ISOMETRIC ISOMORPHISMS OF MEASURE ALGEBRAS

ROBERT S. STRICHARTZ

The following theorem is proved:

If G_1 and G_2 are locally compact groups, A_i are algebras of finite regular Borel measures such that $L^1(G_i) \subseteq A_i \subseteq \mathscr{M}(G_i)$ for i = 1, 2, and T is an isometric algebra isomorphism of A_1 onto A_2 , then there exists a homeomorphic isomorphism α of G_1 onto G_2 and a continuous character χ on G_1 such that $T\mu(f) = \mu(\chi(f \circ \alpha))$ for $\mu \in A_1$ and $f \in C_0(G_2)$.

This result was previously known for abelian groups and compact groups (Glicksberg) and when $A_i = L^1(G_i)$ (Wendel) where T is only assumed to be a norm decreasing algebra isomorphism.

A corollary is that a locally compact group is determined by its measure algebra.

If G is a locally compact group with left Haar measure m, then the Banach space $\mathcal{M}(G)$ of finite complex regular Borel measures (the dual of the Banach space $C_0(G)$ of all continuous functions vanishing at infinity on G) can be made into a Banach algebra by defining multiplication of two elements $\mu, \nu \in \mathcal{M}(G)$ to be convolution:

$$\mu*
u(f) = \iint f(st)d\mu(s)d
u(t) \qquad ext{ for } f\in C_0(G) \;.$$

The subspace $L^{1}(G)$ of all measures absolutely continuous with respect to m is a closed two-sided ideal and hence a subalgebra.

In [1; Theorems 3.1 and 3.2] it is shown that if G_1 and G_2 are either both abelian or both compact, then any algebraic isomorphism T of a subalgebra A_1 of $\mathscr{M}(G_1)$ containing $L^1(G_1)$ onto a subalgebra A_2 of $\mathscr{M}(G_2)$ containing $L^1(G_2)$ which is norm-decreasing on $L^1(G_1)$ has the form

$$(*) T\mu(f) = \mu(\chi(f \circ \alpha)) \mu \in A_1 f \in C_0(G_2)$$

where α is a homeomorphic isomorphism of G_1 onto G_2 and χ is a character on G_1 . In this note we shall prove that (*) holds where T is assumed to be an isometry but G_1 and G_2 may be arbitrary locally compact groups. Our starting point will be the theorem of Wendel [2; Theorem 1] that any isometric isomorphism $T: L^1(G_1) \to L^1(G_2)$ is of the form (*).

THEOREM. If G_1 and G_2 are locally compact groups and T is an isometric isomorphism of a subalgebra A_1 of $\mathscr{M}(G_1)$ containing $L^1(G_1)$

Received March 8, 1964.

onto a subalgebra A_2 of $\mathscr{M}(G_2)$ containing $L^1(G_2)$ then T has the form (*). Conversely, the equation (*) defines an isometric isomorphism of $\mathscr{M}(G_1)$ onto $\mathscr{M}(G_2)$ for every choice of α and χ .

LEMMA.¹ Let $\mu, \nu \in \mathcal{M}(G)$. Then $\mu \perp \nu$ if and only if $|| \mu + \nu || = || \mu - \nu || = || \mu || + || \nu ||$.

Proof. Suppose $\mu \perp \nu$. Then there exists a disjoint partition of G into sets A, B such that $|\mu|(B) = |\nu|(A) = 0$. Thus

$$|| \mu \pm \nu || = | \mu \pm \nu | (G) = | \mu \pm \nu | (A) + | \mu \pm \nu | (B)$$

= | \mu | (A) + | \nu | (B) = || \mu || + || \nu ||.

Conversely, assme $|| \mu + \nu || = || \mu - \nu || = || \mu || + || \nu ||$. Let $\mu = f\nu + \mu_s$ where $f \in L^1(\nu)$ and $\mu_s \perp \nu$ be the Lebesgue decomposition of μ with respect to ν . Then

$$\| \mu \pm
u \| = \| \mu \| + \|
u \| = \| f
u + \mu_s \| + \|
u \| = \| f
u \| + \| \mu_s \| + \|
u \| .$$

But $\|\mu \pm \nu\| = \|(1 \pm f)\nu\| + \|\mu_s\|$ so $\|(1 \pm f)\nu\| = \|f\nu\| + \|\nu\|$. Thus f = 0 a.e. with respect to ν hence $\mu \perp \nu$.

Proof of theorem. The converse is an easy verification. Let T be an isometric isomorphism of A_1 onto A_2 . We shall show first that T maps $L^1(G_1)$ onto $L^1(G_2)$ and hence has the form (*) when restricted to $L^1(G_1)$, and then that (*) extends to all of A_1 .

Indeed $L^{i}(G_{i})$ i = 1, 2 will be shown to be the intersection of all nontrivial closed left ideals $I \subseteq A_{i}$ which satisfy

(**) $\mu \in I$, $\nu \in A_i$ and $\nu \perp \lambda$ whenever $\mu \perp \lambda$ and $\lambda \in A_i$ imply $\nu \in I$.

T and T^{-1} clearly preserve the property of being a closed left ideal and by the lemma they preserve (**). Thus T maps $L^{1}(G_{1})$ onto $L^{1}(G_{2})$.

Now for $\mu \in L^1(G_i)$, the condition $\nu \in A_i$ and $\nu \perp \lambda$ whenever $\lambda \in A_i$ and $\mu \perp \lambda$ is equivalent to $\nu \ll \mu$. Clearly $\nu \ll \mu$ implies it, and conversely any ν satisfying it must be orthogonal to its singular part λ in its Lebesgue decomposition $\nu = f\mu + \lambda$ with respect to μ since $\lambda \in A_i$. So $L^1(G_i)$ is a closed left ideal satisfying (**). Let $I \subseteq A_i$ be any nontrivial closed left ideal satisfying (**). Then I must contain a nonzero L^1 measure since $\alpha * \mu \in L^1$ and is nonzero for $\mu \neq 0$ in I and α is a suitable element in an L^1 approximate identity. The total variation of this measure is absolutely continuous with respect to it, hence in I. By convolving this with an appropriate L^1 approximation to a point

¹ I am indebted to George Reid for suggesting this lemma.

mass, we get a measure $\nu \in I$ strictly positive in a neighborhood of the identity (the convolution of an L^1 and an L^{∞} function is continuous). But there is an L^1 approximate identity absolutely continuous with respect to ν , hence in I. Since I is a closed ideal, $L^1 \subseteq I$.

Thus we have (*) holding for all $\nu \in L^1(G_1)$. Let $\mu \in A_1$, and $\nu \in L^1(G_1)$. Then $\mu * \nu \in L^1(G_1)$ so

$$\begin{split} \int \int f(\alpha(st))\chi(st)d\mu(s)d\nu(t) &= T(\mu*\nu)(f) = (T\mu*T\nu)(f) \\ &= \int \int \chi(t)f(r\alpha t)dT\mu(r)d\nu(t) \end{split}$$

so (*) holds for μ and all functions in $C_0(G_2)$ of the form $\int f(r\alpha t)\chi(t)d\nu(t)$ where $f \in C_0(G_2)$ and $\nu \in L^1(G_1)$. This class of functions is dense in $C_0(G_2)$ since ν may be taken in an L^1 approximate identity. Thus (*) holds for all $C_0(G_2)$ by continuity, which proves the theorem.

COROLLARY. A locally compact group is determined by its measure algebra.

This corollary was obtained independently by B. E. Johnson (Proc. Amer. Math. Soc. 1964). His results imply the main theorem under the hypothesis that each A_i contains all point masses.

BIBLIOGRAPHY

1. Irving Glicksberg, Homomorphisms of certain algebras of measures, Pacific J. Math. 10 (1960), 167-191.

 J. G. Wendel, On isometric isomorphism of groups algebras, Pacific J. Math. 1 (1951), 305-311.

PRINCETON UNIVERSITY