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CONCERNING KOCH'S THEOREM ON
THE EXISTENCE OF ARCS

L. E. WARD, J R .

A theorem of R. J. Koch asserts that if X is a compact
space endowed with a partial order Γ such that

( i ) Γ is a closed subset of X X X,
(ii) there exists O e l such that (0, x)eΓ for each xeX,

and
(iii) for each xeX the set L(x) = {y:y ^ x] is connected,

then each point of X lies in a connected chain containing 0.
In particular, X is arcwise connected. This is a corollary of
the theorem: if X is a compact space and Γ is a partial order
satisfying (i), and if W is an open subset of X such that each
neighborhood of each point x of W contains a point y Φ x
with (y, x) G Γ, then each point of W is the supremum of a
connected chain which meets X— W. A new proof of these
results is presented.

The first of these theorems is generalized in several ways.
The compactness is relaxed to local compactness and the as-
sumption that each closed chain has a zero. Moreover, the
existence of a zero need not be assumed. If the set E of
minimal elements is closed, then E is joined by connected
chains to all other points of X. If the set function L is
continuous, then E is necessarily closed.

1* A classical problem of topology is to determine when a space
is arcwise connected. Here it will be convenient to adopt the termi-
nology of A. D. Wallace [6] and call a subset A of a space an arc if
A is a continuum with exactly two noncutpoints. If A is also sepa-
rable then it is a real arc.

A few years ago R. J. Koch [4] proved a remarkable theorem of
this type. He showed that a compact partially ordered space is arcwise
connected if certain natural conditions are imposed on the partial order.
It is the purpose of this paper to study Koch's result in detail. His
proof, although ingenious, is long and very complicated. Since the
theorem is fundamental to the structure theory of partially ordered
spaces, and since it has been applied [3, 4, 6] to a variety of problems
in topological algebra, it is of some interest to exhibit a shorter and
simpler proof. This is done in § 2. In the later sections, some gener-
alizations of Koch's theorem are obtained.
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Perhaps the most celebrated theorem on arcwise connectivity is
the assertion that every locally connected and metrizable continuum is
real arcwise connected. I suspect the existence of an intimate relation-
ship between Koch's theorem and this result. In the final section of
the present paper, this possible relationship is discussed, but I have
not been able to resolve the question satisfactorily.

2» A short proof of Koch's theorem* If Γ is a partial order
on a set X, we identify Γ with its graph and treat the symbols x S
y, xΓy and (x, y)e Γ as synonyms. Recall that a chain of a partially
ordered set (X, Γ) is a subset C of X such that aΓb or bΓa obtains
for each a and b in C. We also define

L(a, Γ) = {x e X: xΓa] ,

M(a,Γ) = {xeX .aΓx} 9

for each ae X. Where no ambiguity may occur we shall write L(ά)
for L(a, Γ) and M(a) for M(a, Γ). Moreover, if A c X we define

L(A) = U {L(x): x e A} ,

and it is convenient to adopt the notation

[x, y]Γ = M(x, Γ) n L(x, Γ) .

In case X is a topological space, the partial order Γ is continuous
provided Γ is a closed subset of X x X. When this occurs, X =
(X, Γ) is called a continuously partially ordered space. It is well-
known [7] that if X is a continuously partially ordered space then the
sets L(x) and M(x) are closed, for each xe X, X is a Hausdorff space,
and, if X is compact, it admits a minimal element, i.e., an element
having no proper predecessors. A zero of a continuously partially
ordered space is an element which precedes every other element. In
the compact case, a unique minimal element is necessarily a zero.
Finally, we remark that in a compact, continuously partially ordered
space, a connected chain joining two distinct points is an arc. An
arc which is also a chain will be termed an order arc or a Γ-arc.

(2.1) THEOREM (Koch). Let W be an open subset of the compact,
continuously partially ordered space X, and suppose, for each xe W,
that each neighborhood of x contains an element y with y > x. Then
each xe W is the supremum of an order arc C such that C — W is
nonempty.

(2.2) COROLLARY. If X is a compact, continuously partially
ordered space with zero, 0, such that L(x) is connected for each xe X,
then each xe X — {0} is joined to 0 by an order arc.
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The corollary follows easily from Theorem 2.1 by taking W —
X — {0} (see [4]). Our proof of Theorem 2.1 is embodied in two main
lemmas.

(2.3) LEMMA. Let W be an open subset of the compact space X.
If X admits a partial order satisfying the hypotheses of (2.1), then
X admits such a partial order which is minimal.

Proof. Let {Γa} be a maximal nest of partial orders satisfying
the hypotheses of (2.1), and let Γo — f] {^} It is readily verified
that Γo is a continuous partial order on X. Let xe W and let U be
a neighborhood of x; clearly we may assume that U c W. Since X
is regular, there exists an open set V with xe V c V c U, and since
X is normal, there exists an open set R with X— UaRaRaX—V.
For each a, let xa be a /Vminimal element of L(x, Γa) Π V; then there
must exist yΛ Φ xa such that

yΛ e L(xω, Γa)-~ Rd L(x, ΓΛ) - (R U V) .

Since the closed sets L(x, Γa) — (R U V) are nested and nonempty,
there exists y e L(x, Γo) — R U V. Thus {y, x) eΓ0, y Φ X, and yeU.
Therefore Γo satisfied the hypotheses of (2.1) and is minimal.

(2.4) LEMMA. Let W be an open subset of the compact space X,
and suppose Γ is a partial order on X which is minimal with
respect to satisfying the hypotheses of (2.1). Then every maximal
chain of (X, Γ) is connected.

Proof. If not then the compactness of X guarantees [7] the
existence of elements a and b of X with (α, b)e Γ, a Φ 6, and

[α, b]Γ = {a} U {b} .

Since X is a Hausdorff space, there are disjoint open sets U and V
with ae U and be V. Let

F - {(x, y)eXx X:[x, y]Γ -(UuV)Φθ}.

A routine argument involving the continuity of Γ shows that F is
closed and hence

is also closed. Since Γ is reflexive and U Π V = 0, one sees that Δ
is reflexive, and the anti-symmetry of Γ implies that Δ has the same
property. To see that Δ is transitive, suppose that pΔq and qΔr but
(p, r) e X x X — Δ. Since pΓr, it is clear that
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(p,r)eU xV - F

and thus [p, r]Γ c U U V, so that q e U or q e V. If qe U then, since
reV and (q, r) e Δ, we infer that (q, r)e F and consequently

[?, *1r - (17 U V) Φ 0 .

But then

[p, r ] , - ( P U F ) ^ 0 ,

i.e., (p, r) e F , a contradiction. A similar contradiction ensues if q e V
and therefore Δ is transitive.

Now let xG W and let N be a neighborhood of x. lϊ xe X — V
then L(x, //) — L(x, Γ) and hence there exists y$N, y Φ x, with yJx.
1ί xeV then

L(x, J ) Π F = L(a?, f ) Π F

and hence the desired y exists in N Π V. Therefore Δ satisfies the
hypotheses of (2.1), contrary to the minimality of Γ.

Proof of Theorem (2.1). In view of Lemma 2.3 we may assume
that Γ is minimal, for any /"-arc will be an order arc with respect to
a partial order which contains Γ. Let x e W and let D be a maximal
chain of X such that x e Da By Lemma 2.4, D is an order arc, and
by hypothesis, C = D f) L(x) is nondegenerate and hence C is also an
order arc. Since X is compact, C has a least element which cannot
lie in W.

It should be noted that the chief applications to topological algebra
arise from Theorem 2.1. From a purely topological point of view,
hewever, Corollary 2.2 is the more interesting, and it is this result
which we shall generalize in several ways.

3. A lemma on quotient spaces* If X is a space and F is a
closed subset of X, we denote by X/F the quotient space which is
obtained when F is identified with a point.

(3.1) LEMMA. Let (X, Γ) be a continuously partially ordered
space and let F be a compact subset of X such that F ~ L(F). Then
X/F is a continuously partially ordered space. If, for each xe X,
it follows that L(x, Γ) meets F, then F is a zero for X/F. Finally,
if X is compact and, for each x e X, each component of L(x, Γ) meets
F, then X/F satisfies the hypotheses of Corollary 2.2 and hence each
point of X/F — {F) is joined to F by an order arc of X/F.
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Proof. Define the relation A on X/F by pΔq provided p,qe X—F
and pΓq, or p = F and L(q, Γ) meets F. It is clear that A is a
partial order, and the proof that A is continuous is routine except for
the verification of the fact that if (F, q) g A, then there are open sets
U and V such that qe U, Fa V and L(U, Γ) and V are disjoint. To
see this we note that since Γ is continuous and L(q, Γ) and F are
disjoint there exist, for each t e F, open sets Ut and Vt such that
qeUtJ teVt and L(Ut, Γ) and Vt are disjoint. Since .F is compact,
a familiar argument shows that the desired sets U and V exist. That
F is a zero if each L(x, Γ) meets JP is obvious. If X is compact then
so is X/F, and if each component Ka of L(x, Γ) meets i77, then

is also connected.

(3.2) COROLLARY. If X is a compact and continuously partially
ordered space, if F is a closed subset of X such that F — L(F) and
i>f> for each x e X, each component of L(x) meets F, then, for each
x e X — F, there exists y < x such that y and x are joined by an
order arc in X.

Proof. If xe X — Fy then, in X/F, there exists an order arc Ax

joining F and x. Let ye Ax — {x} (J {F}; then y < x and an order arc
joins y and x in X/F. Since this arc is disjoint from F, it remains
an order arc in X.

In the following sections we shall also require a simple lemma
about compact partially ordered spaces.

(3.3) LEMMA. If A is a closed subset of a compact, continuously
partially ordered space, then L(A) is a closed set.

Proof. Let Γ denote the graph of the partial order. Choquet [2]
first observed1 that in a continuously partially ordered space the set
functions L and M are upper semi-continuous. Therefore, if x 0 L(A),
there is an open set U with xe U such that M(t) Π A = 0 for each
t e U. Therefore U Π L(A) = 0, so that L(A) is closed.

4* The locally compact case* Very simple examples exist to
show that Koch's theorem fails if X is assumed only to be locally
compact. For later reference we describe one of these.

(4.1) EXAMPLE. There exists a locally compact and continuously
partially ordered space Y with zero, 0, such that L(x) is connected.

I am indebted to the referee for this reference.
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for each xe Y, but certain elements of Y — {0} are not joined to 0
by an arc.

In the Cartesian plane let A_λ denote the closed line segment whose
endpoints are (0, 0) and (1, 0), Ao is the closed line segment whose
endpoints are (1, 0) and (1, 1), and, for each n — 1, 2, , An is the
closed line segment whose endpoints are (1 — 2n, 0) and (1 — 2n, 1). Let

X = LI {An} .
n = —l

In the relative topology X is a compact space. Give X the coordi-
natewise partial order, i.e., (α, b) g (c, d) if and only if a ^ c and
b S d. Then it is easy to see that X satisfies the hypotheses of
Theorem 2.1, with the origin for zero.

Now let S be a closed segment of Ao which does not contain (1, 1),
and let Y = X — S. Then 7 is a locally compact space which other-
wise satisfies all the hypotheses of Theorem 2.1, but no arc joins 0
to (1,1).

The space Y is even a topological semi-lattice. The author and
L. W. Anderson [1] have shown that if a connected and locally compact
topological lattice has a zero, then each point is connected by an order
arc to zero, and, under suitable auxiliary hypotheses, the same is true
of locally compact semi-lattices, but our methods depended very strongly
on the lattice structure.

With no additional hypotheses at all, however, some results can
be obtained in the locally compact case, using Lemma 3.1 and Corollary
3.2.

(4.2) THEOREM. Let X be a continuously partially ordered space,
let p e X, and suppose p admits a compact neighborhood N which
contains no minimal elements of X. If L(x) is connected, for each
x e N, then there exists q e L(p) — {p} such that q and p lie in an
order arc.

Proof. Let B denote the boundary of N and define

F = L(L(p) ΓlB)nN.

We assert that L{p) Π B is not empty, for otherwise the connectivity
of L(p) insures that L(p) c N; but then L(p) is compact and hence
contains a minimal element of X. But, by hypothesis, N contains no
minimal elements of X. Moreover, since p e L(p) — B, it follows that
p e L(p) Π (N — F). By Lemma 3.3, F is a closed subset of L(p) Π JV.
If x e L(p) Π (N — F) then the connectivity of L(x) guarantees that
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each component of L(x) ΓΊ N meets F. Therefore, the space L(p) Π N
satisfies the hypotheses of Corollary 3.2, and the theorem follows.

Referring to the space Y of Example 4.1, the point (1,1) can
certainly be joined by an order arc to a point (1,1 — ε) < (1, 1). In
order to continue this arc on to 0 it is necessary to add some further
hypothesis such as is contained in our next result.

(4.3) THEOREM. Let X be a locally compact, continuously par-
tially ordered space with zero, 0, and suppose L(x) is connected, for
each x e X. If each closed chain of X has a zero, then each x e X —
{0} is joined to 0 by an order arc.

Proof. If x e X — {0}, then Theorem 4.2 assures us that x is the
supremum of a nontrivial connected chain. Let C be a maximal such
chain; by hypothesis, z(C), the zero of C, exists. If z(C) Φ 0, then
another application of Theorem 4.2 produces a nontrivial connected
chain D, of which z(C) is the supremum. But the chain C U D is
connected and thus contradicts the maximality of C. Thus C is an
order arc joining x to 0.

We note that Theorem 4.3 truly generalizes Corollary 2.2 because,
in the compact case, every closed chain has a zero.

Problem. Does Theorem 4.3 remain true if the hypothesis that
each closed chain has a zero is weakened to "each chain has an infimum"?

5* Partially ordered spaces without zero* Let if be a continuum
which contains no arc. Select x± e K and define x ^ y if and only if
y — χ1 or y = x. With respect to this relation K is a compact continu-
ously partially ordered space in which each set L(x) is connected but
in which there are no arcs. Thus we cannot infer the existence of
order arcs without some restrictions on the set of minimal elements,
but the hypothesis of Corollary 2.2 that there is only one minimal
element is unduly restrictive.

(5.1) THEOREM. Let X be a compact, continuously partially
ordered space in which L(x) is connected, for each x e X. Let E
denote the set of minimal elements of X, and suppose, for each
x e X — E, that x e X — Cl(L(x) ΓΊ E). Then each x e X — E is joined
by an order arc to some element of E.

Proof. Let xe X — E; since L(x) is also a compact, continuously
partially ordered space, L(x) Π E is not empty. Let

EΛ = L(Cl(L(x) n E))
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and note that x e L(x) — Ex and, by Lemma 3.3, that Ex is closed.
By Corollary 3.2, x is the supremum of a nondegenerate connected
chain. The proof now follows that of Theorem 4.3. If C is a maximal
connected chain such that x = sup C, then by compactness C has a
zero which, by maximality, is a member of E.

(5.2) COROLLARY. Let X he a locally compact, continuously
partially ordered space in which each closed chain has a zero, and
in which, for each x e X — E, it follows that x e X — Cl(L(x) Π E),
where E denotes the set of minimal elements of X. If L(x) is con-
nected, for each xe X, then each xe X — E is joined by an order
arc to some element of E.

Proof If x e X — E then by Theorem 4.2, x is the supremum
of some nondegenerate connected chain. If C is a maximal chain with
this property, then C is closed and, by maximality, its zero is an
element of E.

(5.3) COROLLARY. Let X be a locally compact, continuously
partially ordered space in which each closed chain has a zero, and
in which the set E of minimal elements is closed. If L(x) is con-
nected, for each xe X, then each xe X — E is joined by an order
arc to some element of E.

Some authors have called a partial order on a space "continuous"
if the set-valued mapping L is continuous in the following sense: that
each set L(x) is closed and, if U and V are open sets such that
L(x) c U and L(x) meets V, then there exists an open set W containing
x such that, if y e W, then L(y) c U and L(y) meets V. If a partial
order satisfies this condition, let us say that the space is an L-con-
tinuous partially ordered space. It is a simple exercise to verify
that L-continuity of a partial order implies continuity. (See Choquet
[2].)

(5.4) THEOREM. If X is an L-continuous partially ordered
space, then the set E of minimal elements of X is closed.

Proof. If x e X — E then there exists p < x and hence, if U is
a neighborhood of p, L{x) Π U is not empty. We may select U such
that xe X — U. By L-continuity, there exists an open set W such
that xeWaX— U and, for each teW, L(t) Π U is not empty. In
particular, L(t) is nondegenerate and hence W Π E is empty.

(5.5) COROLLARY. If X is a locally compact, L-continuous par-
tially ordered space in which each closed chain has a zero, and if



CONCERNING KOCH'S THEOREM ON THE EXISTENCE OF ARCS 355

L(x) is connected, for each xe X, then each non-minimal element of
X is joined by an order arc to some minimal element of X.

6* Concluding remarks* We return to consideration of the
theorem that a locally connected, metrizable continuum is real arcwise
connected. The problem we wish to raise may be put in this way:
Does Koch's theorem imply the arcwise connectivity of such continual
Since Mardesic has shown [5] that the natural analog of this result
fails in the nonmetrizable case, metrizability (or some slightly weaker
condition) must certainly be assumed. Now it can be shown that any
locally connected continuum admits a nontrivial quasi-order (i.e., a
reflexive, transitive relation) which is continuous, has a zero, and is
such that each set L(x) is connected. By an argument similar to that
of Lemma 2.3 one can find a minimal quasi-order with the same
properties. If, under suitable conditions, this minimal quasi-order is
found to be a partial order, then arcwise connectivity would follow
from Corollary 2.2.
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