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SIMPLE AREAS

EDWARD SILVERMAN

Let λ Ξ> 1, E = EN and g be continuous on E x E X E with
g(a,-,') convex, g(a,kb,kc) — k2g(a,b,c) for all real k and
(b2 + c2)\λ ̂  #(α, b, c) g Λ(δ2 + c2) for all a,b,ceE where ό2 =
11 6 112. If /(α, d A e) = min&Λc=dΛe #(&> b, c) then / is a permis-
sible integrand for the two-dimensional parametric variational
problem.

Let γ be a simple closed curve in E, B be the closed unit
circle in the plane, C be the collection of functions x continuous
on B into E for which x \ 3B e γ and D = {x e C \ x is a D-map}.
Suppose that D is not empty. It was shown in Ά problem of
least area', [7], that the problem of minimizing !(/) over D
is equivalent to minimizing I(g) over D where /(/, x) =

11/(a?, 2? Λ #), ̂ J ») = \ \ff(x> P> V)> V = χu, q = xv and both

integrals are taken over B. The minimizing solution of I(g)
is known to have differentiability properties corresponding to
g, and this solution also minimizes /(/).

The function / is simple, that is, for each aeE, each
supporting linear functional to /(α, •) is simple. If N = 3,
then, of course, each parametric integrand is simple. In this
paper we show that for each simple parametric integrand F
there exists G, satisfying the conditions imposed upon g, such
that F is obtained from G as / was obtained from g.

In [7] we showed that the two-dimensional parametric problem in
the calculus of variations considered by [1, 2, 4> 5, 6] could be reduced
to a nonparametric problem provided the parametric integrand / was
properly related to a suitable nonparametric integrand g, f = Ag. When
this occured, not only the existence of the minimizing solution x was
given by the nonparametric theory [3] but also its smoothness, if g
was smooth. Furthermore, we saw that Ag was simple for each g,
that is, each supporting linear functional of Ag was simple. We shall
show here that whenever / is simple then there exists g such that
f=Ag.

Let E= EN. If aeE or aeE* let a2 = \\a\\\ Let 2\ = E A E
with norm Nlf thus Nx(a A h) is the area of the parallelogram spanned
by a and 6, and let T2 = E x E. We define N2 on Γ2 by N2(a, b) =
(a2 + 62)/2. Let T* be the set of all simple linear functionals over T1

which have norm one. Hence, if ζeT*, there exist ξ and Ύ) in E*
such that ζ = ξ A η with ? = ??2 = 1 and f ' ί? = 0. We frequently
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write ξa for ξ(a).

If φ is defined on P x Q then <pp is defined on Q by φP(q) — φ(p, q)
for all pe P and qe Q.

Let j y be the set of all continuous real-valued functions / on
E x Tλ for which there exists λ = λ(/) ^ 1 with NJX S faS λiS^ and
such that /α is convex and positively homogeneous of degree one for
each α e E. Let <&0 be the set of all continuous real-valued functions
g on E x T2 for which there exists λ ^ 1 with NJ\ ^ ga g λiV2 and
such that ga is convex and homogeneous of degree two for each ae E.
For our purposes, ϋ ^ gives nothing more than ^ ^ {he &0 | there exists
g e ^ o such that h(a, 6, c) — max*, #(α, bcosθ — c sin 0, 6 sin θ + c cos 0)}.

If g e Si then let Ag(a, δ Λ c ) = mind Λ e = b Λ C #(α, 6, c) and

= inf J Σ ^#(α, 6< Λ Σ &, Λ c{ = a\
i=i J

for all α e ϊ 7 ! . We saw in [7] that Agestf and that Ag is simple.
Evidently Ag(a, b Λ c) = minr7,ogr(a, rδ, s6 + r^c).

If g e J2? then 2gα

α

/2 is convex and positively homogeneous of degree
one. Suppose that ξ,ηeE*, and so (ξ,η)eTf. We say that (ξ,η)
supports 2gT at (6, c) if f6 + ψ = 2[βr(α, 6, c ) P and if ξd + ψ ^
2[g(a, d, e)]m for all (d, e). Furthermore, (ξ, η) supports 2gT properly
at (6, c) if (ξ, Ύj) supports 2gψ at {b, c) and if ξb = 77c, fc = 576 = 0.

The following lemma appears in [7]

LEMMA 1. / / (ξy η) supports 2gl12 properly at (b, c) then g(a, b, c) —
Ag(a, b A c) = [b A c, ξ A η\ where [d A e, p A σ] = p(d)σ(e) - p(e)σ(d).

Proof. If r Φ 0 then 4ff(α, rδ, sb + r^c) ^ (rf(6) + r
(r + r-χ)2(f6 + ^c)2/4 ^ (fb + ψf = 4flf(α, 6, c) and #(α, 5, c) = [6 Λ c, ξ A η\.

Now suppose that ξ, 77 G E*, ξ2 = )?2 = 1 and £ . 17 = 0. Let
•H"e,,(6, <0 = [(ί& + ^ ) 2 + (ξc - >7ί))2]/4. It is easy to see that Hζ>γ) = Hp>σ

if ξ A 7] = /> Λ σ, p2 — σ2 — 1 and /> σ = 0. Hence we can define
hζAΎ) = iί f,,. It quickly follows that hζ(b cos θ — c sin 0, 6 sin 0 + c cos 0) =
Jtf(6, c) for all ζ e T* and all real θ. As the sum of squares of linear
functional, h is continuous, convex and homogeneous of degree two.
An easy computation shows that p A σ = ζ if {p, σ) supports 2hψ at
(6, c) where hζ(b, c) Φ 0.

We define Ahζ(b Λc) = infdAe=6AC Af(d, e).

If ^ is a real number let Φ+ — max{^, 0}.

LEMMA 2. Ahζ(b A c) = [6 Λ c, ζ ] + .
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Proof. Suppose that ζ = ξ A rj where ξ2 = η2 = 1 and ξ η — 0.
If [6Λc, f Λ^] = l then (f,3?) supports 2hll2=2hf properly at (V(c)b-7j(b)cf

-ξ(c)b + ξ(b)c). If [b A c, ξ A y] = -I then ξ2Φ) + η\b) = d2 for some
8 > 0. If J?(δ) = 0 let V = b/ξ(b) and c' = -ξ{c)b + ξ(b)c; if η(b) Φ 0
let 6' = b/δ and c' = -[£(&) + δ2^(c)]6/[δτ7(6)] + <5c. In both cases Λ(δ', c') =
0 and V A cf = 6 Λ c. If [6 Λ c, £ Λ rj\ = 0 let ε > 0. If 27(6) Φ 0 let
V = eb and c'= [-η(c)b + 7}(b)c]/[εη(b)]. Then h(b', cf) = εΨ/4. If 7(6) =
0 and f (6) = 0 let V = δ/e and c' = εc; now ft(δ\ c') = ε2[ξ\c) + )?2(c)]/4.
If η{b) = 0 and f(δ) ̂  0 then let 6' = εb and c' - - [ξ(c)b]/[εξ(&)] + c/e
to obtain λ(6', c') = ε2f2(6)/4. The lemma follows by positive homogeneity.

LEMMA 3. Let λ ^ 1, k be continuous on E into [λ"1, λ], ge !3$
<mdf(α, by c) = max {g(α, b, c), k(ά)hζ(b, c)}. Thenfe Stand Af(a, b/\c) —
max {Ag(a, b A c), k(a)Ahζ(b A c)} for all a,b,ce E.

Proof. That fe £&is evident as is the fact that A / ^ m a x {Ag, kAhζ}.
Choose a,b,c with b A c Φ 0. Then there exist d and e with d A e =
b A c and Af(a, d A e) = /(α, d, e), and there exist (/>, σ) which supports
2/α

1/2 properly at (d, e), [7]. Assume, at first, that f(a, d, e) =
g(a, d, e) > k{a)hζ{d, e). If (p, σ) did not support 2gψ at (d, e), then
there would exist (dn, en) —* (d, β) such that k(a)hζ(dn, en) > g(a, dn, en)
and this is impossible for large n. Hence (p, σ) supports 2gτJ2 properly
at (d, e) and Ag(af d A e) — g(a, d, e) — /(α, d, e) = Af(a, d A e). If
/(α, d, e) = k(a)hζ(d, e) > #(α, d, β), a similar argument, together with
the fact that p A σ = fc(α)(f Λ ^), gives k(a)Ahζ(d A e) = A/(α, d Λ e).
If r̂(α, d, e) = k(a)hζ(d, e), let ε > 0 and 0 = max {(1 + ε)2#, & hζ}.
Obviously (̂ 1 + e)p, (1 + ε)σ) supports 2φψ properly at (d, e) and
(1 + εfg(a, d, e) > k(a)hζ(d, e). Hence Af(a, d A e) ^ A^(α, d A e) —
(1 + e)2Λflf(α, d Λ e) and the lemma follows.

Let fe Szf and λ = λ(/). We define k on E x [T? - {0}] by
l/fc(α, ζ) = supΛ^0 [α, ζ]//(α, α). Then fc is continuous, range k c [(λ || ζ H)"1,
λ | | ζ II"1], it"1 is convex and

/(α, a) = max fc(α, ζ)[α:, ζ] .

If /(α, a) — max^gr* fcία, ζ)[α:, ζ] then / is simple.

THEOREM. Let k be as above and f(a, a) = m&Xζeτ* k(a, ζ)[a, ζ].
, 6, c) = max^6Γ* jfc(α, ζ)hζ(b, c) is in & and f = Ag.

Proof. Let {ζp} be dense in T* and λ be as above. Let

gx(a9 b, c) = max {N2(b, c)/λ, &(α, ζjh^b, c)}

and
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gP+1(a, 6, c) = max {gp(a, b, c), k(a, ζp+1)hp+1(b, c)}

where hp — hζp.

By the last lemma,

Agp(a, bΛc) = max ίN& A c) , max k(a, ζm)[b A c, ζj\ £ f(a, b A c)

for each p. Hence lim Agp ^ /. On the other hand, for fixed α, b, c
and arbitrary ε > 0 there exists r such that f(a, b A c) < fc(α, ζr)[b A c, ζr] + ε
and so / = lim Agp.

A little arithmetic shows that

, s) - hψ(uf v)\^\\(r,s)- (u, v) || .

Hence {gψ} is equicontinuous and g0 = lim gp is continuous. It is clear
that go~g and that g e 3f. Furthermore, if K and L are compact
subsets of EN and Γa, respectively, then, by a theorem of Dini, gp

converges uniformly to g on K x L.
It remains to show that A# = lim Agp. Choose a,b, ce E and ε > 0.

There exist (bp, cp) withi\r2(6p, cp) g λAβr(α, b Ac) such that ^ ^ ( α , bpAcp) —
gp(a, bp, cp) and bp A cp — b A c. By passing to a subsequence, if
necessary, we can suppose that there exists (60, c0) such that (bp, cp) —•
(60, c0). Let p be so large that gp{a, r, s) > g{a, r, s) — ε for N2(r, s) ^
λ ^ ( α , b Ac) and so large that || (6P, cp) — (60, c0) [| < ε. Then Ag{a, b A c) =
Ag(a, b0A c0) ^ g(a, b0, c0) < gp(a, b0, c0) + ε < [gψ{a, bp, cp) + λ1/2ε]2 + ε =

[Agψ(ay bp A cp) + λ1/2ε]2 + ε. Hence Ag ^ lim Agp, and the opposite
inequality is evident.

If π is a projection of E onto a plane PcE, then there exist ξ
and 3? in # * such that ξ(πe) = f(e), ^(πe) = ^(e) and [6 Λ c, f Λ )?] Φ 0
whenever 6 and c are linearly independent points of P. A computation
gives [b A c, ξ A y](πe) — [e A cy ξ A η\b Λ- \b A e9 ξ A rj\c and we can
identify π with ξ A η. Since we can also suppose that ξ2 = rj2 — 1,
ς . η = 0, we can identify the set of projections with the elements of Γ*.

THEOREM 2. Lβ£ / e j ^ and suppose that for each ae E and each
5 A c Φ 0 ίAerβ exists a projection ζ0 (in T*) onto the plane determined
by b and c such that [b A c, ζ0] > 0 and such that f(a, ζo(d) A ζo(e)) ^
/(α, d Ae) whenever [ζo(d) A ζo(e), ζ0] > 0. Then f is simple and
/(α, 6 Λ c) - fc(α, ζo)[6 Λ c, ζ0].

Proof. There exist <2 and e such that l/&(α, ζ0) = [d A e, ζo]/f(a, d, e).
Hence
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, Co) f(a, d A e)

Λ ζ,(β), ζ,] _

~ f(a, Ud) A ζo(β)) /(α, b A c) ~ k(a, ζ0)

It is evident that the converse of this theorem holds.

REFERENCES

1. Lamberto Cesari, An existence theorem of calculus of variations for integrals on
parametric surfaces, Amer, J. Math. 74 (1952), 265-295.
2. J. M. Danskin, On the existence of minimizing surfaces in parametric double integral
problems of the calculus of variations, Riv. Mat. Univ. Parma, 3 (1952), 43-63.
3. C. B. Morrey, Jr., Multiple integral problems in the calculus of variations and
related topics, University of California, 1943.
4. , The parametric variational problem for double integrals, Comm. Pure Appl.
Math. 14 (1961), 569-575.
5. Ju. G. Resetnjak, A new proof of the theorem of existence of an absolute minimum
for two-dimensional problems of the calculus of variations in parametric form, Sibirsk*
Mat. Z. 3 (1962), 744-768.
6. A. G. Sigalov, Two-dimensional problems of the calculus of variations, Uspehi Matem.
Nauk (N.S.) 6, 42 (1951), 16-101.
7. E. Silverman, A problem of least area, Pacific J. Math., 14 (1964), 309-331.






