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CHARACTER SUMS AND DIFFERENCE SETS

RicHARD J. TURYN

This paper concerns difference sets in finite groups, The
approach is as follows: if D is a difference set in a group G,
and y any character of G, y(D) = > px(g) is an algebraic integer
of absolute value 1”7 in the field of mth roots of 1, where
m is the order of y. Known facts about such integers and
the relations which the (D) must satisfy (as y varies) may
yield information about D by the Fourier inversion formula.
In particular, if x(D) is necessarily divisible by a relatively
large integer, the number of elements g of D for which 3(g)
takes on any given value must be large; this yields some non-
existence theorems,

Ancther theorem, which does not depend on a magnitude
argument, states that if » and v are both even and a, the
power of 2 in v, is at least half of that in », then G cannot
have a character of order 2°, and thus G cannot be cyclic.

A difference set with v = 4n gives rise to an Hadamard
matrix; it has been conjectured that no such cyclic sets exist
with v > 4. This is proved for n even by the above theorem,
and is proved for various odd » by the theorems which depend
on magnitude arguments, In the last section, two classes of
abelian, but not cyclic, difference sets with v = 4n are exhibited.

A subset D of a finite group G is called a difference set if every
element ¢ of G can be represented in precisely N ways as d.d;?, d, e D.
If % is any nonprincipal character of G, we must then have | 3¢, x(d) | =
V'n,n =k —\, where k is the order of D. We shall write x(D) for
Seen X(d) (as in [8]). If G is abelian and |Y(D)| =1V"n for some
subset D and all nonprincipal characters of G, D is a difference set in G.

This work originated in a search for difference sets with G cyelic
of order v, and the parameters related by v = 4n. Because in this case
every divisor of n is a divisor of v, Hall’s theorem on multipliers, [5],
one of the main tools in the study of difference sets, cannot be applied.
The method presented here is particularly suitable for computation of
difference sets if v and » have common factors. It is roughly as
follows: the numbers ¥(D) are algebraic integers of absolute value
V% in the field of mth roots of 1, where m is the order of ¥ (as an
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element of the character group of G). We use the known facts about
such algebraic integers, together with elementary combinatorial in-
formation about these numbers which depends on their being sums of
characters taken over the difference set, and the relations which must
hold between the various character sums. We may then use the ortho-
gonality of characters (Fourier inversion formula) to obtain information
about the characteristic function of D.

The difference sets with v = 4n correspond to (unnormalized)
Hadamard matrices. The only known ecyclic (i.e., with G ecyclic)
difference set of this type is the trivial one with v = 4. Although we
did not succeed in proving that no such cyclic sets exist if v >4, a
number of nonexistence theorems are proved; these give bounds on the
orders of the cyclic p-subgroups of G, where p|(n,v). The proofs
depend only on the existence of characters of certain orders.

In his survey of cyclic difference sets with k& < 50, [5], Hall had
left twelve sets of values of (v, %k, ) undecided; it was not known
whether a cyclic difference set with these values of (v, k, \) existed.
For all but one of these, (v, #) > 1. Nine of these were shown not to
correspond to cyclic sets in [14]. Ten have since been shown not to
correspond to cyclic sets by Mann ([8]). Of the twelve sets of values,
one is left unresolved by [8] or [14], and it is shown here that it
cannot correspond to an abelian set.

On the constructive side, we derive two classes of abelian, but not
cyclie, difference sets, both with v = 4n. One class, for which v = 36,
contains a set recently found by Menon [10]; the other class, for which
v = 4', was suggested by one of the sets with v = 36.

Some of this work appeared in [13] and [14]. However, the use
of the full force of Lemma 3 was suggested to me by my reading of
Mann’s paper [8]. I would like to express my gratitude to Professor
Gleason for the large amount of time he spent reading this work; he
pointed out a number of errors and is responsible for a great improve-
ment in the quality of the exposition.

We assume throughout that the reader is familiar with cyclotomie
fields (see e.g. [15]). We recall in particular the following facts:

(1) The field of mth roots of 1 is of degree ¢(m) over @ (the-
field of rationals); thus the field of mnth roots of 1 is of degree ¢(m)
over the field of nth roots of 1 if (m,n) = 1. If (m,n) =1, any é(m)
consecutive powers of ¢, a primitive mth root of 1, form an integral
basis for the field of mnth roots of 1 over the field K of nth roots of
1; the Galois group of K({) over K is isomorphic to the multiplicative
group of integers relatively prime to m (modm). The automorphism
o; which corresponds to j is defined by ¢,() = ¢ for (j,m)=1. In
particular, complex conjugation is o_,.
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(2) If p is prime, the factorization of p in the field Q(), ¢ a
primitive mth root of 1, is as follows: if (p, m) =1, and we assume
4|m if m is even, let o, be the automorphism given by o¢,(0) = 7.
Then if P is any prime ideal divisor of (p) (where (A) denotes the
principal ideal generated by A) o, is a generator of the subgroup of
automorphisms 7 for which 7(P) = P. The prime ideal divisors P; of
(p) are in one-to-one correspondence with the cosets of this subgroup,
and (p) = aP,. Thus if (p, m) =1, (p) is not divisible by the square
of any ideal #(1). If m = p*n,a =1, (p,n) =1, and ¢ is a primitive
p*th root of 1, then in Q) (p) = (1 — O)%, ¢ = #(p°); ¢ always denotes
the Euler function. In the field of mth roots of 1, 1 — { factors just
as p does in the field of nth roots of 1.

(3) If Cisarootof 1, =+ 1,1 — { is a unit unless { is a primi-
tive p"th root of 1, p a prime, =1, and then 1 —{|p. p|1l—
only for p = 2, { = —1. (A proof follows from [Ir (1 — () =m,{
a primitive mth root of 1, and the Mobius inversion formula.)

(4) Suppose A and B are algebraic integers in a cyclotomic field,
|A|=|B|and (A) = (B). Then A/B = w is a root of 1. This follows
from the theorem of Kronecker which asserts that an algebraic integer
all of whose conjugates have absolute value 1 are roots of unity. The
fact that |ow| = 1 for any automorphism ¢ follows from the lemma
below (with m = 1).

LEMMA 1. If|w|”eQ for some integer m = 1, and ac(w) = ca(w),
where ¢ denotes complex conjugation, then |w| = |o(w)|.

For
|w ™ = w™(c(w™)eQ .
Therefore

lw [ = o(w"c(w™))
= o(w)"o(c(w™))
= o(w)"c(o(w)™)
= [o(w)[™ .

We use the following notations: if G is a group, » a prime,
0,(G) = a if a is the largest integer m such that G has a character
of order p™. If m is an integer, p*||n if »*|n, »***fn. Z, is the
cyclic group of order n. w, with or without subscripts, will denote a
root of 1. %, always denotes the principal character of G, i.e., X,(g9) =1
for all ge G. If a and b are integers, we say that a is semiprimitive
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mod b if there exists an integer ¢ such that a°= —1(modd). a is
self-conjugate mod b if all prime divisors p of a are semiprimitive
mod bp~°», where b = IIp°».

Difference sets. A (v, k, \) configuration is a set of v points and
b subsets, called blocks, each containing k& points, such that the inter-
section of any two distinct blocks consists of A points. Defining » to
be k — A, we have also k* — »v = n. If M is the incidence matrix of
the configuration (m,;; = 1 if point ¢ is in set j, m,; = 0 otherwise), an
equivalent definition is that

M'M = nl+2\J,

where J is the matrix with all entries = 1. Since {M' — (\J/k)}M =
nl, M{M' — (\J[k)} = nl. The entries m,; of M are all 0 or 1, hence
m}; = m;;, and thus the 47 term of the last equation shows that
>iim; = k, and therefore MM' = nI + \J = M'M.

Assume a (v, k, \) configuration has a regular transitive group of
automorphisms; that is, assume there exists a transitive group G of
order v of permutations of the v points, each permutation taking blocks
into block; if D is the subset of G of those ¢ for which ¢(P)e B, where
P is a fixed point and B a fixed block, any element « # ¢ of G can be
represented in precisely N ways as 7o', with 7,0 in D. We must
show «aB N B contains precisely A\ points. This will happen unless
aB = B, since aB is a clock of the design. So there are at least A
pairs for which 767 = a with z,0e D. But since k(k — 1) = v — 1)
and there are k(k — 1) ordered pairs 7z, ¢ and v — 1 elements in G not
the identity, we cannot have aB = B for «a +# e (cf. [1]). Replacing P
by z,P and B by 7,B replaces D by z,D7.

Let Y, be the characteristic function of D, y, = 1foroe D, y, = 0
for o¢ D.

We then have

S YYer =N T He
gEG

as an equivalent formulation of the condition that D N =D have precisely
A points for all <.

A subset D of a group G is called a difference set if it satisfies
the above conditions; D is cyclic or abelian if G is. The sets gD as
o ranges through G form the blocks of a (v, k, \) configuration. The
complement of a difference set is a difference set, and hence we may
assume k <v/2.

We shall always assume the difference set is nontrivial, i.e.,
1< k<wv—1, from which it follows that v = 7.

Suppose G is abelian. Let f be a function defined on G,y a
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character on G, and let

(1) Fo = 3, Fono)

The set of equations

(2) 3, /(9)f(hg) = e(h)
is equivalent to

(3) FOF@ = 3 ehy(h)
or if f is real-valued,

FF = 5 ety .

This shows D is a difference set, with parameters v,k , N, n =k — )\,
if and only if
(4) DY, =k

2]

l; y,,x(g)l — V% forall y£7,.

It also shows that | 7(y)| = ¢ for all ¥ if and only if S f(9) f(gh)=0
for h +# e.

Finally, D is a (v, k, \) difference set if and only if we have, in
the group algebra of G,

(5) <2g><2g*‘>:ne+xG, G=3>9.

D D G
‘The orthogonality relations for characters imply that if f and f are
related by (1), we must have

(6) 10) = < S 7 0o) -

Let f be a function on a group G and restrict ¥ to a subgroup A
of the character group. If H is the kernel of H, i.e., all & such that
x(h) = 1 for all % in H, we may define a function F on G/H by sum-
ming f over the cosets of H and apply the preceding formulae to F.

We note the following special cases:

(1) Let x be a character of order p°, p prime, b = 1, { a primitive
p’th root of 1, f a function on G with values in a field K such that
[K(Q): K] = ¢(p*) = ¢. Let F, = Xf(g), over all g with x(g) = £, and
let S; = 3220 Fiiq5, ¢ = p*'. Then if
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re— $an

with A, e K, so that the A, are uniquely determined, we have

1 nes :
") Fi:—1‘<si"‘]§Ai—:-qJ‘> p<1=p°
P =

the formula whose repeated application is equivalent to the inversion
formula (6) for a cyclic group.

(2) Let f(g) be as before, ¥, and ¥, two characters of order p
which generate a subgroup of order 2% { a fixed primitive pth root
of 1.

We let Fy; = 3. f(9) over all g with x(g) = ', x:(9) = . Let
> f(g9) =S, and let

Z Fi:f = Sm;k

m=it+kj

for k=1, p, o1+ oj=4). The S,.. can be determined by (7)
from S and the sum

Zf (@A) -
Then
1
8 Fij = — Sm,k —-S).
( ) D <m=§i;kkj )

(3) If f(g) is an algebraic integer for all ge G and ¥ ranges over
a coset of a subgroup H of the character group of G, order of H=m,
then

(9) m Exlf(g)x(g) .

For if y, is a fixed character in the coset, the sum in question is

Sixed F(OX@)X:(9) = F(@)X9) Sixe 2 X(9) and Zyez x(9) is m if x(g) =1
for all x e H, 0 otherwise.

If H is a subgroup of G, we will always denote by H the set of
all characters ¥ such that (k) = 1 for all e H, and vice versa.

If G is abelian, the group algebra of G is a direct sum of fields;
in fact the elements >\ gX(¢™") are eigenvectors for all the elements
of the regular representation of G. The eigenvalues of the incidence
matrix of a (v, k, \) configuration have absolute value V7, except for-
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one which is k; equations (4) are an explicit restatement of this fact
for abelian difference sets.

Call a subset D of a group G nonperiodic if D = Da implies a = e.
A difference set is nonperiodic. A multiplier of D is an automorphism
o of G such that (D) = Da, for some a, in G. (a, is unique if D is
nonperiodic.) When G is eyclic, all the automorphisms of G are of the
form o(g) = g™, (with m relatively prime to the order of G) and the
integer m is called a multiplier of D if ¢(D) = Da. The above defini-
tion is the obvious generalization to noncyclic groups of the notion of
multiplier (see [1]).

LEMMA 2. The multipliers of D are a subgroup M of the auto-
morphism group of G; a.., = a.7(a,) for ,7€ M. ¢ leaves a translate
Db of D fixed vf and only if a, = ba(b)™".

The lemma is obvious.

COROLLARY. If G is of prime order p, every set DS G has «a
translate which s left fixed by all the multipliers of D.

If G is of prime order, written additively, the only periodic subset
of G is G. Since the multipliers are a cyclic group, we may pick a
generator ¢ of the multiplier group. If this is given by (i) = k¢
(mod p), 1 — k& has a multiplicative inverse mod p, so if ¢D = Da,
(1 — k)b = a, then 7(Db) = Db.

The quadratic residues modulo any prime = —1(4) form a difference
set. In [7], E. Lehmer considered the existence of other difference
sets defined by power residues (mod v) if » is an odd prime. In parti-
cular, it was shown in [7] that if v = ef + 1, a prime, and if the eth
powers, or eth powers and 0, form a difference set (mod v), then the

multipliers are precisely the eth powers. The corollary proves a more
general statement.

THEOREM 1. Let D be a subset of Z,, p a prime, which is a union
of m multiplicative cosets of the eth powers, plus possibly 0. If ¢ is
the least number for which this is true, and ¢ > 1, the eth powers
are all the multipliers of D. If D is a difference set and q|(m, e)
then q°|e tmplies ¢*| m.

Proof. Replace D by a translate left fixed by all the multipliers.
Lemma 2 shows that if D has a nontrivial multiplier there is a unique
translate of D which it leaves fixed. Thus ¢ > 1 shows D must be a
set of multiplicative cosets of the set of multipliers, plus possibly 0.
Since the eth powers are certainly multipliers, the first statement
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follows from the minimality of e. If D is a difference set, we may
assume by taking the complement of D that 0¢ D. Then k = mf, and
mf(mf — 1) = ref, » = m(mf — 1)/e. Since mf — 1 is prime to m, ¢° | ¢,
q | m implies q°|m.

In the second part of the theorem, we did not have to assume e
minimal. For example, if ¢ = 4, m = 2 is impossible; in particular the
squares cannot form a difference set mod a prime of the form 4% + 1.
Hall [5] has constructed a family of difference sets with m = 3,¢ = 6.

Character sums. We first prove a well known theorem of a type
originally proved [2] for (v, k, 1) configurations (finite projective planes).
(See [3],[4].) The proof given is very direct and yields more in the
special case of abelian difference sets.

LEMMA 3. If 7 is an algebraic integer such that |7 =mn for
some integer n and (7)) = I Pfi, P, prime ideals, then II(P,P)* = (n).
If 1 belongs to the field of mth roots of 1 and p is a prime divisor
of n semiprimitive mod m then p occurs to an even power tn M, SQY
Pl n, and p*|7.

Proof. The first statement is obvious since 77 = n. If p is semi-
primitive mod m the prime ideal divisors of (p) in the field of mth roots
of 1 are invariant under complex conjugation. (p, m) = 1 implies that
(p) is not divisible by the square of any prime ideal, which proves the
lemma (cf. [8]).

We remark at this point that, with the notations of the lemma, if
d*|n and d is self-conjugate mod m then d |%. For if p | (d, m), p*|| m,
(p) is a power of a single prime ideal in the field of p“th roots of 1,
and this ideal factors into distinet prime ideals invariant under complex
conjugation in the field of mth roots of 1.

THEOREM 2. Let G be abelian, D a v, k, )\ difference set in G.
If v is even, m is a square. If p is a prime which divides n to
an odd power and q # p is a prime divisor of v, p has odd order in
the multiplicative group mod q.

(The conclusions that v even implies » is a square, and that p is
a quadratic residue mod q are known for arbitrary v, k, A configurations.)

Proof. If v is even, G has a character ¥ of order 2. |[x(D)|=n
implies n is a square, since (D) is rational. To prove the second part,
let x be a character of order ¢q. Since |¥(D)|* = n, Lemma 3 shows
that p cannot be semiprimitive mod q; the semiprimitive numbers are
precisely those which have even order in the multiplicative group mod gq.
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THEOREM 3. If v is a prime and D is a difference set mod v,
wnversion s not a multiplier of D. If v=-ef + 1 and D is a union
of m multiplicative cosets of the set of eth powers mod v, plus possibly
0, then f ts odd.

REMARK. Inversion is not a multiplier under much more general
conditions (see [8]; never if G is eyeclic). The conclusion that f is odd
is proved for the eth powers, and the eth powers and 0, in [7].

Proof. Replacing D by its complement if 0 e D, we may assume
0¢ D. Now replace D by a translate left fixed by all the multipliers.
Since inversion is a multiplier %(D) must be real for all %, and thus

= +1V'n if § # Y. This shows x(D), which lies in the subfield of
degree 2 over Q is left invariant by the subgroup of index 2 of the
Galois group of the field of wth roots of 1, i.e., by all the automor-
phisms of the form ¢({) = ¢, { a primitive vth root of 1, » a quadratic re-
sidue modv. Therefore y(D)=3"'y,'= >y, and 37 (y, —¥,.) =0.
Therefore y; = ¥,; for all 4 and any quadratic residue ». This shows
D consists of the set of quadratic residues or nonresidues (if D is non-
trivial). But this can happen only for v of the form 4%k — 1, and then
inversion is not a multiplier since it takes the residues into the
nonresidues.

If D is a union of multiplicative cosets of the set of eth powers
mod v and f is even, —1 is an eth power and hence a multiplier, which
we have just shown is impossible. This proves the last part of the
theorem.

If o is a multiplier of D, 6D = Da, and we have y(6D) = x(a)x(D);
in particular the factorization of the ideals (y(D)) is unchanged if we
replace D by ¢D. The following theorem is a partial converse.

THEOREM 4. Suppose D is a difference set in G, G abelian, and
o ts an automorphism of G such that the ideals (Y(D)) and (X(oD))
are the same for each character ). Then 1f there exists m such that
m|n, m>x and (m,v) =1, 0 1s a multiplier of D.

REMARK. We give below an example of a difference set in which
every automorphism leaves the principal ideals generated by the charac-
ter sums invariant, but the multiplier group has order 2 while the
automorphism group has order 96.

Proof. The theorem follows from the generalization of Hall’s
theorem ([5]; see also [8], [9], [12]). We repeat the proof, essentially
the one in [8]. In the group algebra of G, we let H = D (oD) — \G
(where D' = 3 ,ep97', 0D = > ,cp0(9)). Each character of G extends
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to a homomorphism of the group algebra, and Y(H) is nw()), with w(})
a root of 1 for every character Y. If ¥ = X, this follows from the
formula k* — v =mn. If } # %, we have y(H) = (D" (oD) = x(D)yo(D).
Since (x(oD)) has the same factorization as (x(D)), and x(D)x(D) = n,
we conclude that (Y(H)) = (n). Since |y(H)| = n, x(H) = nw()), with
w(x) a root of 1.

By the inversion formula (6), if H = Xh,g, we have

0 = = S EU0) = L S ) -

Since m | n, (m, v) = 1, we conclude m | h,. Since m >\ and 2, = —\
by the definition of H, h, = 0 for all g. We have seen before that
| X(H)|=mn for all characters Y is equivalent to the assertion >, h,h,, =0
for all s = e¢. Therefore only one h, # 0, since all 2, = 0. Clearly
that &, is n. Now

H + \G = D7'o(D) = MG = ng, .
Multiplying by D, we get

(ne + NG)oD = NG + ng,D
ne(ocD) = ng,D

so 0D = ¢g;'D.
We note here a consequence of (9).

THEOREM 5. Assume D is a difference set in G and that (X4(D)) =
(v(D)) for some monprincipal character + and all characters X in a
group H. If the order of H is relatively prime to n and the order
of 4, there exists g in G such that Yy(Dg) = (Dg) (or X@)xy(D) =
(D)) for all x in H.

Proof. We shall first prove the theorem for a cyclic group of
prime power order. Let ¥ be a generator of H, of order p"; we may
assume 7 is the least integer for which the theorem is not known.
Assume D is translated so that y*4(D) = (D) for all j, and let
Y (D) = w,Cyr(D), where { is a p"th root of 1 and w, is a root of 1 of order
prime to p. Then Yy (D) = w(D) if (7, p) = 1 because Yiy(D) is
the conjugate of Yy (D) under the automorphism which is the identity
on the field of roots of 1 of order prime to p (to which w, and (D)
belong) and takes p"th roots of 1 into their jth powers. Therefore
2yi(D) = wpr(D)erd, the sum over all § with 0 <j < p", (4,p) = 1.
trl is ¢(p7) if L =1, —p " if { is a primitive pth root of 1, and 0
otherwise. Since Y/y(D) = (D) if p|j, we get
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D’ ﬁxj WD) = (D) + wiyp(D)trg

(p, n) =1, Y(D) | » implies p" | p~" + w,trl, and therefore tr{ + 0,
¢g»=1, and w;, =1 (since p|1 — w,, and p = 2 implies w, = —1). If
{ =1, the theorem is proved; if { # 1, take any ¢ such that x(g) = .
Then ¥*4(Dg) = 4(Dg) because (?» =1, and Yy (Dg) = 4(Dg) for
(J, ) = 1 because Yy(Dg) = (Dg).

An arbitrary group H may be expressed as a direct product of
cyclic groups H;, with generators ;. It is clear from the above proof
that we can find ¢, in G such that xiy(Dg,) = 4(Dg,) for all j, and
%:(g;) = 1 for © # j, since the construction of g, involves only the value
of 7.g,). Then if g = IIg,, we have Y{y(Dg) = +(Dg) for all 1,7.
Replacing D by Dg for simplicity, we shall now show that xy(D) =
(D) for all ¥y in H. Let F be the set of all ¥ with this property.
If %, %, are elements of F' of order p”, p°, respectively, and generate a
group of order p™*°, p prime, » = s = 1, we show that this group is
contained in F. We may assume that r rnd s (and the ¥;) are picked
so that yixje F if p|+j, i.e., we take a minimal group for which the
theorem is not known. The ¢(p")¢(p®) = q characters yixj with (¢7, p) =1
fall into ¢(p°) equivalence classes, each consisting of all y™, (m, p) =1
for some ). The preceding result shows that >, ;= X" (D) = Ay(D),
with A one of ¢(p"), —p"", or 0. Now

P Xy (D) = (07 — v(D) + y(D) 3 A

the first term being the sum over all ¥ixi with p |, ¥(D) >, A being
the sum over the ¢(p°) equivalence classes. Since (D) |n, (p,n) =1,
we have p™**| YA —q. Since 0 = YA — q¢ = —p"d(s) > —p"** because
—p = A = ¢(p”) for all A, we must have A = ¢(p”) for all A, which
means all yixje F. We now conclude that F' contains all characters of
prime power order, by induction on the number of components.

An arbitrary character ¥ in H may be expressed as [[]7;, with ¥,
of order ¢,, the ¢, distinct prime powers. We prove by induction on
r that ye¢ F. We have seen that if »r =1, ye F. If the theorem is
true for » — 1, we have Yy (D) = { Xy (D) with £, a g, root of 1, by
the first part of the theorem, and %y (D) = (D) by the inductive
assumption. But (D) = (X (D) by applying the theorem for » — 1,
with y,4 playing the role of +r, and { a [[; ¢; root of 1. Since (D) =
(D) we conclude {, = {, which implies {{, = =1 and € F.

Abelian Hadamard matrices. An Hadamard matrix is a square
matrix H of order h with entries =1, any two distinet rows of which
are orthogonal, i.e., such that HH' = hlI. An Hadamard matrix may
be normalized to have first row and column consisting of just +1’s.
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The remaining matrix of order # — 1 has the property that the dot
product of any two rows is —1, and that the sum of the entries in
any row is —1.

Let M be the incidence matrix of a (v, k, ) design, and J the
matrix with all entries =1. The matrix 2M — J has entries 1 where
M has entries 1, —1 where M has entries 0 and

@eM — J)2M — J) = AMM' — 4kJ + vJ = 4nl + J(v — 4n) .

Thus the dot product of two distinct rows of 2M — J is v 4n. It
is clear that the matrix of order » — 1 derived from an Hadamard
matrix of order 2 > 2 by normalizing the first row and column is
equivalent to the incidence matrix of (v, k, \) configuration with
v+1=4dn, k=2n —1, x=mn — 1. Several classes of abelian differ-
ence sets with these parameters are known.

However, the question of the existence of difference sets whose
incidence matrix generates an Hadamard matrix without the normali-
zation has not been considered extensively in the literature. By the
preceding, these are defined by the condition v = 4n. In a recent paper
[10] Menon constructed two such difference sets (one for the direct product
of two dihedral groups of order six, the other one for the abelian group
Zs X Zg and noted the product theorem (Lemma 4 below). In [9] Menon
constructed such sets for the direct product of an even number of copies
of Z,. The connection with Hadamard matrices is mentioned in neither
paper. The author’s interest in the question is partly due to the
following theorem ([11]): if ; = +1, 1=4 =9 and |Sid e, ;| =1
for all 7 > 0, then if v is odd, v < 13; if v is even and >2, the ¢ for
which x;, = 1 (or —1) form a difference set (mod v) with v = 4n. (The
problem partly answered by [11] arose in radar design.)

By an abelian Hadamard matrix we mean the Hadamard matrix
derived from a difference set in an abelian group with v = 4n. (Then
n=N? v=4N? k= N@2N — 1), n= N(N — 1), if we normalize so
that 2k < v. We shall call such sets H sets for brevity. Note that we
have the formula k = (v — V'v(v — 4n) + 4n)/2; v even implies n must
be a square, and therefore the choice v = 4n leads to a simple family
of values for v, k, \.

LEMMA 4. Let D, be H sets in G, 1 = 1, 2. Then (D,, D,)U(D,, D,)
18 an Hadamard difference set in G, X G,. Conversely, 1f D; 1s a
difference set in G, (D,, D,) U (D,, D,) is a difference set in G, X G, if
and only if both D, are H sets. (D, denotes the complement of D,.)

The first statement follows from the fact that the direct product
of two Hadamard matrices is an Hadamard matrix; the second from
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the fact that if 4,4 = v,] + (v; — dn,)(J — I) for 2 =1, 2, n, # 0, then
(A, X A)(A] x A) = (0] + (v, — dn)(J — 1)) X (0] + (v, — dn,)(J — I))
is of the form vl + ¢J only if v, — 4n, = 0 for 7 =1, 2.

A more involved proof is given in [10].

Nonexistence theorems. In this chapter we shall prove several
theorems of the following general nature: if D is a (v, k, \) differ-
ence set in G and (m», v) > 1, there are bounds on the orders of charac-
ters of G. For example, if 2|(n, v), we can prove that under suitable
assumptions 0,(G) must be less than the exponent of 2 in v; in particular,
G cannot be cyclic. Our main interest is the nonexistence of H sets;
we use the previous notations: v = 4N? = = N

We remark that p| (%, v) implies that p|k, » and that (k, v)*|=,
since n =% — \ and k¥’ — 2w = n. We also note that if p is odd and
b =1, q semiprimitive mod p implies that ¢ is semiprimitive mod p°.

If % is a character of G of order s and D & G, { a primitive sth
root of 1, then x(D) = > Y,{!, where Y, is the number of elements
g in D such that x(g) ={'. Thus 0= Y, < v/s. The proofs of the
first two theorems below depend on this statement about the magnitude
of the Y, and would have direct analogues if the y, were not restricted
to be 0 or 1, (i.e., if we allowed multiplicities in D).

THEOREM 6. Let D be any subset of G such that m| (D) for
all characters ¥ in a group H of order v, (m,v,) =1, with % a
character of order v, >1, Yi ¢ H, for 1 =35 <w, and where not all
AA(D) =0 for ye H. Then 2w = mvw,, where v is the number of
distinet prime divisors of v,.. If v, =1, v = mv,.

Proof. The inversion formula (6) shows that each of the v, sums
Sy, .(g) taken over a coset of the kernel H of H is divisible by m,
since the sum over HFI is

L s 2o

2 XEH
and m (D) for all ¥ in ﬁ, (m,v,) = 1. Not all these v, sums are
0 since then, by another application of (6), all xx.,(D) would be. Let
S, be one of these v, sums which is not 0. If »,=1,S, is a sum of
the y, over a coset of H, S, # 0, and m|S,. Thus S, = m, and since
Vv, = Sy, V= m,.

For the rest of the theorem, we shall require the following lemma:

LEMMA 5. Let G be a finite cyclic group, f a functton on G
with tntegral values, and Y a generator of the character group of G.
Assume m | f(x) = Sgee F(@A), F(X) #0. Let r be the number of
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distinet prime divisors of the order of G. If 0= f(g) =b for all
g,m=27; of [f(9)| = b,m = 2.

Proof. Let G =G, x H,G, cyclic of order ¢ = p°%, order of H
prime to ¢q. Let ¢t be a generator of G,; x(g9) = { is a primitive gqth
root of 1. Then f(x) = 3\ F(i)¢}, with F(3) = Syen f(ht)2(h), m| F (1) =
SHF(2) — F(§(1))EF, where ¢ = ¢(q) and ¢ < j(3) = ¢, §(2) = i(mod p*7").
Since the order of H is relatively prime to ¢, is of degree ¢ over
the field generated by the F'(7) over Q. Thus m|F(t) — F(j(¢)) for
all ¢, and at least one of the F'(¢) — F'(j(¢)) is not 0; we pick one
such index ¢. Now if » = 1 the lemma follows because F'(1) — F'(5(7))
is an integer divisible by m and bounded by b if 0 = f(g) < b, by 2b if
| f@)| =b. If r >1, His a cyclic group whose order has » — 1 distinct
prime factors, and ) restricted to H is a generator of the character
group of H. But m|F (1) — F(j(1)) = Xuen (f(hE') — f(RE)))(h), and
the lemma follows by induction on 7 since now | f(ht?) — f(ht?))| = b
if 0= f(g)=b, =2bif |f(g)]=0b.

Returning to the proof of the theorem with v, > 1, we pick S, as
before. We may write S, = 31 Y,{¢, with { a primitive v,th root of
1 and Y, the number of elements g of D in the chosen coset of the
kernel of the group generated by H for which (g) = . Since %
and A generate a group of order »,v,, there are v/v,v, such elements
in G, and therefore at most that many in D. Thus 0 =Y, < v/v,0,,
and Lemma 5 implies that m < 2 v/v,v,), which proves the theorem.

This proof depends on the simple structure of the irreducible poly-
nomial for a p™th root of 1.

COROLLARY 1. Let D be a difference set im a group G which has
a character of order v,. If m*|n and m s self conjugate mod v,,
then vym < 2", where r 1s the number of distinct prime divisors

of (m, v,).

If D is a difference set (D) = 0 for all ). Let ¥ be a fixed
character of order v, and let ¥ = Y%, where the order of %, is the
product of the distinet prime power divisors q; of », for which (¢,, m)>1,
and the order of y, is relatively prime to the order of %,. If follows
from the remarks after Lemma 3 that m | (D) for any character y of
order dividing v,, and thus in particular m | ¥{).(D) for all j. Theorem
6 shows that 2'v = mw,.

In [5], Hall listed twelve sets of (v, k, \) with k < 50 for which
the existence of a cyclic difference set had not been decided. The
theorems in [8], [13], [14] showed there were no cyclic difference sets
for all the sets of (v, k, A) with the exception of (120, 35, 10).
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As an example of the above corollary, we see that there is no
abelian difference set with the parameters (120, 35, 10). For an abelian
group of order 120 = 2%- 3 -5 must have a character of order 30. Since
n =25 and 5= —1 (mod6), the existence of such a difference set
would imply 30-5 < 120 by the corollary (m = 25, v, = 30).

COROLLARY 2. There is no cyclic H set +f N 18 a prime power.
If an H set exists with N = 2%v = 2*%) we must have 0,(G) = a + 2.
If and H set exists with N = 3%, 0,(G) £ a + 1; tf we assume also
that o,(G) = 1, we can conclude 0,(G) =< a. If an H set exists with
N =p% p a prime =5, 0,(G) = a.

Proof. If there is an H set with N = 2% 0,(G) = b, put v, = 2%,
m = N in Theorem 6: we conclude 2% =2 or b<a+ 2. If
N = p% p an odd prime, and 0,(G) = b we conclude similarly 4p* =
Pt or pb < 4p®. Thus p =<4, so b=a if p=5, b=a+1 if
»=3. If also 0(G) =1 (as when G is cyclic) there is a character of
order 2 and we can put v, = p*, m = N, v, = 2 in Theorem 6: we get
4p* = 2p°*, or p* = 2p°, and b = a for p > 2.

COROLLARY 3. If there is an H set with N = p°M,M,, with M,
self conjugate mod p° and p*~* > 4M M;, then ¢,(G) < b.

Proof. Apply Theorem 6 with v, = p*, m = p°M,, v, = 1; we con-
clude 4p** MM} = p***M,.

COROLLARY 4. There is mo cyclic H set 1f N = p“M,M,, p odd,
M, self conjugate mod p, and p* >2M,M;. If p and all prime divisors
of M, are of the form 4k — 1 there is mo cyclic H set i1f p* > M, M?.

Proof. The first statement follows from Theorem 6 with v, = 2,
v, = p*,m = p°M,. For the second statement we first make the
following observation: if ¢ = —1 (mod 4), ¢* == —1 (mod B), then ¢
is semiprimitive mod AB if and only if the same power of 2 divides
both » and s. If p =4k — 1, (1/2)¢(p**) = r is odd. Now if ¢= —1
(mod 4), ¢ = —1 (mod p), we conclude ¢" = —1 (mod 4p*). Now put
v, =4, v, = p*, m = p°M, in Theorem 6. We conclude MM} = p*
contradicting the hypothesis.

Theorem 6 also gives a simple proof of Theorem 7 of [8]:

COROLLARY 5. If p|(n,v), v = p*v, with p semiprimitive modv,,
then there exists mo cyclic difference set with parameters (v, k, \).

Putting p¢ v, p* of the corollary equal to v, v,, m, respectively
in Theorem 6, we conclude p°v, = p**Pv,, or 1 = p°.
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Other examples of Theorem 6 can easily be given. For example
(since 3= —1(mod5),5 = —1(mod 3)), there is no cyclic set with
N = 3°5°M if 3°5° > 2M°.

We note an analogous theorem which can be proved in the same
fashion.

THEOREM 7. If % is a character of G of order v, > 1,v, = [[Iq,
with q, powers of distinct primes and D is a subset of G such that
AD) = w IT5-, G249 A, CHA,,; rational integers, {; a primitive q;th
root of 1, them 2w = v, [[;-, max; A, ;.

The preceding results depended on elementary considerations about
the magnitude of the characteristic function of a difference set summed
over a subset of the group. We shall now prove a result which depends
only on the fact that the characteristic function has integer values,
with no restrictions on the size of the integers.

It is easy to see that the only algebraic integers in the field of
2"th roots of 1,m =3, of absolute value 3* are of the form
w3 (1 + 21V —2), 0 = b < a. (Note that V' —2 = ¢ + ¢ { a primitive
8th root of 1.) Thus, since | A+ BV —2| = 3™ implies A4*+ 2B*= 3",
max A?, B> = 3!, and theorem 7 implies there are no H sets with
0,(G) =2t + 2 if N = 2'3% and 2" > 3!, However, we shall remove
any magnitude restrictions and prove that there are no H sets with
0,(G) =2t + 2,t =1 if 2°||N.

We first make the following remarks: if p is a prime and &, \, v
are integers such that k> — v = n, k— A=, and p | (n, v) then p | (k,\);
since k(k — 1) = M(v — 1), and p does not divide £ — 1, v — 1, p divides
k and )\ to the same power, say »"||k,». Thus p"|n. Assume that
P || m; then

(a) 2r > S implies p5"||v

(b) 2r < S implies p"|| v
and in either case the power of » which divides » is less than S/2.
Finally

(¢) 2r =S implies p"|v.

In case (c), assume further that »p = 2. Then % is a square (by
Theorem 2); if k = 27k, n = 2n} with k,, n, odd we get 2"(k} — n}) =
Av. Since 27|| A, we conclude that 272 |v, as ki — n} = 0 (mod 8).

We shall now show that if D is a difference set such that 2| (%, v),
and 2 divides k* and % to the same power, then the group G cannot
have a character of order 2%, where 2%|| v; in particular, G cannot be
cyclic.

Let D be a difference set, and assume p‘ || k, V'n, p**5||v with ¢ = 1.
Then we know that for p = 2,S = 3. Let ¥ be a character of G of
order p**S, and let Y7 be the number of elements g of D such that
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Li(g) = x5~ = {7, where {;, = exp (279/2"), for 1 < h <t + S. Then
1(D) = ST Yy, T =29,

LEMMA 6. If 207¢|| Y} for some m,a >0 then 2!7°7#|| Y ¢ for
h+j3=t+ 8.

Proof. We note the formula

(10) Vi = Y+ Yﬁ; — Yis ¢ = 2h

which follows from Y!=Y:" + Y. But x,.(D)= 3¢ (Yr+-
YroCr,. Since 2°|| X4+ (D)| and there is only one prime ideal which
divides 2 in the field Q({,,), we conclude that 2¢|y,..(D) and therefore
20| Y — Y, 1 = m < ¢, since the {}.,, 1 =<4 = ¢, form an integral
basis for Q(,,,). Thus 27¢|| Y} a >0 implies 27| Y}:** and by
induction 2¢7¢79 || Y7 for h + 75 <t + S.

COROLLARY. 2¢|Y5 for all m.

For if not, put j =t in the lemma; this would imply Y5"S is not
an integer.

LEMMA 7. Assume D is a difference set such that 2| n,v, 2* || n, k?,
245 |v, S = 0. Then S = 3, and there exist integers Z, such that

'iZ$%=M' l=<h=S T=2

(11) NZ=k
k., M odd integers, 25| ki — M.

Proof. We have seen that 2'|YS. Let Z,=27'YS k, = 27k,
M* = 27%n, Then equations (11) are a summary of the known properties
of D; the fact that 25|k} — M* follows from k*— n = v, and
20k, N, Vi

THEOREM 8. There are no sets of integers Z,, k,, M which satisfy
(11) for S = 3.

Proof. Let Z,=>rZ, (i 0<i<T—1. Then Z, =k, |Z,|=
M for ¢ > 0. The latter equations imply (e.g., by (3)) that

- za o Ki— MP
XZ= M B
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The assumption 25|k} — M?* implies therefore that ¥Z2 is even. Since
the Z, are integers and ¥Z,, is odd, this is impossible.

COROLLARY. If D isa difference set and 2!| k, V'n, 245||v, t = 1
then 0(G) <t + S. In particular, there are no cyclic difference sets
for such values of v, kn.

This follows from the theorem and Lemma 7.
We remark that Lemma 6 holds for arbitrary primes.

Existence theorems. We shall now give some existence theorems
for H sets. We denote Z, x Z, by K,.

THEOREM 9. The following are abelian H sets for N = 21, h > 1:

1) All h-tuples with an odd number of zero components, G =
I k11 Z.

(2) The subset of GF(2*) x GF(2") consisting of all pairs (m, +
My, MyM,), M; € GF(2%).,

Proof. The set {0} is an H set in K, or Z,; by Lemma 4 (taking
Kronecker products of the Hadamard matrices) we get the first state-
ment.

To prove the second statement, let ¢ = 2*. The set D = all (i, +
m,, m,;m,) is easily seen to be the set of points which lie on one of
the ¢ + 1 lines in the affine plane GF'(q) X GF'(q)

L.: X=0
L,: Y=mX+m meGF(q) .

All these lines have distinct slopes, and it is easily verified that
each point in D lies on precisely two of these lines. The number of
points in D is ¢(q + 1)/2, since there are ¢ + 1 lines of ¢ points each,
and each point lies on two lines. (Note that here 2k > v.) We now
consider DN D + a for ae G, ¢ not the identity. If the vector a is
parallel to L, (where e GF(q) or &« = ), then Pe L, implies P +
aeL, 1If B+#a, LgNLs+ a will be empty, since Lg+ a has the
same slope as Lg, but Lg + a = Lg only if the slope of a = the slope
of Lg. Any line not one of the L, contains ¢/2 points of D; for it
intersects ¢ of the lines L,, and each point of intersection lies on
precisely two of the L,. Count all the points of DN D + a twice:
there are ¢ points on L,, and ¢/2 on each of the other g lines. There-
fore D N D + a contains q + ¢(q/2) points each counted twice, and the
order of DN D + a is (¢* + 2¢)/4 for a # 0, independent of a; clearly
n= q¢’/4, v = 4n.



CHARACTER SUMS AND DIFFERENCE SETS 337

If D is a difference set with v even, n is a square, and an obvious
possible value for the (D) is w(x)V'n for X # X, with w()¥) an ap-
propriate root of 1 for each %. (w()) must have order dividing the
order of %, or twice it if the order of yx is odd; (m,v) =1 implies
w(x™ = w)™.) If v=4N* k= N@N — 1) we must have

_ 1 _ 7
b= (2N — 1+ 3 wi)T0)
if y(D) = w(x)N, where |w(x)| = 1 for any H set, and w(Y) is a root
of 1 if we assume (X(D)) = (IN) for ¥ # %.

We now note a simple lemma.

LeMMA 8. Let D be an H set in G, G, normal tn G of index 4.
If (x(D)) = (N) for Y + % and G, in the kernel of ¥, then the numbers
of elements in the cosets of G, are

N N* N* NN —2)
12) G )
or
(13) <N(N—1) N(N -1 N(N —1) N(N+1)>
2 ’ 2 ’ 2 ’ 2 )

Only the second case can arise tf N 1is odd.

This is a trivial application of, for example, formulae (7) and (8).
The first case arises if G/G, = Z, and (D) = +iN or if G/G, = Z, X Z,
and the three characters of order 2 on G/G, do not give equal character
sums. The formula (12) does not yield integers if N is odd.

This lemma is proved incorrectly in [10]; the assumption on (D),
if G/G, = Z, is not explicitly stated.

We shall now describe certain difference sets in the abelian groups
of order 36 which have no elements of order 9. It will be convenient
to consider Z, X Z, as an affine plane (over the field Z,); we denote it
by A,. We shall refer to these sets as Q sets.

Let G, be K, or Z,, and let 0,1, 2,3 be the elements of G,. In
the affine plane A, take four lines L, 0 <% =3, one of each slope
(i.e., four distinet mutually intersecting lines). Let S, be the comple-
ment of L, in A4,,S; =L, for 1 =1,2,3. We let D be the subset of
G, X A, consisting of all pairs (7, 2) with #eS;,,0 =<7 =<3. It is not
hard to verify that D is an H set; this will be shown in the course
of Theorem 12.

We now enumerate Z, in the usual manner by ¢=0,1,2,3, and
let 0=1(0,0),1=1(0,1,2=(1,0,3=(1,1) in K,. We let @, be the
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Q set in Z, X A; for which L, is X=0,L, is Y=X,L,is Y =2X
and L; is Y = 0. Q, is like @, except that L, is X = 1. @, is like
@, except that L, is Y =1. @i, Q), Q; are the Q sets in K, X A, defined
like Qly Qz, Qs-

We call two subsets D,, D, of a group G equivalent if D, = (¢D,))«,
where ¢ is an automorphism of G and a€cG.

THEOREM 10. Any Q set is equivalent to one of Q, or Qj, 7=
1, 2, 3; these are imequivalent.

We first prove a simple lemma.

LEMMA 9. Assume there are N + 1 distinct mutually intersecting
lines L, (t.e., one of each slope) in the affine plane GF(N) X GF(N),
(N any prime power), such that any point in the plane lies on not
more than two lines; then N is even.

To prove the lemma, fix one of the N + 1 lines, say L,. It con-
tains IV points of the plane and intersects N of the lines L,. Since a
point lies on at most two of the L,, each point of L, lies on precisely
two of the lines L,. This proves any point of the plane lies on none
or two of the lines L;. Now take a line parallel to L, but =L, It
must intersect all the L, except L,; each point of intersection is on
two of the L;, and there are N intersections; thus N is even.

We now return to the proof of the theorem.

Every automorphism ¢ of G, X A; induces automorphisms a,, ¢, on
G, and A,, respectively. In an arbitrary @ set, the element of G,
which corresponds to S, is determined (it is the only element z of G,
for which there are six elements (z,y) in the set). Lemma 9 shows
that the four lines L; have a point P of triple or quadruple intersection,
necessarily unique, and it is also uniquely determined by the Q set.
Since L, is uniquely determined by the set, we see that the sets Q,,
Q! are indeed inequivalent. To show that any @ set is equivalent to
one of @;, Q}, we first translate the @ set so that the identity element
of G, corresponds to L, and the point P of A, corresponds to the origin
of A,. We now observe that the automorphism group of A4, is transitive
on quadruples of distinct slopes: given four distinct lines through the
origin, we may clearly transform the first and second into X = 0 and
Y = 0, respectively, by an automorphism (since A; is a vector space).
If it is necessary to interchange the other two slopes, the linear
transformation S which takes (x, y) into (x, —y) ((x, y) e A,) will leave
the X and Y axes invariant but will interchange the other two lines
through the origin. If four of the lines L; go through P, we have
shown the @ set is equivalent to @, or @;. If one of the L, does not
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contain P, we first apply an automorphism to A; which will transform
the slopes to correspond to the slopes of Q; or @}, © =1 or 2. If the
line L, which does not contain P now coincides with the corresponding
line in @, or Q) we have shown the desired equivalence; if it does not,
we apply the inversion automorphism to A,. This will leave invariant
the lines through the origin, and take a line not through the origin
into the other line parallel to itself and not through the origin.

THEOREM 11. The multiplier groups of Q. Q,, Qs; Q!, @, Q are
of orders 4,2,2;12, 6,6, respectively.

It is clear that a multiplier of any of the @;, Q) must leave the
sets fixed, since we have seen that identity elements of G, and A, are
special elements of the sets. We have also seen that the automorphism
group of A, is transitive on quadruples of slopes, and only the trans-
formations +1I of A, leave all the slopes invariant. A multiplier of
one of the @, or Q! restricted to G, is a permutation = of 0,1,2,3
(which leaves 0 fixed); the permutation of the slopes of the L; in 4,
must induce the same permutation of 0,1,2,3. We can always find
precisely two automorphisms of A,, ¢ and (—I)o, which leave the Y
axis fixed and take the slope of L, into that of L.;,t=1,2,3. If
the L, all go through the origin both (z, o) and (z, (—I)o) will be
multipliers. However, if one of the L, does not go through the origin,
only one of these two automorphisms will take @, or @} into itself
(the other will take the L, not through the origin into the line (—1I)L;).
The theorem now follows because Z, and K, have 2 and 6 automorphisms,
respectively.

TueCcREM 12. The only H sets for which N 1is anm odd prime,
satisfying the condition (Y(D}) = (N) for all y # ), are the Q sets
described above and their complements, if G is abelian.

Proof. We have seen that if N is an odd prime and an H set
exists with # = N’ then 0,(G) < 2, (Corollary 1 of Theorem 6). Thus
G must be K, X Zy X Zy or Z, X Zy X Zy.

We shall assume that k' = N(2N — 1) (by taking the complement
of the H set D if necessary). We consider first G = K, X Z, X Z,,
and write abed for ¥Y.,s..q With @,be Z,, ¢,de Zy. We let Y., % be
the characters of order 2 defined by y%.((1,0b, ¢, d)) = (e, 1, ¢, d)) =
—1, for all a,b,¢,d. We may assume D is translated so that y.(D) =
2e(D) = N (since they are both - N, being rational integers of absolute
value N). Lemma 8 then shows that ¥,%s(D) = N, since N is odd.

Let ¢ be a fixed primitive Nth root of 1, and define ¥y, % by
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XN((ar by C, d)) = Cc
X=((a, b, ¢, d)) = {*
¢, d being integers (mod N). For 0 < k < N, let

Xe = XNXZQ .

For any nonprincipal character x, (x(D)) = (N) and | x(D)| = N, so that
X(D) = wN for some root of 1, w. We may thus write

X(D) = u, LN

for k=1,-++, N, oo, u, = 1. By Theorem 5, if ¥, is any character

of order 2 we have %, x:.(D) = +£%«(D) (put ¥, = 4 in Theorem 5). We
may therefore write

XaXeXi(D) = 40N
XoXi(D) = w, SN
XeXi(D) = v, LN
with v, w,, t, = 1.

We first prove that >,u,= -1+ N(k=1,---,N, «). For
N 255 AwXi(D) = N@2N — 1) + 3 s XiD), %, J (mod N). But if
Le(D) = w, LN then yi(D) = u,{**N for 7 = 0(mod N) (as in the proof
of Theorem 5) and therefore 3% Xi(D)= wuN(—1+ 0y, N). Thus
N2 —N + >, —u,N, and N |1 + >, 4,. Therefore Ju, = —1(mod N),
and Yu, is not more than N -+ 1 in absolute value, since u, = %1 for
all k. Since N is odd, 2u, is even, and therefore Ju, = —1 — N or
—1 + N. Thus all the u, are —1 or all but one are 1.

Similarly each of Xwv,, Jw,, 2t, is 1 + N; the argument is the
same, but the term which corresponds to ¢t =7 =0 in e.g., the sum
Svivi XX x(D) is now N instead of N(2N — 1). The v, are all +1
or all but one are —1; the same is true, independently for the w,
and for the ¢,.

We shall write 6, for d.ix,.,, and 4 for 3,0,. 4 and the J,
depend on ¢, d. We shall refer to the set of ¢, d such that ¢ + kd =
¢, as line k; these are the points of A, for which 6, =1. 4 is the
number of the lines £ on which the point ¢, d lies.

Now the inversion formula gives

1

10¢d = Nz& L ﬁ S (NG, = (s + v, — w, — t,)

Oled=N—-1, 1
oN TN

1led = Nz& 1, Z}vz (NO, — 1)ty + ty — v, — wy) «

Ek:l (N6, — D(up + wy — v, — Ty)
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The first of the above formulae, for example, is

1 _
00cd = ——— D
ed = —— 3\ 1(D)(00cd)

k

— 1 % 7 T i
= 1 U5 (D) + a2i(D) + %tiAD) + 12:24(D))

T4, 0, ¢, &)+~ (D) + 1u(D) + 1(D) + 2:tsD))
since X4(0, 0, ¢, d) = %,%:(0,0, ¢, d) for any %, of order 2. The last
term is (N(2N — 1) 4+ 3N)/AN?, the first term in the formula for
00cd; the sum is clearly (1/4N?) 3\, Do (Uy + v + Wy + )L kN « {074
(with the convention {° ¢ = {~%) which reduces to the first formula.
The above follow similarly, except that e.g., Y.X:((1,0,c¢, d)) =
XaXeXi((1, 0, ¢, d)) = —xu((1, 0, ¢, d)).

It is clear that finding an H set D of the required type is precisely
equivalent to finding u,, v,, w,, t, all +1, and ¢, mod N which yield 0
or 1 in all the above equations. We shall now consider all the possible
types of solution (using the symmetry of the v, w;, {, in the problem).

I. u’k: —‘1, ’l)k:wk:tk=1 fOI‘ all k.
Then
00cd = 4
2

10¢d = Oled = 1led = 1 — é )

Since 00cd must be 0 or 1, any point ¢,d must lie on none or
two of the lines k; but Lemma 9 then shows N is even. For another
proof, note that these formulae show the resulting Hadamard matrix
would be equivalent to a direct product of an N x N matrix
((2(00cd) — 1)) by the 4 x 4 matrix 2I — J, which requires the N X N
matrix to be Hadamard, i.e., N =1 or N even. This case suggested
the construction in Theorem 8.

II. U, = —1,v,=w,=1,¢t, = —1 for all k, except ¢, =1.
Then

00cd = _;_(1 +0,)

and 00cd = 1/2 for c¢d not on line m, which is impossible.

. w, = —-1,v,=1,w, =%, = —1 for all k, except w; =¢,=1.
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Then

100d:1—_;_(4—6,»+5m).

If 5 = m,10cd is fractional unless each point which lies on one
of the lines k lies on at least one other. But this would mean each
point of one of the lines k¥ would lie on precisely two, and by Lemma
9 this would mean N is even. If 5 ## m, the formula

1
Oled = %(A— 05— 0.) = 3 b

k#5,m

shows that any point on one of the N — 1 lines k, but 7, m must
lie on another. Since any one of these N — 1 lines intersects the
others in at most N — 2 points, this is impossible.

IV. U, = v, =w, =t = —1 for all k, except ¢, =w;,=v,=1.
Then

1lcd:—;—(1+5m—§n—3,~).

If c¢d is on none of the lines 7, m,n we have 1lled = 1/2, which
is impossible. But these three lines contain at most 3(N — 1) + 1
points, and for N > 2, N* > 3N — 2, so such a point exists.

V. Uy =V, = W, =, =1 for all k, except u, = —1.
1 0
00cd = — =+ 4 — 2%
2 + 2

and 00cd is not an integer for ¢d not on line &.

VI. u, = v, = w, =1,¢t = —1 for all k, except u, = —1,¢, =1
00¢d = %(A 0, +8,).

If m = h, N is even by Lemma 9. If m = h, > ... 0, must be
an integer for all ¢d which was shown impossible in III.

VII. uk:’l)k:l,tk:wk:—l
for all %k, except u, = —1,¢t, =w,; =1.

00¢d = _;_(1 0, + 8, — 8y

so for a point not on lines %, 5, m we would have 00cd = 1/2, as in IV.
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VIII. U, = 1, Vp = Wy = tk = ”‘*1

for all %k, except u, = —1,¢, =w;,=v,=1.

We have
_ 1 1
00¢d = 1 — E(A + 8,) + E(&n + 0; + d,)

Oled = _]2;(4 o 48, — 6, —8,)

and the two formulae analogous to Oled. First, we note that # is
not equal to any of j, m, n: forif say j = h (by symmetry), we would
have Oled = (1/2)(4 — 6,, — 0,) = (1/2) Ditm.n 0r and this is shown im-
possible in III. Second, we note that j, m,n are distinct: again, by
symmetry, if say j = m we would have 0led = (1/2)(4 — 6, — §,) as
before.  Therefore j, m,n,h are all distinct. But then 0led =
(1/2)(Xkmomnni Ox) + 0; and the sum in parenthesis must be an even
integer for all ¢d. This is impossible (as in III) if there are more
than 4 lines in the plane; but if N = 3, the sum is zero, and the
formulae reduce to

00¢cd =1 — 46,
0led = 0;
10¢d = 0,
lled = 0

m

which clearly give 0,1 values for any choice of the lines &, 7, m,n
(one of each slope) for all ¢, d.

We now turn to the group Z, X Zy X Zy = 7Z, X Ay. We write
abe for Yuu,0,0€Z,b,c€Zy. We define the characters ¥, k=
1, .-+, N, o of Zy X Zy as before. We let 4 be a fixed character of
order 4. We have

Xk(D) = ukNCEk
“/fg)(k(D) = v, Ng®

with 4, v, = =1. Again we get >,u,= —1=x N, >, v, =1+ N.
By Theorem 5, (with ¥, = +) we conclude that x,(D) = wy.(D) with
w a fourth root of 1; write +y.(D) = w,Ni*{%, with a, = 0 or 1, and
w, = =1, Lemma 8 shows we may normalize the set so that (D)=
¥ (D) = N.

We use the >, >;; to denote the sum over those values of & for
which a, = 0 or a, = 1, respectively. As before, the inversion formula
gives
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Obe — sz\; L, % S (s + w)(NG, — 1)
2b¢ — % + % S (s — (N3, — 1)
1be = Nzl; 1, 2—}\,— S (s + w(NO, — 1)
3be — Nz_l;l + % 33 (e — w,)(NG, — 1)

since for example, in the first formula, ). (D) + (D) =0 if
YD) = £4C°*N. (As in Theorem 5, ). (D) is the conjugate of
¥YA(D) under the automorphism o defined by o(i) = —1,0Q) = ).
But then, since 4| %(D) + (D) + ¥2(D) + v (D), 4| (u, + v)NCs,
80 U, = —v, if YD) = 2i(D). If (D) = +x(D), we conclude
Uy = Vpo

By considering 0bc & 2b¢ for any be we conclude that >, u, =
O(mod N), and >, w, =1 (mod N). The second of these shows there
exist values of k& which occur in >3, i.e., for which ). (D) = i) (D).
Since >y U, + Sy u=>.u,=—1+ N, we conclude >,;u,=
—1(mod N), so that there exist values of %k which occur in >};;.
The formula for 1b¢ — 3bc shows >%;; w, = 0(mod N).

Su,=—1+=N; if Su,=-1—N,u,=—1 for all k, and
St =0 (mod N) implies there are N values of k¥ which occur in
>.r (since there is at least one). We would then have precisely one
value of k£ in 3>};;, which would imply >, w, = +1; but >, w, =
O(mod N). Therefore we must have > u, = —1 4+ N. Now >, u, =
O(mod N) would imply >,;u,= N or 0. The first of these would
imply there are N values of %k in >, therefore >, w, = +1, which
would contradiet 3, w, = 0(mod N). Therefore 3%, u, = 0, and there
are two values of kin >};,, N — 1 in >};;. But since 3, w, = 1(mod N),
Sw,=1=% N, to get >,;; w, = 0(mod N) we must again have >, w, =
0, and there are two values of k£ in >};;. Therefore N = 3.

There are two values of k in >, and >, = 0. Pick the two
generators of Zy X Zy so that w,= —1,u,= +1, with 3, < the
values of &k in 3, i.e., Xu(D) & xxu(D) for k=38, co. w, + w, =
1—-3= -2, so w; = w, = —1. Therefore w, + w, =0, and by ap-
plying the automorphism (z, y, 2) — (x, ¥, —2) we may assume w, = 1,
w, = —1.

The formulae now reduce to (with notations as in the first part
of the theorem)

0bc =1 — 6,
2bc = 6.,
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1b¢ = 0,
3bc = 0, .

Clearly, any choice of the lines gives a difference set.

COROLLARY. The @ sets are the only abelian H sets with N a
prime of the form 4k — 1.

Proof. By Corollary 1 of Theorem 6, we must have o, < 2. The
characters of G must all have order dividing 4N; if N is a prime of
the form 4k — 1, N remains prime in Q(z), and the only integers of
absolute value N in the field of 4Nth roots of 1 are wN, w a root

of 1. Thus (x(D)) = (N) for all ¥ #* %, and the corollary follows from
Theorem 12.

We remark that given a set of values of v, %k, N and an abelian
group G of order v, one often very useful way of constructing differ-
ence sets in G with the given parameters is to construct first all the
sets of algebraic integers which might be the x(D), and then to con-
struct D from these. Theorem 12 is an example of this procedure.

THEOREM 13. Let G =I1;Z, 11 Z, 11! Z; [1* Z,, with » = ¢, r — ¢
even, r —t + 2s = 2q. Then there is an H set in G.

Proof. The following two subsets of Z, X Z, are inequivalent H
sets:

(00, 10, 20, 50, 01, 61)
(00, 10, 21, 51, 01, 61) .

The theorem now follows from the previous theorem by Lemma 4.
It is easy to check that all the H sets of Theorem 13 satisfy the
condition (x(D)) = (N) for all ¥ - Y.

Addendum. “The case r =1 of Theorem 6 has been obtained
independently by methods similar to those of this paper: K. Yamamoto,
Decomposition fields of difference sets, Pacific J. Math., 13 (1963),
337-352, and R. A. Rankin, Difference sets, Acta Arithmetica, 9 (1964),
161-168. The second paper also contains a special case of Theorem 5.”
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