Φφ. If P = q, then -fe Mp = Mq and hence 0 =
/ - / e [ / + Mp] Γ)Oq. If pφq then there exists a geC(βX) that
vanishes on a neighborhood of p and takes on only the value 1 on a
neighborhood of q. It follows that gfe Mp and f-fge Oq.

To prove the concluding statement suppose that / is an ideal, open
with respect to this topology. Then there exists a finite subset P of
βX such that J(P) S I and hence Θ(I) S θoJ(P). But θoJ(P) = P,
for if q ί P then {q} and P are completely separated and hence there
exists g e C(βX) such that g vanishes on a neighborhood of P and
g(q) = 1. Thus P S Wg) and q $ Z(g). It follows that q £θoJ(P) =
f){Z(h);he J(P)}, [1; 7.0 p. 112]. Thus Θ(I) £ θo J(P) = P and as
such 0(7) is finite. The proof is completed by noting that from Lemma
2.2 we have I = Jo Θ(I) = n {Λf *; p 6 0(7)}.

In the remainder of the paper, the topology defined by taking the
family of maximal ideals as a subbase for the neighborhood system
of zero will be referred to as the maximal ideal topology.

2.5. THEOREM. There exists a largest element in the lattice of
all ring topologies on C(X) which have I.C.P. and a fundamental
system of neighborhoods of zero consisting of ideals. The family



OPEN IDEALS IN C(X) 1259

£f of all ideals which are open with respect to this topology contains
every ideal which is open with respect to some group topology having
I.C.P. Moreover, the family 6^ can he characterized as the collection
of all ideals I satisfying the following condition.

( * ) For every p e βX and every fe Mp, [f + I]f)Op Φ Φ.

Proof. Let S^ be the family of all ideals satisfying (*). From
Lemma 2.3 it follows that £f is closed under finite intersection. As
was noted earlier, any family of ideals closed under finite intersection
is a basis for the neighborhood system of zero with respect to a
(possibly not Hausdorff) ring topology on C(X). In particular £f is
-such a basis. Moreover since £f contains all maximal ideals, the
topology determined by £f is finer than the maximal ideal topology.
Since the latter is Hausdorff so is that determined by £f. From
Theorem 2.2 it follows that S? has I.C.P. Finally from Lemma 2.1
we know, if an ideal I is open with respect to some group topology
having I.C.P., then I satisfies (*) and hence is a member of £f.

3* In the last section we saw that for an arbitrary space X there
exists at least one topology on C(X) having I.C.P. and possessing a
fundamental system of neighborhoods of zero, consisting of ideals;
namely, the maximal ideal topology. From Theorem 2.5 we know that
the topology determined by <9* is another and that it is at least as
fine as the maximal ideal topology. We now ask, for which spaces,
if any, these topologies coincide.

That they do not invariably coincide is easily seen by considering
an infinite p-space. Recall that X is a p-space in case every prime
ideal of C(X) is maximal. It is shown in [1; 4J, p. 63] that a p-space
can be characterized as a space X for which every ideal of C(X) is
an intersection of maximal ideals. It follows that, for a p-space, S?
is simply the family of all ideals and the topology determined by &*
is the discrete topology. From Theorem 2.4 we know that an ideal
is open with respect to the maximal ideal topology only if it is
a finite intersection of maximal ideals. Hence the two topologies do
not agree on any infinite p-space. Indeed, since every ideal of S? is
an intersection of maximal ideals, a p-spaces can be characterized as
a space for which Sf is the family of all ideals or equivalently as
a space for which the topology determined by Sf is the discrete
topology.

There is nonetheless an extensive class of spaces for which the
two topologies agree. In this section we shall characterize this class
as the class of pseudo-compact spaces; i.e., those spaces for which
•every feC(X) is bounded.
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3,1. LEMMA. If P is a countable discrete subset of βX and
J(P) e £f, then all of the accumulation points of P are in βX — υX.

Proof. Suppose P = {#<; i e N} is a countable discrete subset of
βX, J{P) e £^, and q e υX is an accumulation point of P. For each
ne N, set Pn = {PΪ, i ^ n}. Then, for each ne N, Pn and {q} are
disjoint subsets of βX and hence there exists fneC(βX) such that
0 ^ fn ^ 1, Λ[P%] = 1 and /n vanishes on a neighborhood of #(i.e.,
(/Λ IX)e Mq). Let such an fn be chosen for each ne N and set / =
Σ~+iΛ2~% It is easily seen that f(p) Φ 0, for any peP, and that
Z(f) 2 D~=i #(/«). Since q e ι>X, Z[M»] is closed under countable
intersections, [1; 8.4, p. 117] and hence Z(f\X)eZ[Mq]. Since
J(P) e &> it satisfies (*) and hence [(/| X) + J(P)] n Oq Φ Φ. Choose
h e J(P) and # e Oq such that (/| X) + h = (jr. Since Z(g) is a neighbor-
hood of q, there exists peP such that pe~Z(g). Moreover heJ(P)
so pe Z(h) and hence p e Z(g - fe) = ^ ( / | X ) . But the latter i»
impossible since (/|X)*(p) — f(p) Φ 0.

3.2. LEMMA. If P is a countable discrete subset of βX which
is C-ernbedded in X\J P, then J(P) e Sf.

Proof. Suppose that P is as described in the lemma, q e βX and
fe Mq. First we will show that A = Pf] (βX - Z(f)) and Z(f) are
completely separated. To this end we will construct a function
g 6 C(X U P) such that Z(f) = Z(g) Π X and g(a) Φ 0 for any a e A.
If A is finite the existence of such a function is obvious. Thus suppose
that A is infinite, say A — {an; n e N}. By a standard argument it
can be shown that for each ne N there exists a unit une C(X) such
that 0 ̂  P un ^ 1 and (/2 tcΛ)*(αΛ) = 1. For each n we choose such
a unit un and set # = Σ"=i/ 2 # w» * 2~w. Clearly we have Z(g) = UΓ(/)
and flr*(αΛ) ̂  0 for any ne N. Since P is C-embedded in l U P , the
function (1/g*) has a continuous extension to X\J P, say fe. Since

must take on both the value 0 and 1 at any point of A Π Z(g),

we have A Π Z(f) = I n Z(flf) = φ. Thus by the usual argument there
exists keC(X) such that A^WJcj and 2χ7) S (̂A? - 1)°. Thus-

P g i U ^T7) £ Z(f-k) and « e Z(/ - /fe)°. Hence we have
/ - /fc e [/ + J(P)] Π 0*. This completes the proof.

3.3. THEOREM. A necessary and sufficient condition that the
family S^ consists precisely of all finite intersections of maximal
ideals is that the underlying space be pseudo-compact.

Proof. Suppose that X is pseudo-compact. Since C(X) = C{βX)
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we need only consider £f with respect to the compact space βX. If
Q is any infinite subset of βX then Q contains a countably infinite
discrete subset P. But P must have an accumulation point in βX =
υ(βX). By Lemma 3.1, J(P)$£f. But clearly if J(P) does not
satisfy (*) and J(Q) Si J(P), then J(Q) does not satisfy (*) and hence
is not a member of £f.

Conversely if X is not pseudo-compact then X contains a countable
discrete C-embedded subset P, [1; 1.20, p. 20], By Lemma 3.2,
J{P) G S^ and hence £f contains ideals other than finite intersections
of maximal ideals.

The problem of determining the ideals of £f is, of course, equiva-
lent to determing those subsets Q of βX for which J(Q) e Sf. If we
set θ(όf) = {Q S βX; J(Q) e ^ } , we can rephrase the results of this
section as follows. The family Θ(S^) consists of all subsets of βX if
and only if X is a p-space and θ(£f) consists of all finite subsets of
βX if and only if X is pseudo-compact. Between these two extremes
considerable variation in θ{6^) is to be expected. In the next section
we examine this question in more detail. However we note in passing,
the following.

COROLLARY. If θ(£f) contains a set which is not finite then
contains a set of cardinality 2% where c is the power of the

continuum.

Proof. If θ(Sf) contains a set which is not finite then the under-
lying space is not pseudo-compact and hence contains a C-embedded
copy of N with N = βN. But J(N) = J(N) and J(N) e £f so
J(N) e Sf. The corollary follows since card βN is 2C, [1; 9.3, p. 131].

4* The last section left unanswered the problem of determining
S^ for arbitrary spaces. At the end of the last section it was noted
that this is equivalent to determining those subsets Q of βX for which
J(Q) e £f. We are not able to give a complete characterization of
these sets. However a beginning on the problem can be made by
recalling that every infinite subset Q of βX contains a countably
infinite discrete subset P and that if J(Q) is in Sf then so is J(P).
From Lemma 3.2, we know that, if P is a countable discrete subset
of βX which is C-embedded in X U P, then J(P) e Sf. The major
result of this section is that this condition is also necessary. The
major step in this proof is the establishment of a necessary and suf-
ficient condition that a countable discrete subset of βX be C-embedded
in XΌP.

As our starting point we take the well known fact that, if P S
βX and fe C(XlJ P) such that (f\P) is a homeomorphism of P onto
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a closed subset of the reals, then P is C-embedded in X. Our first
lemma is a slight variation of this result.

4.1. Lemma. Let P be a countable discrete subset of βX. If

there exists feC(X ΓΊ P) such that f[P] is closed and discrete and

for each ref[P], Pf]fjr) is finite, then P is C-embedded in X\J P.

Proof. Let us assume that / is nonnegative. There is no loss of
generality in doing this since, if / satisfies the hypothesis so does / 2 .
Since a closed disrete subset of the positive real line is well ordered
in the usual order, we may assume f[P] — {rn; n e N} where rn < rn+1

for every ne N. Using the axiom of choice we may suppose that for
each neNwe have ordered Pf)f(rn), say PΓ)f(rn) = {p(n, 1), ,p(n,tn)}.
We define a function g on P as follows. For each ne N and 1 ̂  j ^ tn

we set

9(p(n, J)) = ( 3' " 1 ) (min. {rn+1 - rn, 1}) .

Since g(p(n, j)) —•> 0 as n —» oo f we may extend g continuously to P
by defining g to be 0 at all of the accumulation points (in βX) of P.
Since every compact subset of βX is C*-embedded in βX we may
extend g continuously to all of βX. Let h be such an extension and
let k = f + (h IX U P). Then k e C(X U P) and (k \ P) is a homeomor-
phism of P onto a closed subset of the reals. This is sufficient to
insure that P is C-embedded ί n l U P , [1; 1.19, p. 20].

4.2. LEMMA. Let P be a countable discrete subset of βX. If
there exists fe C(X U P) such that /*[P — P] = oo, then P is C-embedded
in X U P.

Proof. Clearly we may assume that / is nonnegative; for, if /
satisfies the hypothesis, so does / 2 . Since f*[P — P] = °°, for each
neN, f[n, n + 1] is finite. Thus f[P] is closed and discrete and, for
each ref[P],f(r) Π P is finite. The lemma now follows from Lemma
4.1.

4.3. THEOREM. For a countable discrete subset P of βX, the
following statements are equivalent.

1. P is C-embedded in X Π P
2. J{P)e^
3. There exists a countable family {Un}, of neighborhoods of

P-P, such that (Π{Un})f]X=Φ.
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Proof. The implication (1) implies (2) is the content of Lemma
3.2. We will show that (2) implies (3) by showing that the denial of
(3) implies the denial of (2). Thus suppose that (3) is false; i.e., that,
for any countable family {Un} of neighborhoods of P — P, (Π {£/»}) ΠXφφ*
Let P = {pn; neN} and set Pn = {pk; 0 ^k^n}, for each n e N. Then,
for each ne N, Pn and P — P are disjoint closed subsets of βX. Hence
there exists a closed neighborhood Un, of P — P, disjoint from Pn .
Since /3X is normal, there exists fn e C{βX) such that 0 ̂  /w ^ 1,
fn[Pn] — 1, and fn[Un] = 0. Then, as is well known, the function
f=Σ2~nfn is in C(βX) and Z(/) 3 nZ(/J 2 Π Un. Moreover,

[(Π Un) Π X] Π(P — P) Φ Φ; for, if it were, we could find a neighbor-
hood W, of P - P, disjoint from (Π W») Π X and hence {W» = TΓ Π E7»}
would satisfy condition (3), contrary to our assumption. Since
Z(f\X) 3 (ΓiUjnX, it follows that Z(f\X) n(P- P)ΦΦ. Let
ςG Z{f\X) n (P - P). Then (/1X)e Mq. If J(P)e &>, it follows
from Lemma 2.1 and Theorem 2.5 that [(/|X) + J(P)] Π Oq Φ φ.
Thus suppose geθq and fc e J(P), with (/| X) = g - fc. Since ^ e Oq,
there exists a neighborhood V of g on which g* vanishes. Since
heJ(P), h* vanishes on P and hence (f\X)* = (flr - A)* = g* - h*
vanishes on F Π P. But from the construction of / it is clear that
(f\X)*=f does not vanish anywhere on P. Hence J(P)$£S. It
remains to show that (3) implies (2). It is easily seen that (3) implies
that there exists a countable family {Vn} of open neighborhoods of
P - P satisfying, (i) Vn+1 S Vn and (ii) [ Π Vn] Π X = Φ. We will show
that the existence of such a family {Vn} implies the existence of a
function fe C(X U P), with /*[P - P] = <*>.

For each n e iV, choose /w 6 C(/5X) such that 0 ^ / ^ l , Λ[ FΛ +J = 1
and fn[βX ~ Vn] = 0 and set / = 2/». To see fe C(X U P), suppose
xeXU P. Then, by (ii), there exists neN such that a?g Fn + 1 . From
(i) it follows that, for m > w, βX- VmS βX- Vn and hence
/J/3X - Vn] - 0. Thus, on the neighborhood (βX - Vn) n (X Π P), /
is a finite sum of continuous real-valued functions and, hence, is itself
a continuous real-valued function. Thus fe C(XU P). Finally, since
P - P g Π K , / * [ P - P] = °°. The implication now follows from
Lemma 4.2.
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