
RINGS OF ARITHMETIC FUNCTIONS

L. CARLITZ

1* Introduction* Let F denote a fixed but arbitrary field and
let Z denote the set of positive integers. By an arithmetic function
f is meant a function from Z to F, that is to say f(n) e F for all neZ.
If /, 9 are two arithmetic functions, the sum h = f + g is defined by
means of

(1) h(n) = f(n) + g(n) (neZ) .

There are two products that are of interest, the ordinary product
defined by

(2) h{n) = f(n)g(n) (neZ),

and the Dirichlet product defined by

(3) A(Λ)= ΣiΛr)0(s) (neZ),

where the summation on the right is extended over all factorizations
rs = n. We shall denote the ordinary product by f o g and the Dirichlet
product by f*g.

Let S denote the set of arithmetic functions as defined above. It
is well known and easy to prove that the system

(4) Ω = (S, f, o)

is a commutative ring. The multiplicative identity of Ω is defined by

(5) v(n) = l (neZ).

Clearly Ω is not a domain of integrity; note however that there are
no nilpotent elements in Ω. On the other hand the system

(6) 4 = (S,/,*)

is a domain of integrity. The multiplicative identity of Δ is given by

(1 (n = 1)

Moreover the function / has an inverse (relative to *) if and only if

(8)
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the set of functions that satisfy (8) evidently constitute an abelian
group with respect to *.

If λ e F we define the function Xf by means of

(9) (λ/)(w) = X-f(n) (neZ) ..

It follows at once that S is a vector space over F of infinite dimension..
Also we have

λ(/og) = (Xf)og=fo(xg) , λ(/*g) = (Xf)*g = /*(λflf) .

If in place of Z we employ a semigroup J that has no units ex-
cept the identity, a countable infinity of primes, and which has the
unique factorization property, the resulting systems Ω and A are not
essentially different. Indeed if Wlf ~p2, ψZj denote the primes of J
we may set up the correspondence fτlf by means of f(n) = f(n), where

(10) n = Πpγ , ή = Πpy ,

where the first half of (10) is the usual factorization of n into primes.
There is therefore little loss in generality in restricting the discussion
to Z.

In view of the above it is of interest to consider the system

(11) Φ = (S, +,o,*)

with three binary operations and in particular to attempt to give an
abstract formulation of such systems. Since o and * do not combine
in any very obvious way, it is perhaps not clear how this can be done.
We shall obtain such a characterization by making use of minimal
functions. A function / is minimal provided there exists an integer
k (depending on /) such that

(12) f(n) = 0 (nΦk); f(k)Φθ.

We remark that Cashwell and Everett [1] have proved that Δ is-
a unique factorization domain. However this result will not be required
in what follows.

2* As above let F denote a fixed but arbitrary field. Let S de-
note a vector space over F. The elements of S will be denoted by
small italic letters, the elements of F by small Greek letters; addition
in S will be denoted by + . Moreover we have two "multiplications"'
denoted by o and *. The following assumptions will be made.

SI. The system

(13) Ω = (S,+,o)
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is a commutative ring with multiplicative identity v. Moreover

<*(fog) = (af)og=fo(ag) (/, geS,aeF).

S2* The system

(14) Z = (S, + ,*)

is a domain of integrity with multiplicative identity ΰ. Moreover

<*(f*g) = {af)*g = Mag) (f,geS,ae F) .

DEFINITION. TWO elements f,gzS are associates provided / = \gr

where λ e F, λ Φ 0.

DEFINITION. An element / e S , / ^ 0, is minimal provided

(15) fog = X(f,g)f (geS)

where g is any element of S and λ(/, g) is a number of F. It is.
evident that λ(/, g) is unique.

Clearly the associate of a minimal element is also minimal. Alsα
it is evident that if /, g are two minimal elements that are not as-
sociates then

(16) /o0 = O.

S3. For each minimal element / there exists a nonzero number
λ(/) of F such that

(17) /o/

DEFINITION. A minimal element feS is normalized provided

(18) fof = f .

S4* If </ is an arbitrary nonzero element of S there exists at
least one minimal element / such that λ(/, g) Φ 0, where λ(/, g) i&
defined by (15).

Let M denote the set of normalized minimal elements.

S5* M is a semigroup with respect to *; the identity element of

M coincides with ΰ, the multiplicative identity of A. Moreover M

contains no units except the identity.

DEFINITION. An element / of M, f Φ ΰ, is prime provided J—g^h
implies g = ΰ or h — ΰ.
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S6* M contains a countable number of primes. Any element of
M, different from u, can be expressed as a product of primes in es-
sentially only one way.

DEFINITION. Let flf f2, /3, denote the elements of M. If g is
an arbitrary element of S the numbers

λi(ί/) = Mfif 9)

defined by

(19) fi°9 = HU9Ϊfi

may be called the (Dirichlet) coefficients of g.

S7. If g Φ h then for at least one value of j we have \j(g) Φ λy(λ).
It evidently follows that two elements of S are equal if and only

if the respective sets of coefficients are equal.

S8* If g and h are arbitrary elements of S whi le/is an element
of M, then

fo(g*h)=Σ(frog)*(f8oh)

where the summation is over all / „ f8 e M such that / r * / β = / .
Finally we have

S9. For every sequence \, λ2, λ3, , λy6F, there exists a geS
such that

fjog = Xjfj ( i = 1 , 2 , 3 , •••)•

3. LEMMA 1. If fiffj are distinct elements of M then

(20) 7<o/y = 0 (iΦ3).

This is immediate from (16).

LEMMA 2. Let g, h be two arbitrary elements of S and let \{g),
λy(Λ) denote the respective sets of coefficients of g and h. Then

(21) Xj(go h) - \i(g)%i(K) (j = 1, 2, 3, •) .

Indeed we have by (18) and (19)

and (21) follows at once.
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LEMMA 3. Let g, h be two arbitrary elements of S and let Xj{g),
Xj(h) denote the respective sets of coefficients of g and h. Then

(22) Xj(g*h) = Σ\(g)\(h) (j - 1, 2, 3, •),

where the summation is over all pairs r, s such that

(23) Λ*/.=/y.

Proof. We have by S8

= Σ (fr°g)*(fs°h)
fr*Js=fj

= Σ
fr*fs=fj

Σ (K(9)fr)HK(h)L)

= { Σ \(g)\(h)\f.

This evidently implies (22).
Let Pi, p2, Ps> " denote the primes of M and let pl9 p2, p3,

denote the ordinary primes. We assume to begin with that the number
of primes in M is infinite and set up the correspondence

(24) pj^lpj ( i = l , 2 , 3 , - . . ) .

If

n = p ip a . . p's

is an arbitrary positive integer, we put

(25) fn = £?*$?* *pj!r ,

where

with e factors on the right. By means of (25) we have the one-to-one
correspondence between Z and M

(26) Λ ^ Λ (Λ = 1 , 2 , 3 , • - . ) .

Let g be an arbitrary element of S and let Xj(g) denote, the set
of coefficients of g. Corresponding to g we have the function g in S
defined by

(27) g(n) - \n(g) .

Conversely if g is any function in S then by S9 and S7 the element
g of S is uniquely determined by means of (27), so that we have
obtained a one-to-one correspondence between S and S.
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Now if a G F it follows at once from (27) that

(28) ag(n) = \%(ag) ,

so that scalar multiplication is consistent with the correspondence
defined by (27). Again if he S and heS satisfy

(29) h(n) = \%(h)

it is clear that

(30) g(n) + h(n) = λw(£ + h) .

In the next place, if (27) and (29) hold, it follows from Lemma 2
that

(31) g(n)h(n) = \n(g)K(h) = K(S°h) .

Thus if g corresponds to g and h corresponds to h then ^©^corresponds,
to the "ordinary" product of g and h.

Next we observe that if

under the correspondence (26), then

(32) rs^lfr*

Thus, assuming (27) and (29), we get

Σ g(r)h(s) - Σ K(g)\(h) = Σ
rs=n rs=n

Therefore, by Lemma 3,

(33) Σ g(
rs=n

Thus if g corresponds to g and h corresponds to h then g*h corresponds
to the Dirichlet product of g and h.

Combining (27), (28), (29), (30), (31), (32) and (33) we have the fol-
lowing result.

THEOREM 1. Let Φ denote the system of arithmetic functions
from the integers to an arbitrary but fixed field F as defined in § 1.
Let Φ be a structure with the three binary operations +, ©, * that
satisfies the assumptions S1-S9 of § 2. Also let the number of primes
in M be infinite. Then Φ is isomorphic to Φ, all operations being
preserved under the isomorphism.

4. We have assumed in the above result that the number of
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prime elements in M is infinite. The conclusion of the theorem is no
longer valid when the number of primes is finite. However it is easily
verified that in this case Φ is isomorphic to a subset of Φ. More pre-
cisely, we have the following result.

Let pu p2, , Vk denote the primes of M and let plf p2, "-,pk be
a set of k distinct primes, for example the first k primes. Then the
correspondence (26) holds except that n is now restricted to the set of
integers Zk whose prime divisors are in the set p19 p2 - - , Pk- Consider
the set of functions g such that

(34) g(n) = 0 (neZ-Zk),

while g(n) is an arbitrary number of F when ne Zk. It is easily
verified that the set of functions satisfying (34) is closed under scalar,
ordinary and Dirichlet multiplication. We denote the system by Φk.,
Then we have

THEOREM 2. Let Φk denote the system of arithmetic functions

that satisfy (34). Let Φ be a structure with three binary operations

+ , o, * that satisfies the assumptions S1-S9 of §2 but let the number

of primes in M equal k. Then Φ is isomorphic to Φk.

It is evident that Φk is isomorphic to F{xL, x2, , xk), the ring of
formal power series in k indeterminates with coefficients in F.

REMARK. The referee has pointed out that S4 and S7 are equiva-
lent, in the presence of the other assumptions. First, S7 implies S4.
For g Φ 0, by S7 there exists a j such that X,(g) Φ λ,, (0) = 0. Hence
S4 holds with / = /,.

Conversely, S4 implies S7. For if g Φ h, then d = g — h Φ 0.
By S4 there exists a minimal / such that f^d — λ(/, d)f, where
λ(/, d) Φ 0. Since / is minimal, fof= λ(/)/, where λ(/) Φ 0 by S3.
Hence there exists a minimal

(an associate of the minimal element /) which is also normalized. Thus.

=fj°(g- h) =fjog-fjoh

Hence

- \(h) = λ ( / , d)Φθ .
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