RINGS OF ARITHMETIC FUNCTIONS

L. Carlitz

1. Introduction. Let F denote a fixed but arbitrary field and let Z denote the set of positive integers. By an arithmetic function f is meant a function from Z to F, that is to say $f(n) \in F$ for all $n \in Z$. If f, g are two arithmetic functions, the sum $h=f+g$ is defined by means of

$$
\begin{equation*}
h(n)=f(n)+g(n) \quad(n \in Z) \tag{1}
\end{equation*}
$$

There are two products that are of interest, the ordinary product defined by

$$
\begin{equation*}
h(n)=f(n) g(n) \quad(n \in Z) \tag{2}
\end{equation*}
$$

and the Dirichlet product defined by

$$
h(n)=\sum_{r s=n} f(r) g(s) \quad(n \in Z)
$$

where the summation on the right is extended over all factorizations $r s=n$. We shall denote the ordinary product by $f \circ g$ and the Dirichlet product by $f * g$.

Let S denote the set of arithmetic functions as defined above. It is well known and easy to prove that the system

$$
\begin{equation*}
\Omega=(S, f, \circ) \tag{4}
\end{equation*}
$$

is a commutative ring. The multiplicative identity of Ω is defined by

$$
v(n)=1 \quad(n \in Z)
$$

Clearly Ω is not a domain of integrity; note however that there are no nilpotent elements in Ω. On the other hand the system

$$
\begin{equation*}
\Delta=(S, f, *) \tag{6}
\end{equation*}
$$

is a domain of integrity. The multiplicative identity of Δ is given by

$$
u(n)= \begin{cases}1 & (n=1) \tag{7}\\ 0 & (n>1)\end{cases}
$$

Moreover the function f has an inverse (relative to $*$) if and only if

$$
\begin{equation*}
f(1) \neq 0 \text {; } \tag{8}
\end{equation*}
$$

[^0]the set of functions that satisfy (8) evidently constitute an abelian group with respect to $*$.

If $\lambda \in F$ we define the function λf by means of

$$
\begin{equation*}
(\lambda f)(n)=\lambda \cdot f(n) \quad(n \in Z) \tag{9}
\end{equation*}
$$

It follows at once that S is a vector space over F of infinite dimension. Also we have

$$
\lambda(f \circ g)=(\lambda f) \circ g=f \circ(\lambda g), \quad \lambda(f * g)=(\lambda f) * g=f *(\lambda g)
$$

If in place of Z we employ a semigroup J that has no units except the identity, a countable infinity of primes, and which has the unique factorization property, the resulting systems Ω and Δ are not essentially different. Indeed if $\overline{p_{1}}, \overline{p_{2}}, \overline{p_{3}}, \cdots$ denote the primes of J we may set up the correspondence $f \rightleftarrows \bar{f}$ by means of $f(n)=\bar{f}(\bar{n})$, where.

$$
\begin{equation*}
n=\Pi p_{j}^{e j}, \quad \bar{n}=\Pi \bar{p}_{j}^{e_{j}} \tag{10}
\end{equation*}
$$

where the first half of (10) is the usual factorization of n into primes. There is therefore little loss in generality in restricting the discussion to Z.

In view of the above it is of interest to consider the system

$$
\begin{equation*}
\Phi=(S,+, \circ, *) \tag{11}
\end{equation*}
$$

with three binary operations and in particular to attempt to give an abstract formulation of such systems. Since \circ and $*$ do not combine in any very obvious way, it is perhaps not clear how this can be done. We shall obtain such a characterization by making use of minimal functions. A function f is minimal provided there exists an integer k (depending on f) such that

$$
\begin{equation*}
f(n)=0(n \neq k) ; \quad f(k) \neq 0 . \tag{12}
\end{equation*}
$$

We remark that Cashwell and Everett [1] have proved that Δ is a unique factorization domain. However this result will not be required in what follows.
2. As above let F denote a fixed but arbitrary field. Let \bar{S} denote a vector space over F. The elements of \bar{S} will be denoted by small italic letters, the elements of F by small Greek letters; addition in \bar{S} will be denoted by + . Moreover we have two "multiplications" denoted by \circ and $*$. The following assumptions will be made.

S1. The system

$$
\begin{equation*}
\Omega=(\bar{S},+, \circ) \tag{13}
\end{equation*}
$$

is a commutative ring with multiplicative identity \bar{v}. Moreover

$$
\alpha(\bar{f} \circ \bar{g})=(\alpha \bar{f}) \circ \bar{g}=\bar{f} \circ(\alpha \bar{g}) \quad(\bar{f}, \bar{g} \in \bar{S}, \alpha \in F)
$$

S2. The system

$$
\begin{equation*}
\bar{\Delta}=(\bar{S},+, *) \tag{14}
\end{equation*}
$$

is a domain of integrity with multiplicative identity \bar{u}. Moreover

$$
\alpha(\bar{f} * \bar{g})=(\alpha \bar{f}) * \bar{g}=\bar{f} *(\alpha \bar{g}) \quad(\bar{f}, \bar{g} \in \bar{S}, \alpha \in F) .
$$

Definition. Two elements $\bar{f}, \bar{g} \in \bar{S}$ are associates provided $\bar{f}=\lambda \bar{g}$, where $\lambda \in F, \lambda \neq 0$.

Definition. An element $\bar{f} \in \bar{S}, \bar{f} \neq 0$, is minimal provided

$$
\begin{equation*}
\bar{f} \circ \bar{g}=\lambda(\bar{f}, \bar{g}) \bar{f} \quad(\bar{g} \in \bar{S}) \tag{15}
\end{equation*}
$$

where \bar{g} is any element of \bar{S} and $\lambda(\bar{f}, \bar{g})$ is a number of F. It is evident that $\lambda(\bar{f}, \bar{g})$ is unique.

Clearly the associate of a minimal element is also minimal. Also it is evident that if \bar{f}, \bar{g} are two minimal elements that are not associates then

$$
\begin{equation*}
\bar{f} \circ \bar{g}=0 . \tag{16}
\end{equation*}
$$

S3. For each minimal element \bar{f} there exists a nonzero number $\lambda(\bar{f})$ of F such that

$$
\begin{equation*}
\bar{f} \circ \bar{f}=\lambda(\bar{f}) \bar{f} \tag{17}
\end{equation*}
$$

Definition. A minimal element $\bar{f} \in \bar{S}$ is normalized provided

$$
\begin{equation*}
\bar{f} \circ \bar{f}=\bar{f} \tag{18}
\end{equation*}
$$

S4. If \bar{g} is an arbitrary nonzero element of \bar{S} there exists at least one minimal element \bar{f} such that $\lambda(\bar{f}, \bar{g}) \neq 0$, where $\lambda(\bar{f}, \bar{g})$ is defined by (15).

Let M denote the set of normalized minimal elements.
S5. M is a semigroup with respect to $*$; the identity element of M coincides with \bar{u}, the multiplicative identity of $\bar{\Delta}$. Moreover M contains no units except the identity.

Definition. An element \bar{f} of $M, \bar{f} \neq \bar{u}$, is prime provided $\bar{f}=\bar{g} * \bar{h}$ implies $\bar{g}=\bar{u}$ or $\bar{h}=\bar{u}$.

S6. M contains a countable number of primes. Any element of M, different from \bar{u}, can be expressed as a product of primes in essentially only one way.

Definition. Let $\bar{f}_{1}, \bar{f}_{2}, \bar{f}_{3}, \cdots$ denote the elements of M. If \bar{g} is an arbitrary element of \bar{S} the numbers

$$
\lambda_{j}(\bar{g})=\lambda\left(\bar{f}_{j}, \bar{g}\right)
$$

defined by

$$
\begin{equation*}
\bar{f}_{j} \circ \bar{g}=\lambda\left(\bar{f}_{j}, \bar{g}\right) \bar{f}_{j} \tag{19}
\end{equation*}
$$

may be called the (Dirichlet) coefficients of \bar{g}.
S7. If $\bar{g} \neq \bar{h}$ then for at least one value of j we have $\lambda_{j}(\bar{g}) \neq \lambda_{j}(\bar{h})$.
It evidently follows that two elements of \bar{S} are equal if and only if the respective sets of coefficients are equal.

S8. If \bar{g} and \bar{h} are arbitrary elements of \bar{S} while \bar{f} is an element of M, then

$$
\bar{f} \circ(\bar{g} * \bar{h})=\Sigma\left(\bar{f}_{r} \circ \bar{g}\right) *\left(\bar{f}_{s} \circ \bar{h}\right)
$$

where the summation is over all $\bar{f}_{r}, \bar{f}_{s} \in M$ such that $\bar{f}_{r} * \bar{f}_{s}=\bar{f}$.
Finally we have
S9. For every sequence $\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots, \lambda_{j} \in F$, there exists a $\bar{g} \in \bar{S}$ such that

$$
\bar{f}_{j} \circ \bar{g}=\lambda_{j} \bar{f}_{j} \quad(j=1,2,3, \cdots)
$$

3. Lemma 1. If \bar{f}_{i}, \bar{f}_{j} are distinct elements of M then

$$
\begin{equation*}
\bar{f}_{i} \circ \bar{f}_{j}=0 \quad(i \neq j) \tag{20}
\end{equation*}
$$

This is immediate from (16).
Lemma 2. Let \bar{g}, \bar{h} be two arbitrary elements of \bar{S} and let $\lambda_{j}(\bar{g})$, $\lambda_{j}(\bar{h})$ denote the respective sets of coefficients of \bar{g} and \bar{h}. Then

$$
\begin{equation*}
\lambda_{j}(\bar{g} \circ \bar{h})=\lambda_{j}(\bar{g}) \lambda_{j}(\bar{h}) \quad(j=1,2,3, \cdots) \tag{21}
\end{equation*}
$$

Indeed we have by (18) and (19)

$$
\begin{aligned}
\lambda_{j}(\bar{g} \circ \bar{h}) \bar{f}_{j} & =\bar{f}_{j} \circ(\bar{g} \circ \bar{h})=\left(\bar{f}_{j} \circ \bar{g}\right) \circ\left(\bar{f}_{j} \circ \bar{h}\right)=\left(\lambda_{j}(\bar{g}) \bar{f}_{j}\right) \circ\left(\lambda_{j}(\bar{h}) \bar{f}_{j}\right) \\
& =\lambda_{j}(\bar{g}) \lambda_{j}(\bar{h})\left(\bar{f}_{j} \circ \bar{f}_{j}\right)=\lambda_{j}(\bar{g}) \lambda_{j}(\bar{h}) \bar{f}_{j}
\end{aligned}
$$

and (21) follows at once.

Lemma 3. Let \bar{g}, \bar{h} be two arbitrary elements of \bar{S} and let $\lambda_{j}(\bar{g})$, $\lambda_{j}(\bar{h})$ denote the respective sets of coefficients of \bar{g} and \bar{h}. Then

$$
\begin{equation*}
\lambda_{j}(\bar{g} * \bar{h})=\Sigma \lambda_{r}(\bar{g}) \lambda_{s}(\bar{h}) \quad(j=1,2,3, \cdots), \tag{22}
\end{equation*}
$$

where the summation is over all pairs r, s such that

$$
\begin{equation*}
\overline{f_{r}} * \bar{f}_{s}=\bar{f}_{j} . \tag{23}
\end{equation*}
$$

Proof. We have by S8

$$
\begin{aligned}
\lambda_{j}(\bar{g} * \bar{h}) \bar{f}_{j} & =\bar{f}_{j} \circ(\bar{g} * \bar{h})=\sum_{\bar{f}_{r} * \bar{f}_{s}=\bar{f}_{j}}\left(\bar{f}_{r} \circ \bar{g}\right) *\left(\bar{f}_{s} \circ \bar{h}\right) \\
& =\sum_{\bar{f}_{r} * \bar{f}_{s}=\bar{f}_{j}}\left(\lambda_{r}(\bar{g}) \bar{f}_{r}\right) *\left(\lambda_{s}(\bar{h}) \bar{f}_{s}\right) \\
& =\left\{\sum_{\bar{f}_{r} * \bar{f}_{s}=\bar{f}_{j}} \lambda_{r}(\bar{g}) \lambda_{s}(\bar{h})\right\} \bar{f} .
\end{aligned}
$$

This evidently implies (22).
Let $\bar{p}_{1}, \bar{p}_{2}, \bar{p}_{3}, \cdots$ denote the primes of M and let $p_{1}, p_{2}, p_{3}, \ldots$ denote the ordinary primes. We assume to begin with that the number of primes in M is infinite and set up the correspondence

$$
\begin{equation*}
p_{j} \rightleftarrows \bar{p}_{j} \quad(j=1,2,3, \cdots) \tag{24}
\end{equation*}
$$

If

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}
$$

is an arbitrary positive integer, we put

$$
\begin{equation*}
\bar{f}_{n}=\bar{p}_{1}^{e_{1}} * \bar{p}_{2}^{e_{2}} * \cdots * \bar{p}_{r}^{e_{r}}, \tag{25}
\end{equation*}
$$

where

$$
\bar{g}^{e}=\bar{g} * \cdots * \bar{g},
$$

with e factors on the right. By means of (25) we have the one-to-one correspondence between Z and M

$$
n \rightleftarrows \bar{f}_{n} \quad(n=1,2,3, \cdots)
$$

Let \bar{g} be an arbitrary element of \bar{S} and let $\lambda_{j}(\bar{g})$ denote, the set of coefficients of \bar{g}. Corresponding to \bar{g} we have the function g in S defined by

$$
\begin{equation*}
g(n)=\lambda_{n}(\bar{g}) . \tag{27}
\end{equation*}
$$

Conversely if g is any function in S then by $S 9$ and $S 7$ the element \bar{g} of \bar{S} is uniquely determined by means of (27), so that we have obtained a one-to-one correspondence between S and \bar{S}.

Now if $\alpha \in F$ it follows at once from (27) that

$$
\begin{equation*}
\alpha g(n)=\lambda_{n}(\alpha \bar{g}), \tag{28}
\end{equation*}
$$

so that scalar multiplication is consistent with the correspondence defined by (27). Again if $h \in S$ and $\bar{h} \in \bar{S}$ satisfy

$$
\begin{equation*}
h(n)=\lambda_{n}(\bar{n}) \tag{29}
\end{equation*}
$$

it is clear that

$$
\begin{equation*}
g(n)+h(n)=\lambda_{n}(\bar{g}+\bar{h}) . \tag{30}
\end{equation*}
$$

In the next place, if (27) and (29) hold, it follows from Lemma 2 that

$$
\begin{equation*}
g(n) h(n)=\lambda_{n}(\bar{g}) \lambda_{n}(\bar{h})=\lambda_{n}(\bar{g} \circ \bar{h}) . \tag{31}
\end{equation*}
$$

Thus if \bar{g} corresponds to g and \bar{h} corresponds to h then $\bar{g} \circ \bar{h}$ corresponds to the "ordinary" product of g and h.

Next we observe that if

$$
r \rightleftarrows \bar{f}_{r}, \quad s \rightleftarrows \bar{f}_{s}
$$

under the correspondence (26), then

$$
\begin{equation*}
r s \rightleftarrows \bar{f}_{r} * \bar{f}_{s} . \tag{32}
\end{equation*}
$$

Thus, assuming (27) and (29), we get

$$
\sum_{r s=n} g(r) h(s)=\sum_{r s=n} \lambda_{r}(\bar{g}) \lambda_{s}(\bar{h})=\sum_{\bar{f}_{r} *} \sum_{\bar{F}_{s}=\bar{F}_{n}} \lambda_{r}(\bar{g}) \lambda_{s}(\bar{h}) .
$$

Therefore, by Lemma 3,

$$
\begin{equation*}
\sum_{r s=n} g(r) h(s)=\lambda_{n}(\bar{g} * \bar{h}) . \tag{33}
\end{equation*}
$$

Thus if \bar{g} corresponds to g and \bar{h} corresponds to h then $\bar{g} * \bar{h}$ corresponds to the Dirichlet product of g and h.

Combining (27), (28), (29), (30), (31), (32) and (33) we have the following result.

Theorem 1. Let Φ denote the system of arithmetic functions from the integers to an arbitrary but fixed field F as defined in §1. Let $\bar{\Phi}$ be a structure with the three binary operations,$+ \circ$, * that satisfies the assumptions $\mathrm{S} 1-\mathrm{S} 9$ of § 2. Also let the number of primes in M be infinite. Then $\bar{\Phi}$ is isomorphic to Φ, all operations being preserved under the isomorphism.
4. We have assumed in the above result that the number of
prime elements in M is infinite. The conclusion of the theorem is no longer valid when the number of primes is finite. However it is easily verified that in this case $\bar{\Phi}$ is isomorphic to a subset of Φ. More precisely, we have the following result.

Let $\bar{p}_{1}, \bar{p}_{2}, \cdots, \bar{p}_{k}$ denote the primes of M and let $p_{1}, p_{2}, \cdots, p_{k}$ be a set of k distinct primes, for example the first k primes. Then the correspondence (26) holds except that n is now restricted to the set of integers Z_{k} whose prime divisors are in the set $p_{1}, p_{2} \cdots, p_{k}$. Consider the set of functions g such that

$$
\begin{equation*}
g(n)=0 \quad\left(n \in Z-Z_{k}\right) \tag{34}
\end{equation*}
$$

while $g(n)$ is an arbitrary number of F when $n \in Z_{k}$. It is easily verified that the set of functions satisfying (34) is closed under scalar, ordinary and Dirichlet multiplication. We denote the system by Φ_{k}. Then we have

Theorem 2. Let Φ_{k} denote the system of arithmetic functions that satisfy (34). Let $\bar{\Phi}$ be a structure with three binary operations ,$+ \circ$, * that satisfies the assumptions $\mathrm{S} 1-\mathrm{S} 9$ of $\S 2$ but let the number of primes in M equal k. Then $\bar{\Phi}$ is isomorphic to Φ_{k}.

It is evident that Φ_{k} is isomorphic to $F\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$, the ring of formal power series in k indeterminates with coefficients in F.

Remark. The referee has pointed out that S 4 and S 7 are equivalent, in the presence of the other assumptions. First, S7 implies S4. For $\bar{g} \neq 0$, by S 7 there exists a j such that $\lambda_{j}(\bar{g}) \neq \lambda_{j}(0)=0$. Hence S4 holds with $\bar{f}=\bar{f}_{j}$.

Conversely, S4 implies S7. For if $\bar{g} \neq \bar{h}$, then $\bar{d}=\bar{g}-\bar{h} \neq 0$. By S 4 there exists a minimal \bar{f} such that $\bar{f} \circ \bar{d}=\lambda(\bar{f}, \bar{d}) \bar{f}$, where $\lambda(\bar{f}, \bar{d}) \neq 0$. Since \bar{f} is minimal, $\bar{f} \circ \bar{f}=\lambda(\bar{f}) \bar{f}$, where $\lambda(\bar{f}) \neq 0$ by S3. Hence there exists a minimal

$$
\bar{f}=(\lambda(\bar{f}))^{-1} \bar{f}
$$

(an associate of the minimal element \bar{f}) which is also normalized. Thus

$$
\begin{aligned}
\bar{f}_{j} \circ \bar{d} & =\lambda(\bar{f}, \bar{d}) \bar{f}_{j}=\bar{f}_{j} \circ(\bar{g}-\bar{h})=\bar{f}_{j} \circ \bar{g}-\bar{f}_{j} \circ \bar{h} \\
& =\lambda_{j}(\bar{g}) \bar{f}_{j}-\lambda_{j}(\bar{h}) \bar{f}_{j}=\left[\lambda_{j}(\bar{g})-\lambda_{j}(\bar{h})\right] \bar{f}_{j}
\end{aligned}
$$

Hence

$$
\lambda_{j}(\bar{g})-\lambda_{j}(\bar{h})=\lambda(\bar{f}, \bar{d}) \neq 0
$$

Reference

1. E. D. Cashwell and C. J. Everett, The ring of number-theoretic functions, Pacific J. Math., 9 (1959), 975-985.

[^0]: Received September 15, 1963, and in revised form November 12, 1963. Supported in part by NSF grant G16485.

